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1. Consider n pairs of balls with diameters X;;, i=1,...,n, j=1,2, being
mutually independent random variables (r.v.’s). In each pair, let one ball be of|
say, green (j = 1) colour and the other ball of blue (j = 2) colour. Consider the
hypothesis that the diameters of the green and the blue balls are equally distributed
(F(x) = F5(x)) against the alternative that the diameters of the blue balls are
stochastically larger than the diameters of the green ones.

The question is how to test these hypotheses when it is not possible to distinguish
between the colours.

Examples of such situations one can find, e.g., in radiolocation or in cyto-
genetics, in the investigation of homological chromosomes.

2. LetY,, = min(X;,X;,) and ¥;; = max(Xy, X;z), and let Sy; denote the rank
of r.v. X;; among all X°s. Then the rank of ¥}, is min(Si;, i) = R;; and the rank
of Y;, is max(S;y, Siz) = Ris-.

The fact that it is not possible to distinguish between the colours means form-
ally that a (rank) test should be some function of Y;; and Yj, (Ryy and Ry,), | =
1,...,n,ie. forall i=1,...,n it should be a symmetric function of X;; and
Xz (Siy and Sj).

As a particular example of test statistics one can consider the statistics

(1) min R;; = min max S;;.
1 [

The possibility of testing our hypotheses is based, roughly speaking, on the
following fact: although, for all i and k, r.v. Ry, is stochastically larger than r.v.
Ry, under both the hypothesis and the alternative, still this “increase is “larger”
under the alternative. Just this may be tested statistically.

3. One might mention here some exact distributions of rank statistics. For example,
marginal distributions of R;; are

2n—r r—1

2 P{Ru = I’} = 7[-(2—”-:-—17 and P{Riz = r} = .;1_@;1_:]_)_

12#¢ [179]
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and the distribution of a vector Ry = (Ryy, «..s Rur) i8
(€)] P{Ru =Ty, Ry = "n}
_ G@n=r) @n—ry_1=2) oo.r (2—11) Qs ri<r< .. <,
(2n)!

if all values in brackets are positive, and O otherwise. The distribution of statistics

(1) is

@ nt@n=n12"1(r—1)

PiminRiy =1} = =TT

Now it is easy to see that

(5) P{Ry; < 2tn} — P {max(Uy, U,) < t}

and

() P{min Ry, < t/Y2n}—P{minmax U, < t/)/3n} - 0,
i i

where U with different indices denotes independent r.v.’s uniformly distributed
over [0, 1].

According to what has been said above one may prove that under the alter-

native 1.v. R;, tends weakly to some r.v., which is stochastically larger than
max(Uy, U,).
4. Derive now the statistics of the locally most powerful (LMP) test and the LMP
rank test for given parametric subhypotheses. Namely, suppose that the distribu-
tion functions Fy and F, of X’s belong to some-parametric family H, {Fy(x), fe @},
where 6 is assumed simply to be a neighbourhood of 0 on a 1eal line. Suppose that
under the hypothesis Fy = F, = F, and under the alternative F, = F,, and F,
= Fy,. One may now consider the Neyman—Pearson statistics

L Z 200y
™ —,-..1 n dGo,o (vu, 12)

where Gy, ,5,(1, ¥2) = Fo,(0)) Fy,(v2)+ Fp,(92) Fy, (1), and expect that, as 0, =
cy/¥n and 6, = ¢,/)/n tend to 0, the statistics L should lead to the LMP test
while its conditional expectation E(L|Sy, S;) given ranks S; = (Sy;, ..., Su),
J=1,2, should correspond to the LMP rank test — just as in the case of usual
situations with statistics

®

dF,
= )
M ,--12 In (6.
=i

More precisely, under usual regularity conditions, statistics M is asymptotically

normal under both the hypothesis and a sequence of alternatives 8, = ¢,/y/n and

0, = ¢,/y/n with ¢, and c, fixed, and the asymptotic expression of the power of the
test M > ¢ of level o is

O] l—q)(tl_a—b]/cf-]-c% ),
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where
. [ dF;
b* = Eoh? t =—In—"2
Eh*(X) with  h(x) T In aF. (%)
and @(x) denotes the standard normal distribution function. The asymptotic ex-
pression of the power of the test E(M]S;, S,) > c is

(10) 1= pltyca=bles— 3l /V2),

so that the two tests are asymptotically equivalent iff ¢; = —¢,. For other choices
of ¢; and ¢, the power given by (9) is greater than that given by (10).

For the statistics (7) the situation is different: if ¢, # —c,, then, under usual
regularity conditions,

0=0

1
= Z h(Xi))- (¢,+cy)—const = op(1)
2yn it

(11) L—

under both the hypothesis and a sequence of alternatives, so that the asymptotic
expression of the power of the test L > ¢ is

(12) 1—@(ti—a—bles+ealfy2).
But
(13)  EQRLR)= D E(LX)|rgX = r)+op(l) = const-+op(l),

r=1l,..,2n

and this implies that for ¢, % —c, rank tests cannot distinguish our hypotheses.

If ¢; = —c,, or, more precisely, 8, = —0, and we are still interested in local
considerations, then (11) is no longer useful: s should tend to 0 only as c/n/*
and instead of (11) one may get

1
14) L—c? e (X)) +k (X)]—
(14) 7 Z[ E)+E ]
J=1,2
1
-2 h(X;) h(X;,)—const = 0,(1),
i ”Z i) (X .
where

2 dF,
k(x) = 'a%?‘“?’ﬁo;(")

6=0"

Now, without performing routine calculations of the asymptotic power, it may
be mentioned that
(15) E(LIR, Ry) = Z E(h XD h(X2) | Ry R;;)-+const+ op(1),

I=1,..,n
since the conditional expectation of the first sum in (14) is constant. The last expres-
sion implies that the LMP rank test can now distinguish the hypotheses considered
but it remains in general less powerful than the LMP one.
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5. In this note only a brief description of the problem has been given. Nothing
has been said about the tests based on nonlinear statistics (as that given by (1)),
or about tests for alternatives of a different type when, essentially, there is no asymp-
totic normality of the test statistics. A more detailed discussion of the problems
in question will appear in Teor. Verojatnost. i Primenen. vol. 24.
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Introduction

In this simple note we shall be concerned with the so-called Kiefer—-Wolfowitz
situation; i.e. with the problem of finding a point 6 of minimum of a (regression)
function f: R — R, R denoting the real line, when the only information available

" is that we can observe unbiased estimates of function values of f. Namely, we shall

apply the method of Farrell [2] to obtain a confidence interval for 8, of length not
exceeding any predetermined positive number. Originally, the method was employed
for finding a confidence interval for the zero of a regression function. It provides
some suitable stopping rule for the experimentation process based upon one of the
stochastic approximation procedures (depending on the situation at hand, either
on the procedure of Kiefer~Wolfowitz or on that of Robbins-Monro).

Let the sequential procedure for estimating point 6 of minimum of a regression
function be of the form(*):
()] Xop1 = Xo—a, ¥,
where a, are positive numbers, X; and ¥, are r.v.’s, n > 1. Itis well known that
under assumptions (A1)-~(A5), as well as under (A4)—(A7) (see below), lim X, = 6.

n—+m

(Equation (1) with ¥, given by (A4) defines the original Kiefer-Wolfowitz pro-
cedure.)

Now, the method can loosely be described as follows. Let < 0 < 8, for some
known § and 0. Let {X$°,n 2 1},i =1, ..., 2k be 2k sequences of r.v.’s obtained
by the use of 2k simultaneous and 1ndcpendent Kiefer-Wolfowitz procedures star-
ting, respectively, with X{? = 0 for i =1, ..., k and X{* = f for i = k+1, ..., 2k.
These sequences are stopped at such random moments, say M and N, that X =
min{X4, ..., X%} and X} = max {X§f*V, ..., X} have enabled one to construct
a conﬁdence interval for 0, with the conﬁdence level 1—o andlength < L, w.and L
given in. advance.

(‘—) All random variables (r.v.’s) are assumed to be defined on a probability space (2, #, P)
and relations between r.v.’s are meant with probability one.
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