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5. In this note only a brief description of the problem has been given. Nothing
has been said about the tests based on nonlinear statistics (as that given by (1)),
or about tests for alternatives of a different type when, essentially, there is no asymp-
totic normality of the test statistics. A more detailed discussion of the problems
in question will appear in Teor. Verojatnost. i Primenen. vol. 24.
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Introduction

In this simple note we shall be concerned with the so-called Kiefer—-Wolfowitz
situation; i.e. with the problem of finding a point 6 of minimum of a (regression)
function f: R — R, R denoting the real line, when the only information available

" is that we can observe unbiased estimates of function values of f. Namely, we shall

apply the method of Farrell [2] to obtain a confidence interval for 8, of length not
exceeding any predetermined positive number. Originally, the method was employed
for finding a confidence interval for the zero of a regression function. It provides
some suitable stopping rule for the experimentation process based upon one of the
stochastic approximation procedures (depending on the situation at hand, either
on the procedure of Kiefer~Wolfowitz or on that of Robbins-Monro).

Let the sequential procedure for estimating point 6 of minimum of a regression
function be of the form(*):
()] Xop1 = Xo—a, ¥,
where a, are positive numbers, X; and ¥, are r.v.’s, n > 1. Itis well known that
under assumptions (A1)-~(A5), as well as under (A4)—(A7) (see below), lim X, = 6.

n—+m

(Equation (1) with ¥, given by (A4) defines the original Kiefer-Wolfowitz pro-
cedure.)

Now, the method can loosely be described as follows. Let < 0 < 8, for some
known § and 0. Let {X$°,n 2 1},i =1, ..., 2k be 2k sequences of r.v.’s obtained
by the use of 2k simultaneous and 1ndcpendent Kiefer-Wolfowitz procedures star-
ting, respectively, with X{? = 0 for i =1, ..., k and X{* = f for i = k+1, ..., 2k.
These sequences are stopped at such random moments, say M and N, that X =
min{X4, ..., X%} and X} = max {X§f*V, ..., X} have enabled one to construct
a conﬁdence interval for 0, with the conﬁdence level 1—o andlength < L, w.and L
given in. advance.

(‘—) All random variables (r.v.’s) are assumed to be defined on a probability space (2, #, P)
and relations between r.v.’s are meant with probability one.
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The result

We shall begin with the following assumptions:
(A1) a,, ¢, are positive numbers, n = 1; a,, ¢, | 0; Z a, = o, Za,,c,, < o,
n n

Z az —2 o
(A2) f: R — Ris twice continuously differentiable. The second order derivative
of fis bounded on R, ie. |fu(¥)| < K, for all x€R and some K, < co.
(A3) inf{{f:(); 1x—0] > &} > 0, inf{f(x)~f(6); |x—0] > g} > 0 for every
e > 0 and with fi(x) denoting the first order derivative of f at x.
(Ad) Es, ¥, = (2¢,)" [f(Xy+ ) —f(Xy—¢,)), where F, is the smallest o-field
that measures {Xl, ..., X,} and Eg, denotes the conditional expectation given &,.
(AS) Ex,Z% <
Thus, by the Taylor expansion with the remainder we have
(2) Xoyr = Xn_anf;c(Xn)"' Vs
where
Yn = —‘a,,(B,,+ Zn)

1,.— —
ie7%0%, 0* < 0, where Z, = Y,— Eg,Y,

and B, = “:_-C,,[/;;x(X,,-I-’VS,l)C',,) —f;‘x(X,,—Wf,z)C,,)],
We@,1), i=1,2,

Z w| > 8) < 402" 22 (@fe))?

LemMa 1. We have

P( max
m<j<n

for every & > 0 and any m, n such that m< n and Z a;¢, € 8/K,.
_I"
Proof.
n n
® D @Bl < 1Ko > e < 0.
i=m i=m

) b
The sequence of sums {,Z 67, j=m,m+1, } is a martingale (relative
=m

to {Fj41,7 =m, m+1, ...}) and, hence, using one of the fundamental inequalities
for non-negative submartingales yields (see e.g. [1], p. 317, Theorem 3.4)

J n
Z a;Zit > —;1) < (3D o Z (@fe)™.
=m i=m

So, by (3) and the definition of /s, the proof is accomplished.

P(max

m<j<n

PrOPOSITION 1. Let, for any fixed integer m and positive 8, Ay, 4 be the event
that for some pair of integers r and s, m < r < s, X, < 0 and X, > 0+28. Assume

icm
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anKo < 1 and Z ae; < Then

i=m

< 0/K,.

o0
P (An,) < 402672 (e,
Progf. Without loss of generality we may assume that 6 = 0.

Suppose P(A,.s) > 40626~2 2 (@i/c;)®. Then with positive probability there

exists a pair of integers r and s w1t11 m< r< s such that X, <0, X; >0 for i

=r+1,,.,8 Xy > 26 and] Z Jhl < 24. By (2) we have
i=r

s~1 s—1
X, = X= Y afi®)+ ) v
i=r i=r

and hence (the next to last inequality being implied by assumption (A2))

s—1
Xy S X= 0 i)+ D 71 < X tufu(X)+20 < X0, KolX, 428 < 28,

i=r
a contradiction. This completes the proof.
Remark 1. Obviously, under the conditions identical to those of Proposition 1,

‘the following inequality holds

P (Byo) < 402672 (aifc)?,

I=m

With Byo= U {X, >0, X, <0-26}.

msr<s
We are now in a position to state the final result. Suppose the condition

0<6<8
is given. Let {XO, n > 1} i=1, ..., 2k, be 2k sequences of r.v.’s obtained by the
use of simultaneous Klefer—Wolfowntz procedures with the same sequences {a,,

and {c,} and starting, respectively, with X{P=0,i=1,..,k, and X3 0=,
i=k+1,..,2k Recall that lim X{P=0,i=1,...,2k.

n-roo

PROPOSITION 2. Suppose {X{P}, i =1, ..., 2k, are given as above, & is positive

and fixed and
0 o0

@ 40%2 (@fe)? < @, aKo<1, Y ac< Ko
=) i=1

Then, with X}, = min {X§9, ..., X{f} and Xy = max {XFD, XD,

P(0 & [—20+ X3y, 28+ Xy for any positive integers M, N) > 1-
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Indeed, by Proposition 1 and Remark 1 we get
P(I(M, N): 0 ¢ [~20+X3, 20+ X3])
< P((Vi=1, ... DEAM > 1) 1 XP <0, XP-28 > O)+ P((Vi = k+1,...,2K)
@AN = 1):X > 0, XP+26 < 0)<a.
Thus, for any & positive and fixed and any integers M, N such that |.X; N—Xul <&,
the interval [—26+X}, 26+Xy] is the confidence interval required (provided
that it is non-degenerate, i.e., that X3 — Xy < ¢ < 46) and is of length < &+44,
In particular, one can define M, N to be such integers n;, n, that [X;' —X; | < ¢
and the sum n, +n, assumes the least value.
Assume lastly (A4)-(A7) in lieu of (Al)-(AS):
(A6) f: R— R is continuous. There exist positive constants Co, K;, K, such
that for every 0 < ¢ < C, (and x € R)
©) 20K; (2~ 0)* < [f(x+)—f(x—)] (x—0) < 20Ky (x—0)* ()
(A7) ay, ¢, >0, 02 1; a,,¢,4 0; Na, =, Zaﬁc;2< 0.
n n

Under assumptions (A4)—(A7) Proposition 2 remains valid with

o0
0) 072 (@fe < @)W, @K <1, ¢ <Co,

i=1
replacing conditions (4); it suffices to observe that equation (2) may then be re-
placed by the following one

Xn+1 = X,—a,K(")(X"—0)+ Yns
where 0 < K; < K® < K, < 0 and p, = —a,Z,.
Remark 2. Our method requires that the estimates for K, (or, resp., Ky), o2,
6 and 6 be known.

Remark 3. Conditions (6) and — a fortiori — (4) are stringent and, in practice,
make the method applicable only in the case of “small” o2.

Concluding remark

The problem has been posed in a non-asymptotic set-up and, consistently, we have
not borrowed from the asymptotic theory of stochastic approximation, when soly-
ing it (cf. e.g. [3]; here one may noté that inference from the asymptotic theory
about the confidence intervals in question is hardly justifiable, unless there are
known some results about the speed with which the behaviour of experimentation
process approaches its asymptotic character). We have confined ourselves to the
sequential methods of stochastic approximation type and, thete, we have followed

(®) Clearly, if f is differentiable, condition (5) implies (A3).
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the Farrell’s idea, as far as we are aware, the only one among those proposed to
date of strictly non-asymptotic (and non-deterministic) nature.

Needless to say, some more investigations in this direction must be done, in
view of apparent drawbacks of the solution presented (cf. Remarks 2 and 3).
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