icm°®

MATHEMATICAL STATISTICS
BANACH CENTER PUBLICATIONS, VOLUME 6
PWN—POLISH SCIENTIFIC PUBLISHERS
WARSAW 1980

ON CONCEPTS AND MEASURES OF BIVARIATE STOCHASTIC
DEPENDENCE

T. KOWALCZYK, A. MATUSZEWSK], A. NALBACH-LENIEWSKA,
E. PLESZCZYNSKA

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

1. Introduction

Functional monotonic dependence is considered as important special case of func-
tional dependence between two variates, while linear functional dependence is a special
case of monotonic dependence. Similar gradation seems to exist in the case of stoch-
astic dependence between two random. variables X and Y. It should be reflected
in some way by suitably defined measures of global, monotonic and linear depen-
dence such that, loosely speaking, global measures reduce to monotonic ones under
monotonic models and to linear ones under linear models. This natural idea is
confused by an invasion of various concepts of stochastic dependence and their
measures appearing in the statistical literature. Global and monotonic dependence
is occasionally referred to as connection and concordance (cf. Kruskal [5]). Mono-
tonic dependence is also sometimes called positive-negative or signed dependence;
it expresses the fact that large values of X tend to associate with large (or, alternatively,
small) values of Y.

The ‘paper aims at directing the attention of the reader towards these problems,
mainly by means of some functional measures of general, monotonic and linear
dependence which have a special interpretation in terms of “goodness of screening”.
These measures are considered in Section 2 and they provide an intuitive basis
for the discussion given in Section 3. It should be stressed that the discussion is only
intended to stimulate further investigations since the problem is far from being
exhausted or even satisfactorily approached.

2. Measures of dependence referring to screening

Let us start with specifying certain models of monotonic and linear stochastic
relationship between random variables X and Y. These models are all contained
in the set C of all random pairs (X, ¥) such that the distribution of X is non-
degenerated and EX is finite.
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Let MRF denote the set of random pairs consisting of all elements of C such
that the regression function of X on Y is strictly monotone; the symbol “MRF”
refers to “monotonic regression function”. MRF is the sum of disjoint subsets
MRF*+ and MRF- corresponding to increasing and decreasing regression func-
tions.

Monotonicity of regression functions of X on Y is a special formalization
of the intuitive notion of monotonic dependence of X on ¥, and MRF is an
example of models which were referred to in the introduction as “monotonic
models”.

Let H denote the set of all increasing functions R — R and let Q denote the
set of (X, Y)'s such that there exists an h € H for which the distribution of A(Y)
is equal to that of X or —X (this means that one of the boundary distributions
for (X, Y) is concentrated on {(x,»): x = h(»)}or on {(x,y): —x = h()}, the
notion of boundary distributions being given e.g. in Mardia [7]). For any he H,
we denote by LRF(h) a subset of MRF such that the regression function of X on
h(Y) is linear. Obviously, any LRF(%) can also be partitioned onto LRF* (%) and
LRF-(%).

Important special cases of LRF(k)’s are those with A’s linearly increasing.
The sum of all such sets will be denoted here by SLD (“strong linear dependence”).
(X, ¥) e SLD implies that the regression function of X on Y'is linear but the converse
is not always true: to be strongly linearly dependent on ¥, X must fulfil the con-
dition that /4 is linear, i.e. at least one of the boundary distributions is concentrated
on a line. Strong linear dependence could be exemplified by binormal random
vectors. .

We have thus defined a sequence of models SLD < MRF = C and a family
of models LRF(A) « MRF such that MRF is a formalization of stochastic mono-
tonic dependence of X on ¥ while LRF(%) and SLD are formalizations of stochastic
linear dependence of X on A(¥)and of X on Y. Now we turn to some function meas-
ures of dependence referring to screening (cf. Kowalczyk, Kowalski, Matuszewski,
Pleszczyfiska [4]).

Suppose that items of some population are characterized by values (x, )
of an unobservable variable X and an observable variable Y. Screening is defined
as rejecting a fraction p (p € (0, 1)) of items with possibly small values of X on the
basis of values of ¥. For any p € (0, 1), we shall say that a function Spyt R =10, 1]
is a p-screening function if it is measurable and Es, y(¥) exists and is equal to 1—p.
The value s,,7(y) for any y € R is interpreted as the probability of acceptance of
an item characterized by (x, y) for any x & R. Hence screening under s, y transforms
the original random variable X onto X]s,.y interpreted as X in the population of ac-
cepted items.

EX|s, y corresponds to the goodness of screening under s,,y. Here, the family
of EX|s, y for all possible p’s and p-screening functions is used to construct a measure
of dependence of X on Y in the following way:
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For any random variable U, any p € (0, 1) and any pth quantile u, of U, let
tpu: R— [0, 1] be given by

(0 if

a <y, -
L@ =\{v,uv if a=u,
1 if  a>u,,

where
A=p—P(U> uy)

P(U = u,)
0 otherwise.

if P(U=u,)>0,
Ypu =

Obviously, 7,y is a p-screening function based on U. It will be called a p-trunc-
ation function.

For (X,Y)eC, the expression (E(X|s,y)—EX)/(E(Xt,x)—EX) is well-de-
fined and does not exceed 1. The closer it is to 1, the better is s,y as a p-screen-
ing function. Let S,y denote the set of all p-screening functions related to ¥. Now,
for any (X, Y) e C we define a screening dependence function vy y: (0 1) [0,1]
such that for any p € (0, 1)

vx,y(p) = sup (EXlsp, )~ EX)(E(X1ty x)— EX)
(21) Sp,Y€Sp,y

It was shown in Kowalczyk et al. [4] that
vx,v(P) = (EX1ty,pxv)— EX)/(E(X[t,,x)— EX),

which means that for any p &€ (0, 1) t,,gx;y is the best p-screening function concern-
ing X and based on Y. Consequently, E(X|t, gx;y) is a mixture of E(X|t, x) (ie.
the upper bound available only when X is observable) and of EX, with coefficients
»xx(p) and 1-x2(p).

Screening dependence function v,y is a function-valued measure of global
dependence of X on Y, defined for (X, ¥) € C and interpretable in terms of screen-
ing. Some properties of v,y are stated in Kowalczyk et al. [4]. We shall quote here
only one of them, using the notation “a.e. ¥” to replace “almost everywhere with
respect to the distribution of ¥™:

1 iff

@2

there exists an f: R — R such that

(X, /(7)) e C and X = f(¥) ae. 7,
0 . iff EX|Y=EXae. Y.

(23) rxx(p) =

Now, let us turn to an analogous measure uyx,y of monotonic dependence,
called a monotonic dependence function, which maps (0, 1) onto [—1, 1] for any
X, ¥) e C, It was first introduced in Kowalozyk and Pleszczyniska [3] for a subset
of C and subsequently extended to C in Kowalczyk [2]. Using truncation func-
tions, we define py, y(p) for any pe(0,1) by

if  pky(p) =0
otherwise,

4i%,x(p)

@9 — ity x(0)

4ix,v(P) = {
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where
2.5 1t .x(0) = (E(X\ty,x)— EX)/(E(Xt, x)— EX).
Obviously,
piy>0 for (X,Y)e MRF*,
.6) try = { i ;
’ —ptxy <0 for (X,Y)eMRF-,

and, as shown in Kowalezyk [2],

1 (—1) iff there exists a nondecreasing (nonincreasing)
@7 uxy(p) = mapping f: R — R such that X = f(¥) ae. ¥,
0 iff . EX|]Y = EX ae. Y.

By (2.2), (2.4) and (2.5), the screening dependence function of X on Y is
equal to the monotonic dependence function of X on EX|Y:

(2.8)

Yx,y = Ux,Ex|¥:

We are interested in relations between uy,y and vy,y. Obviously,
.9 —Voxy € fx,y € Vxv,
where Vp € (0, 1) v_x y(p) = vx,y(1—p). Furthermore,
for (X,Y)e MRF",
(X, Y) e MRF-.
Referring to the latter formula, we shall say that (X, Y) satisfies the condition “u = »”
if py,y is equal either to 5,y or to —v_x y. Hence any (X, ¥) € MRF satisfies U=
but the converse is not true. Obviously, the condition “4 = »” expresses rather
strong monotonicity existing between X and Y and can be fulfilled only when
#x,y is of constant sign. It is intuitively evident that in most cases ux,y is not of
constant sign when X is not monotonically dependent on ¥, e.g. in the case of
a U-shaped distribution.

Let <" and <* be defined on C by
EN<EY) i Vpe©, Dixy® < vxrdp),
D<A, Y) A Ype O, Diper®)] < e,y @)l
for any (X, Y), (X', Y") e C. Then, for any such (X,Y) and (X", Y") satisfying
“,L‘ = v”,
(2.12)

Vx,y

210 bBxx = {-—v_x_y for

2.11)

N ELY) (D<A, Y.

Finally, we turn to a certain real-valued measure of linear stochastic dependence
of X on ¥, namely to the correlation coefficient oy y defined on the subset of C
containing distributions with finite non-zero second central moments. Here, it will
be convenient to extend the definition of gx,y to any (X, ¥)&SLD: whenever
(X, Y) e SLD and second moments are not finite (e.g., for a bivariate z-Student
distribution with two degrees of freedom), ¢ in the formula

(2.13) EX|Y = oh(¥)+ (1— o) EX
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will be interpreted as gyy. Hence in the sequel we shall use the symbols ox.h(¥)
in the extended sense for any (X, ¥) e | LRF() (since (X, ¥)e LRF(%) implies
heH
&, h(Y)) € SLD).
Tt was shown in Kowalczyk [2] that for any (X, ¥Y) € CnQ

_ fexam iff (X, ¥)eLRF(),
(2.14) bxy(p) = {Qx,y it (X, Y)eSLD,
and for (X, Y)¢ | J LRF(h) ux.y is not constant. Moreover, by Kowalczyk et al.
heH
[4], for any (X, Y)e CnQ
2.15) vey(P) = loxam| ff (X, ¥) e LRF(h).

Evidently, the latter statements provide some new interpretation of py ey for
X, Y) el LRF(#), namely that referring to screening.
heH

Let < be defined by (X, Y) < (X", Y") iff loxyl < lox.v|. Then, for any
X, Y), (X', Y)eSLD,

(2.16) @ENXX,7MNaeXNKKFE e X, D<A, Y.

It is known that gx ey is equal to 1 (—1) iff the distribution of (X, Y) is con-
centrated on {(x, »): x = A(»)} or {(x,»): —x = A(»)}, i.e. is equal to one of the
boundary distributions. Specifically, |ox,y| is equal to 1 iff the distribution of (X, Y)
is concentrated on a line.

3. Discussion

Let us start with a brief recapitulation of Section 2. Three different aspects of
stochastic dependence of X on Y, global, monotonic and linear, were considered,
measured respectively by », u and g. The sets of arguments and values of the three
measures were different. Partial orderings =<¢*, <* and =<{¢ were introduced reflect-
ing the corresponding partial orderings of the sets of values. The maximum elements
of the sets of arguments according to these ordering relations were shown to be
those with distributions concentrated on the graph of a certain arbitrary, monotonic
and linear function, respectively; these elements belong, respectively, to C, MRF
and SLD and achieve extreme values of », 4 and ¢. The minimum elements were
shown to be those with constant regression functions of X on Y in the case of <*
and =<* and with uncorrelated X and Y in the case of <% Moreover, the three
measures were “consistent” on appropriately chosen subsets of arguments accord-
ing to the following general definition:

Let (%, ZX) be any measurable space and let K be the set of all probability
measures on X. Let B, and B, be subsets of XK, BB, % @. For i = 1,2, let ¢;:
B, — I'; be a measure of some aspect of B;, and let <3 and <™ be partial order-
ings of B; and [T, respectively, such that for any P, P’ € B;

P Bt P = )(P) <Tvou(P).
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Now, suppose that the two aspects measured by ¢, 'and @, are considered Fo be
equivalent on some subset 4 < B;nB,. Then we require ¢; and @, to be consistent
on A4, namely

(i) for any P,P'e 4

@1(P) <72 @y (P") <> 92(P) <P2y(PY),

(ii) there exists a: @,(4) %5 @,(4) such that for any P 64 o o @ (P) = @,(P).

In view of (2.6), (2.10), (2.12) and (2.16), » is consistent w1th'u on.MRFf and
on MRF- and is consistent with ¢ on SLD* and on SLD~ whlle. [:l:.ls consistent
with ¢ on SLD. This illustrates possible formalizations of “reduleblllty of global
measures to monotonic ones under monotonic models and to linear ones under
linear models”, which was vaguely postulated in the introduction.

However, the triple of measures ¥, 4 and g, and the triple of models C, MRF
and SLD are only illustrations of models and measures which could be introduced,
and relations <* and =<’ are only illustrations of appropriate partial orderings.

The general problem of a synthetic description of some aspect of a set of dis-
tributions is very complicated. Bickel and Lehmann [1] suggested that the postulates
concerning the aspects in question should deal in the first place with a partial order-
ing of the set of distributions, indicating cases in which one distribution possesses
the attribute under consideration more strongly than another one. A real-valued
measure of this attribute should then preserve this ordering. Further conditions
considered by Bickel and Lehmann were that of invariance and of the effectivity
with which the value of the measure can be estimated from a sample. Finally, the
authors postulated that in the case of the existence of a “natural” real-valued
parameter characterizing the given attribute for a subset of arguments, a measure
should reduce to the parameter in question on this subset.

The latter requirement is related to that of the consistency of two measures
characterizing two different aspects equivalent on the embedded model.

Bickel and Lehmann considered only real-valued measures. It seems to us,
however, that when dealing with more complicated aspects of bivariate distri-
butions; such as shape, monotonic dependence and so on, one has to use descriptive
statistics with “richer” sets of values. Moreover, partial orderings seem insufficient.
It seems that the whole problem should be approached by appropriately developed
methods of measurement theory, such as proceeding from relation systems concern-
ing sets of distributions to “simpler” relation systems, not necessarily numerical
ones. Among the relations, that of “closeness” should be involved.

We close the discussion with a short reference to a very interesting approach
to bivariate dependence problems proposed by Lissowski [6]. The main idea is to
construct real-valued measures of dependence interpretable in terms of goodness
of prediction of the value of unobservable X exploring the value of observable Y.
Using some oversimplification, Lissowski proposes to consider non-negative loss
functions describing the consequences of wrong prediction and to attach to any
bivariate distribution and any loss function the normalized difference of expected
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losses under the “optimal” decision rule based on ¥ and under the “optimal” de-
cision rule based on X. The choice of the loss function corresponds to the choice
of the “type of dependence” of X on Y. This approach has made it possible to classify
and provide a new interpretation for nearly all existing real-valued measures of
dependence and has inspired some practical applications.

There are strong analogies between the above approach and our research on
measures of dependence interpretable in terms of screening. The decision problem
of predicting the value of unobservable X basing on observable Y is parallel to that
of screening a fraction of values of unobservable X on the basis of Y.

A synthetic description of various types of stochastic dependence is certainly
one of the most important problems for statistical theory and applications. It is
to be stressed that it is the applicability of the various descriptions that should
be the decisive criterion, and therefore many measures are needed to deal with
particular situations. What causes anxiety at the present stage is the disproportion
between the progress of inventing new measures and the progress of theoretical
considerations on the subject. The latter are urgently needed.
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