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The purpose of these lectures is to report on some typical ideas and methods em-
ployed in the statistical analysis of point processes. The emphasis is on methods
which work in general spaces. Thus we exclude topics based on martingale theory
and tied to the structure of the real line; for this the reader should consult papers
[0]-[4], [13]. Nor do we treat the extensive theory of the estimation of the spectrum,
of the moments, etc., of stationary point processes: papers [5]-[7] give an excellent
account of this area. Also, for lack of time, we cannot talk about applications of
Palm distributions to statistical inference. Instead we try to illustrate certain basic
ideas by describing in some detail two areas: inference in the case of a family of
Poisson processes (chapter 2), and filtering problems of Cox (doubly stochastic
Poisson) processes (chapter 3). For further reading the references [8], [9], [12],
[26], [27] are recommendet.

The first chapter introduces or recalls the concepts and notations used. It
turns out that the functional analytic set up simplifies many reasonings and their
writing, and makes many things appear in a clearer light. It is, of course, especially
appropriate for lectures at the Banach Centre.

Proofs are sometimes sketched and in a few cases given in detail; for the rest
there exist sufficiently complete references.

1. Basic concepts

Everything will take place in a basic space X which is assumed to be locally compact
with a countable base. We will work with the following spaces of real-valued func-
tions on X or classes of subsets of X or Radon measures in X where “measurable”
always means “Borel measurable”, that is, Baire:

13 all bounded continuous functions;
A all bounded continuous functions with compact carrier;
H all bounded measurable functions;

[197]
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all bounded measurable functions with a compact carrier;
2 all Borel sets;

ABy all bounded, that is, relatively compact, Borel sets;

all positive measures;

M+ all positive point measures, that is, measures of the form

, (LY "= ZE"J’

J

where the x; € X need not be distinct and &, is the unit mass located in x.
Then the carrier of u is the locally finite set

carrp = {x;,%3,...};

M all finite point measures

(1.2)

n
“u = Z )
=1
4+  all counting measures, also called simple point measures, that is, measures
of the form (1.1) with distinct x;. In this case u(4) = # (4 ncarry), and u
may be used as a convenient representation of its carrier. Any countable
locally finite set is the carrier of a simple point measure;
#°  all diffuse positive measures, that is, measures in .4, without atoms;
P all probability measures.
Some of these entities will also appear with X replaced by some other space,
Y say, which need not be locally compact; we will then write for example #(¥).
If fe#,, the integral

13) () = §f@u@

X
is defined for every u € 4., and we denote this as a function of u by ¢ v thus
Lr(u) = w(f). We write ¢, for £, o here 1, is the indicator function of 4 < X.
For the point measure (1.1) we have

w0 = D fx).
Note that fr {; is linear. ’

We endow ., as usual with the vague topology which is the coarsest topology
which makes all functions {; with f& A continuous. The sigma-algebra #B(..)
of the Borel sets in .4, for this topology can also be characterized without direct
reference to a topology in .,: it is the sigma-algebra generated by all £ with
fe#y as well as that generated by all £y with fe o, but also that generated by
all {, with 4 € B, (sce [14]).

A random measure in X is a probability measure, P say, on B(.), thus
P e P(M.). Intuitively speaking, we select a measure # in X at random, following
the law P. For any fe #, or A e %o, the measurable functions £, or ¢, can then
be considered as random variables on the probability space (./l+, B(A.), P):
they represent the integral of f; or the measure of A, as a fundtion of chance.
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It will be convenient to take the functional analytic point of view also when
describing P. We may define P as a real-valued functional on % (A .) which is
linear, positive, normed, that is P(1) = 1, and sigma-continuous: ¢, € €(#..)
and @, 0 imply P(p,) 0. We can then extend Pto H#(.) uniquely so as to
preserve these properties, and by Ulam’s theorem P will be automatically tight,
that is, continuous in the loose topology: if ¢, € #(#,) is uniformly bounded
and converges to 0 uniformly on every compact set in ., , then P(p,) — 0 (see
[24], p. 29).

The functions {; with f'e #, are continuous but in general not bounded. If
all of them are P-integrable, P is said to be of the first order, and the measure in
X defined by

w(f) = PGy = § p(DPEw), or we={ uPy) for short,
My My
is called the first order moment measure, or intensity measure, of P. Thus, for
example, ¥5(4) is just the average measure of 4. Analogously, the kth order moment
measure of P is the measure in X* given by

S u*P(du) for short,
My

where (L ® ... ® fi)(x1s ooy X)) = f1(x1) ... fulx) and p* is the k-fold product
measure 4 ® ... @ 4, provided that P is of the kth order, that is, the integrals (1.4)
exist. In particular,

(14) " ® ... ®f) = Py, 7 Lp), or P =

YA % . XA = P4, * - Lay)-

Thus »# is the intensity measure of the random measure P* in X* whose law is
the image of P by the measurable map - p* of /£, (X) into M (X"); in other
words, P™ has the realization u* if P realizes itself by p.

The cumulant measures of P are derived from the moment measures by the
formula

w5 e o= >, Cuiem=n]uen
I= Je

T Powwows /51

where {Jy, ..., J,,} runs through all partitions of {1, ..., k} into mutually d.isjoint
non-empty sets, and &, = 4 J;. They play an important role for the estimation of
the spectrum of stationary random measures on the line [5], but we will only need
the second cumulant measure, or covariance measure, yp = ) of P defined by

(1.6 ve(f®g) = cova(ly, L) = v @) —»e(f)7p(g).

The sets 4", #', #°, and #° belong to & (see [14]). The random measure
P is called a point process ot simple point process if P(#+) =1 or P.(‘It') =1,
respectively. Intuitively speaking, a simple point process consists in selecting at ran-
dom, following the law P, a countable and locally finite subset of X, and ¢, is the
number of points of this set which fall into 4, considered as a random variable.
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A éonvenient tool for the study of many aspects of random measures is its
characteristic functional defined by

wn Bf = P(exp(iLp) = j{ exp(iu())PAw), [€Ho.

P is completely determined by 13f for fe A, and we will use Pmainly tocompute

the finite-dimensional distributions of P, that is, the joint laws of th? random .ver.:tc.,rs

&r,s s Ep) With f1, oou fu € #o- In fact, the characteristic function of this joint
s bpy yenes

law is simply

(L8) (s woos ) PUsfit o + 1) = P(exp iCtip,+ oo +11)))

with , ..., i € R. Hence g, ..., {s, are independent if and only if

K
(1.9) Ptfit o +1f) = [ [P@f) forall 11, .., te.

=1
We are going to construct a few examples.
1. Let pe.#, and 0 < g(X) < co. Consider a single random point distri-
buted in X according to the law /o(X). The law of this point process is, by defi-
nition, the image of g/o(X) under the map x> &,; hence

i

o(X)

2. Consider now »n independent random points distributed in X according
to o/o(X). The corresponding point process P is given by

Py = S<P(8x)e(dX), pe(M,).

X

Py = Q_(IX)_)S @(en,+ - +2)0(dxy) .. 0(dn).

For n = 0 we have Py = ¢(0).

3. The Poisson process P,. We select first an integer at random according to
the Poisson law with parameter g(X), that is, n is selected with probability
(1/ne(X)"exp(—~ o(X)),and we then distribute n pointsin X'as in example 2. Therefore

o0
1
(110) Pyp = exp(~e(0) Y =i § 9lee,t o +em)aldr) . old).
n=0 : xn
Obviously, P, is linear, positive, normed and sigma-continuous, hence it is a random
measure. By setting ¢ = 1 4. we see that P, is a point process carried by the set

of all finite point measures. By (1.7) and (1.10):
.19 B(f) = exp(elexp(iN—11).

Since carr[exp(if)— 1] < carrf, the right-hand side of this expression makes sense
even when o(X) = + o0, and in fact it can easily be shown by various extension
procedures ([14], [15]) that in this case, too, there exists one and only one random
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measure P, such that (1.11) holds for every fe s# (). Tt is called the Poisson
process with intensity o.

By (1.8) and (1.11) the distribution of the random variable {; on the prob-
ability space (./{+ , B(AMA L), PQ) has the characteristic function whose logarithm
is given by
(1.12) 1> 1og Po(tf) = elexp(itf)—1;
hence it is the compound Poisson law determined by f and o. Therefore, P(Lp)
= o(f), that is, P, has the intensity measure ¢ as already implied by its name. Later
on we will make essential use of the fact that (1.12) is linear in g.

It also follows from (1.8) and (1.11) that s> o5 Ly, are independent if £, ..., fi
have mutually disjoint carriers. In particular, ¢, has the Poisson distribution with
parameter o(4), and ¢ 4,5 ---» L4, 87¢ independent whenever 4, ..., 4, are dis-
joint: this is the usual definition of P,. From here, or from (1.10), it follows that
P, is a point process and that P, is simple if and only if ¢ is diffuse. Moreover, by

writing equation (1.3), valid for every realization u of the process, in the form of
a stochastic integral

tr = {00 us

X
we recognize immediately the intuitive meaning of the name “compound Poisson
law™.

Finally, by repeated differentiation of (1.8) we obtain [16] the kth cumulant
measure of P, according to definition (1.5):

(L.13) PR® . ®f) = o(fy" - fi)s
that is,

yg,"g)(Al X oo XAp) = (410 ... NAY).
In particular, its covariance measure is equal to

(1.14) cove,(Gr, L) = o(f &), covp,(us L) = ¢(4NB).

4, The Cox process. Let W be a random measure in X. We select a point measure
by a double random mechanism: first we obtain a measure ¢ at random following
the law W; then we produce a point measure at random following the law P,. In
other words, the conditional distribution of the point process Py thus constructed,
given the realization ¢ of the underlying random measure W, coincides with P,.
Therefore,

(L.15) Pu() = § Plo)Wlde), g e H (AL,
o
or for short Py = | P,W(dg), thatis, Py is the mixture of the P,’s with weight

A
W(dp). 1t is called the Cox process built on W.

We can use equation (1.15) for a rigorous definition of Py-. In fact, o > P,(¢)
is B(M,)-measurable (see [14]); hence the integral exists, and the functional Py
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thus defined is obviously linear, positive, normed and si gma-continuqus..By ch<?osing
@ =14 or ¢ =1g.. we see that Py is a point process and Py is simple if and
" onlyif W(#°) = 1. Moreover, Py determines W completely ([14], [16]); however,
any proof of this assertion is based on fairly deep analytic results about Laplace

transforms or the moment problem. . . ‘
Many properties of W can thus be translated into properties of Py. We will
need only a few of them. First, W is of the kth order if and only if Py is;

(1.16) 7r,(f®8) = yw(f@8)+rw(S 8);
in particular,
varpy (L) = varg(C)+ra(f ), varpy(£a) = varg(l)+rw(d).

Therefore, varp, (£ = W( ) and equality holds for every A if and only if W—almost
surely £, is a constant for every 4, that is, if Py is a Poisson process; thus Py is
“overdispersed” in the general case.

Finally, by (1.7, (1.12), and (1.15):

.17) Pulf) = W(lL—exp(if)]).

5. The mixed Poisson process. This is a particular case of the preceding example:
W is carried by the set of all measures of the form do with & > 0 where ¢ is a fixed
measure in X. Hence we can write

Yoy = YW>

o0

(1.18) Py = | Py, dF(9)
0

where F is a cumulative distribution function on R, = [0, +oo].

2. Inference about Poissor processes

Consider first two finite measures ¢ and ¢ in X; thus ¢, ¢ € £, and g(X), ¢(X) < co.
Set P = P, and Q = P,.
PROPOSITION. If ¢ < ¢ and h = dg/do, then P < Q and

ar _ ex;:»(—(g(){)w a(X)))h(xi) oo X)) I g = et ey,
@n 7@(’“) “lo if w is not of this form;
recall that Q-almost surely u has in fact the form (1.2).
Proof. For every @ € #(# ) we have by (1.10)

Py = exp(— (e(X)— ¢(X))) exp (— (X)) x

1
x> o gt o bR - hr)o(dny) . o(din) = Q@)

n=0 X®

where 7 is the function on ., defined by the right-hand side of (2.1).
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Note that we can write (2.1) in the form

©.2) logn = —@(X)+o(X)+ yoen

where
Crogn(4) = logh(x)+ ... +logh(x,)
for w given by (1.2).
Consider next two finite measures 0o and @; which are absolutely continuous
with respect to the finite measure ¢ and set

By = oo

d,
4 M= Pe=Py Pi=P,

do ’
By (2.2) the Neyman-Pearson test of the hypothesis Hy: P = P, against the

alternative H,:P = P, looks like this: having observed the realization (1.2),
accept H, if

. &= Clox(";/’lo) .

@23) CE@) =) (loghy(x)-logho(xy)) > ¢
j=1
where ¢ is determined by the given level of the test.

To compute ¢ note first that Ay(x,) > 0, ..., ho(x,) > 0 almost surely under
the null hypothesis. Hence under H, we have &(x) = — oo if and only if hi(x) =0
for at least one j, that is, £ > ~ oo if and only if {y = 0 where N = {x: A,(x) = 0}.
Therefore,

Po{é > ¢} = Pofé > c| > —0} = Pof€ > ¢| Ly = 0}.

Analogously to (1.12) we find that the logarithm of the characteristic function
of the conditional distribution of £ given that {y = 0 equals

-

Iexp (itlog lzi) - 1] doo;
X\N ho

hence the distribution in question needed to compute ¢ is the compound Poisson
law determined by A;/hy and g, restricted to X\ V. In the same way we can de-
termine the law needed to find the power of the test. Since these laws are in general
not tabulated, we will have to rely on asymptotic results for g,(X) —» o0, I =0, 1,
to be taken up later.

Consider now, for fixed finite o, the class 2(0) of all laws P, such that o(X) < oo
and ¢ < 0. We are going to mark laws in #(¢) and their intensity measures g, their
densities » with respect to Q = P,, and the densities 4 of their intensity measures
with respect to ¢, by corresponding indices without futther comment.

Suppose that fis any positive measurable function defined on X and A’ < A",
Then
249 P'{fy>c} < P"{{y>¢c} forallec,

that is, {, is stochastically smaller for P’ than for P"’. In fact, if f = 1, with 4 € %,
{; has the Poisson distribution with parameters g'(4) and ¢'(4), respectively, where
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0'(4) <€ ¢"(4), and (2.4) is well known. The general statement is then derived
by writing f as the limit of an increasing sequence of linear combinations with
positive coefficients of such indicator functions.

Assume in particular that ko < h; and apply the preceding remark to the
function f = log(hy/hy) so that {; = & Then we see by (2.4) that the test (2.3)
has an increasing power function with respect to the usual order among the func-
tions k. In particular, it is unbiased on the level Po{£ > c} for the null hypothesis
h < hy against the alternative Ao < A.

Formula (2.1) also implies that the family #(¢) has monotone likelihood
ratios in the obvious generalized sense: if ko < hy, then w9, (w)/ne(w) is an
increasing function of x in the part of .#° where 7, does not vanish.

We pass to the case where logh is a linear function, depending on h, of some
function T which does not depend on /. In other words, we consider a subfamily
(Ps)sco Of 2(0) such that, for every ¥ € ©, we have

hs = exp({pa, T7)

where T is a measurable map of X into a vector space R, ps € R', and ¢, denotes
the standard scalar product in R’ By (2.2) and the linearity of £,

@.5) logns = —0s(X)+ o(X)+<ps, £r)-

Thus (Py)seq is an exponential family and {r a minimal sufficient statistics, and the
usual reasonings about statistical inference on such families apply. In particular,
the family is complete for £y if the set {p,: & € @} has an inner point in &' so that
we can then make use, for example, of the optimality of unbiased estimators based
on {r and the Rao-Blackwell theorem ([11], p. 121).

Note that for realization (1.2) we have

n n
Bl Y
@) Eo) = (D) TuG)s s Y Tly)
j=1 Jj=1
where T, ..., T; are the components of T. Moreover, for any &, and &, the test

given by (2.3) takes the form
@7 & = <ps,~Ps,» tm) > c.

Let us look at some examples. In the two first examples, / = 1, ® < R and
the function 4 p, is increasing. Therefore, by (2.5) or by (2.7), any test of the
form: accept the alternative if {r(u) > ¢*, is uniformly optimal on the level Py {1
> ¢*} for the null hypothesis ¢ < @, against the alternative & > ©,. Similar state-
ments are true regarding two-sided hypotheses.

1. Constant intensity density. Here, @ = 10, + o[, py = log®, T = I, thus
hy = ¢ and g4 = do. Therefore, the total number of points observed, that is,

8i(w) = p(X) = 4 carrp

is the sufficient statistics in question. The law of ¢, is available in usable form for
any & since it is the Poisson law with parameter Po(X).

icm

STATISTICAL PROBLEMS ON POINT PROCESSES 205

2. Exponential trend. Here, X is a bounded interval of the real line R, o the
Lebesgue measure in X, @ = R, py =9 and T(x) = x, thus Ay(x) = exp(¥x).
The sufficient statistics {; becomes in this case

(2.8) Crlex + o &) = X1+ ... +X,.

Already in this simple case, however, the law of £y is not readily available; we will
come back later to its asymptotic form for ¢(X) —» co.

3. Within the following model which includes 1 and 2 we can approximate
uniformly any density / in a fixed bounded interval X: T,,(x) = x" 1, m =1, ..., I;
thus

1
29 hy(x) = exp (pr,’"’x"“l) .
m=1
4. If the phenomenon under consideration is periodic with a known period,
models of the following type are sometimes useful:

(2.10) hy(x) = exp(psP+ p§Psin(ax)+ p§Pcos(ax))
where a is known.

As remarked before, we can apply the usual statistical theory of exponential
families (2.5) with {7 given by (2.6) to these examples, and in particular treat hypoth-
eses concerning some of the p§™’s where the others are considered as nuisance
parameters. For some particular cases see [9].

Regarding the estimation of p, it is reasonable, on account of the Rao-Black-
well theorem, to look for unbiased estimates, but their construction is not easy
for general p, and T. Let us write down the maximum likelihood equations obtained
by differentiating (2.5) with respect to the components p§™ of p, and setting the
derivatives equal to 0. If T, is ps-integrable, we can differentiate

08(X) = o(hs) = d(exp«pm T>))
under the integral (c-) sign with respect to p§™ (see [21], pp. 52-53) and we obtain

211) 0o(Tn) = Lrpe
Now by definition of g, we have Py(¢r,) = 0o(T) for every ¥, that is, {r, is an
unbiased estimator of py(T7,), in fact the best unbiased estimator with respect to
any convex continuous loss function. If we assume that 9: ¢ - R'is a maximum
likelihood estimator of %, hence a solution of equations (2.11), then (r, takes the
form
(212) ng = Qs(Tm);
We are therefore tempted to introduce the gp(Tn), m = 1, ..., 1, as new “natural”
parameters instead of p§?, ..., p§.

Note that if every T2 is gp-integrable for all p, in some neighbourhood of the
origin of R/, then we have

-a—gé“’;%'"-)— = o(To Tuexppor T)-

m=1,..,1
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If, moreover, T4, ..., T; are linearly independent in the space #,(¢), then
det(o(T Tdm,k1,...1) # 0 and the desired parameter transformation is at least
possible in a neighbourhood of ps = 0. In many examples it can be done directly
and globally. o

In the first example above, p5(7) is linear in ¢, hence we get an unbiased esti-
mator of 9. We have in fact I =1, T =1, g4(T) = Po(X), hence the solution
of (2.11) is

£y

ﬁ:"(f(X) .

(2.13)

In the second example, we have

(2.14) 0o(T) = | xexp(Bx)dx.
X .
Assume that X = R, . Then the function g(#) = gs(T) is strictly increasing and
analytic, lim g(#) =0, lim g(¥) = +co; hence we can introduce g(#) for all
B+—00 B+ 0

% as a new parameter with the range ]0, +co[. The statistics (2.8) is the best un-
biased estimator of g(¥) and by (2.12) the maximum likelihood estimator of @ is
H= g~ o {r; in this sense it appears well justified.

We are now going to study the behaviour of the statistics in question if we
take an observation in a large domain. We are usually faced with the following
situation; we have a fixed measure ¢ such that o(X) = +co, and we are looking
at Poisson processes P whose intensity measure ¢ is absolutely continuous with
respect to o with a density 4. Since in practice we can observe the realization of such
a process only in bounded domains, we consider a set K %, and we apply the
preceding theory to the restriction PX of P to K. Then we investigate what happens
if K becomes large in a certain way. Let us recall that, as usually in the statistics of
stochastic processes, we dispose of only ome realization from which to draw in-
ferences; making K large corresponds to “taking many observations” in classical
statistics.

To make the concept of the restriction PX of any random measure P precise,
denote for any u e #, by u* the measure defined by u*(f) = u(f1x) where
fe#to or uX(4) = u(ANK) where 4 € B,; thus uX is again an element of My
= M, (X) and not of . (K). Intuitively speaking, PX is obtained from P by re-
placing every realization u by p*, that is, PX is the image of P under the measur-
able map u— u* of A, into ., . Therefore, the law of the random variable ¢ )
on the probability space (.., B(A4,), PX) is the same as that of {¥ on the original
probability space (4., B(A,), P) where, of course, LF(w) = w"(f). The same
* is true for joint distributions. In the case of a Poisson or more generally a Cox
process we have (P)* = Py, (Py)* = Py and we simply write P¥ and P§
instead.

Let now P = P, be the Poisson process with a finite or infinite intensity measure
¢ and f a measurable and locally bounded function on X such that e(f? = o0.
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By (1.13) we have
PLF = o"(f), varplf = oX(f?).
We form the standardized random variable
L=
VeX(r?)
and we want to find manageable criteria in order that its law converges weakly
to the standard normal law for a given sequence (K,,) such that

(2.16) lim om(£2) = 0.

m-—on

(2.15)

We can obtain a necessary and sufficient condition which is easy to apply by
evaluating directly the characteristic function of the law of the variable (2.15).
In fact, by (1.12) the logarithm of this characteristic function is

fs @"(exp (it ,___f. — ) —~1—it ——*——f—————_).

Ve (f? VX (3
By expanding this with the help of the exponential series, or simply by applying
the classical definition of the cumulants and (1.13) we find that this is equal to
—12/2 plus

N
e P

the convergence of this’series is obvious since fis bounded in K. Note that the co-
efficient of (it)/k! is the kth cumulant of the variable (2.15).

Thus we see that (2.15) with X = K, is asymptotically normally distributed
for m — co if and only if (2.17) with K = K,, converges to 0 for every ¢ e R. Let
us take up the examples above.

1. Constant intensity density. We are interested in the statistics {;, thatis, /' = 1,
and we get the usual normal approximation of the Poisson law: in fact, o*(f*) = o(X)
for all k, hence the coefficients of (2.17) go to 0 for any sequence (K,) with o(K.)
— 0., '

2. Exponential trend. We consider, slightly more generally, a function of the
form f(x) = xf, B > 0, and the sets K, = [0, s] where s > 0. Then, looking first
at the case 9 = 0, we find

1 Skp+1.
kB+1 ’

s (f*) =

hence

Q{)(‘(fk) - (2/3"'1)klZ si=k2 5 0
ol (f 942 kB+1 ,
for s - oo if k > 3, thus (2.17) also goes to 0. Applying this with § = 1 we would
therefore reject the nullhypothesis # = 0, that is, no trend, in favour of the altera-
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tive # > 0, that is, a positive trend, if, for the observation (1.2), we find that
n
3 xj—s22
=1
Vi3
where ¢ is determined by the level of the test as in the case of a standard normal
distribution. Applications can be found in [9], p. 49, and [25].

If & > 0, the convergence to O of pfs(f*)/of*(f%)¥? with k > 3 is immediate,
whereas for 9 < 0 condition (2.16), with g = g;, is not satisfied for any £. It does
hold, of course, for any 4 > 0.

To give an example where asymptotic normality is not present in spite of (2.16),
consider again the Lebesgue measure g,0n R and K, = [0, s] as before, but f(x)
= expx. Then

>¢

Ky( £k k/2
lim—g——(iL= 2 for k=3,4,..;

s (Q(F D) k
hence the limit law still exists but is not normal.

Until now we have motivated our “asymptotic” study by the desire to find

manageable approximations to the distributions of the relevant statistics, There
is, however, also the more fundamental question about the possibility of a “perfect
estimation” of a parameter on the basis of the observation of a single realization
in the entire space X, or in other words, the distinguishability of different Poisson
processes by such an observation. Let us look at this problem from a general point
of view. &
We shall use the intensity measures as natural indices. Thus we consider a family
of Poisson processes (Pp)ez Whete 2 € #(# ). By a parameter p of this family
we mean a measurable map of 2 into a measurable space (U, #%). An estimate
of p is a measurable map # of " into (U, %): if we observe the point measure p
as the realization of the process in question, then 7(u) is the estimated value of p
on the basis of this observation.

It will be convenient to describe any estimate 5 by the associate partition of
#" into the mutually disjoint sets

(2.18) My={pel: nuw=ut=n*{u}, uel.
Since

UMy ueV}y=n~2(¥V) forevery VU,

this partition is' measurable, that is, |_J{/#,: ue ¥V} e B(H") for every Ve.
Conversely, given a measurable partition (4, ),ey of 4", the map % defined by
7(w) = u for u € #, is measurable and satisfies (2.18).

The map 7 is called a perfect estimate of p if, vaguely speaking, it gives almost
surely the “true value” of the parameter, that is, P, {7 = p(g)} = 1 for every ¢ € Z,
or by (2.18):

(2.19) Py(Mp) =1 for every geX.
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Thus, P, is carried by .4 ,,. This implies, of course, that P, and P,, are singular,
that is, Py 1 Py,, Whenever p(g) # p(g’). Conversely, assume that the family (Pp)eex
has this property. It X' is finite, it can be proved rapidly that then a perfect estimate
of p exists [19]; in the case of an infinite set X this is still true under some additional
assumptions of a technical nature. We will, however, not need this fact and exploit
the relation between mutual singularity of laws and the existence of perfect estimates
only by either exhibiting directly perfect estimates and deducing mutual singularity
in the sense above, or by deducing the non-existence of perfect estimates from
non-singularity.

First we recall a criterion for singularity or absolute continuity of two Poisson
laws. Let g9, 0, € A4, and take any measure g€ .#, such that g,, o; < 0. Set

h, = dQ o dQl

0= G5 M= Po=Pu Pi=F,.

THEOREM. Py | P, if and only if)S{(]/E;—- Vh)do = + and Po<P; if

and only if g < @, and i(l/ho‘l/z)zdﬂ < +o0.

Proof: see [22].

If 0o and g, are bounded, P, and. P, are not singular because the measure 0
is realized both under P, and under P, with positive probability. Hence, for arbitrary
o, 01 € A ;, we cannot distinguish with certainty between P, and P, by observing
only a single realization in a fixed compact set K. Intuitively, it is to be expected
that perfect estimates, if they exist, can be obtained from estimates based on the
observation in a compact set K by going to the limit X ~ X.

Let us first look at the case of a two-element family = = {g,, ¢,} again. Given
a fixed level, we may form the test (2.3) for every compact K with %, and A, replaced
by their restrictions to K, or in other words with & replaced by &%(u) = £(uX).
Thus we accept the hypothesis P = P, when £(uX) > cx with cx having been chosen
as a function of the level.

ProrosiTioN [8]. Let (K,) be a sequence of compact sets such that K, 7 X. Then
the sequence of the afore-mentioned tests for P'= P, against P = P, is consistent,
that is, lim P,{% > cx,} =1, if and only if Py 1L P,.

n-r oo

The proof uses the customary martingale arguments.

In the majority of concrete situations, a perfect estimator is derived, as a limit
for K 7 X, by applying some ergodic type or related limit theorem. We consider
some examples.

1. Constant intensity density. Here, X is the set of all Jo with a fixed ¢ and
$ €@ =10, + o[ where now, however, o(X) = co. We consider 9 itself as “the
parameter”, that is, p(9¢) = 9, and we write Py for Py,. The estimator -(2.13)
based on K is

A X

= Sy

14 Banach
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in practical terms

Bun) = #(K;zgrrm .

By (1.14), writing var, for the variance with respect to Py, we have

A B

vary(dy) = TJ'—(.I-(.')— >

hence ’éxn converges in L,(Ps) to # as o(K,) - co. Given a finite or countable
subset @ of @, we can then construct, by extracting successively subsequences
and applying the diagonal principle, a subsequence K;, = K,,, such that, for every

& €@, we have Ps-almost surely lim ':?K,,, = §. In particular, Py, | Py, if 9 # &,

m-ad
which, of course, also follows immediately from the theorem above.
If X has a richer structure, we can find sequences K, such that
200 lim ?§x,, =19 Psalmost surely for every & > 0.

n—+9
By the general ergodic theorem for random measures, this is true, for example,
in the following situation: X = RY, o is the d-dimensional Lebesgue measure 2,
and (K,) is a regular sequence, that is, lim A(K,) = co and

n— o0
o MEKS)
llﬁlgf ) >0

where K®denotes the smallest closed ball with center 0 which contains X. In particular,
K, may itself be a ball of radius s, which contains 0, or in the case d = 1 the interval
[0, s,], where s, — o0.
If (2.20) holds, a perfect estimator of p is given by
lim By, () if this limit exists,
n(w) =] noo
0 if not.
2. Exponential trend. Here, X = R, , X is the set of all g, such that g5 < 2,
and h; = dpy/d2 is given by
) ho(x) = exp(dx), HeO < R,
As before, p(p;) = & and P, = Py
If & < &, then the theorem above implies at once:
Py L Py if and only if ¢ >0,
Pyy ~ Py, if and only if & < 0.
Thus, a perfect estimation is impossible as soon as the set @ of all allowed par-
ameter values contains a negative number, that is, X contains an intensily measure

with negative exponential trend. On the other hand, any two positive exponential
trends can be distinguished almost surely on the basis of a single observation in all
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of R,. Note that we had already observed an analogous dichotomy when studying
the asymptotic law of the statistics (X+, with f(x) = x%, # > 0, and K, = [0, 5],
for s — co.

3. Line processes. Here, X = Rx S where S = Sy stands for the wnit circle,
thus X is the infinite cylinder. X may be thought of as a representation of the set
of all oriented lines in the plane R?, such a line x being represented by its signed
distance p from the origin 0 which is positive when 0 lies on the left bank of x, and
by the angle ¢ between the abscissa and x; thus x = (p, @) withpe Rand p € S. Via
this representation, the group of all translations in R2 generates a group ¥ acting
in X. The most general translation invariant Poisson line process is then given by
a Poisson process P, on X whose intensity measure has the form ¢ = A®x where 1
is the one-dimensional Lebesgue measure and # M (S). Let T be the set of all
these measures g; to simplify the notation we write P, for P,®.. Every P, is ergodic
for & (see [10]) which implies that P, | P,, for » % s%'; this follows as well im-
mediately from the theorem above.

In the present example, the parameter we are interested in is the intensity measure
itself. This amounts to p(A®x) = . Perfect estimates can be constructed in the
following natural way [10]. Let Kj, for s > 0, be the set of all lines that hit the disk
of centre 0 and radius s, thus K, = [~ s, 5] x S. For any measure # € M (X), denote
by us the projection to S of the restriction of 4 to K, that is,

fs(4) = p([—s,5]x 4) for every 4 € B(S).
Then

N _ M .
W) =55, ped(),
may be regarded as an estimate of x. By (1.14) it is unbiased:

Pif) = w(f), fe#(S),

varg(f) = 2L

Hence #,(f) — #(f) in %,(P,) for s — oo, but the following statements can also
easily be proved:

For every fe #(S) we have Pralmost surely lim %,(f) = »(f) (see. [10D);

with variance

Palmost surely we have %, — % weakly (see [24], Chapt. II, Theorem 7.1);
Palmost surely we have
lim sup |,(I)—»{)| = 0,
s Jef
where § is the class of all segments of S (see [20]).

In particular,
@21) A { weak limit of %, if it exists,

%= .
-0 _ if not,

is a perfect estimate of x.

14*
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To conclude this chapter, let us mention a different interpretation of the idea
of “observing the process first in a bounded domain and then going to the l.imit”.
Tnstead of fixing such a domain in advance, we may determine it as a function of
the observation. In particular, we may do this in such a way that the number 9f
points of the realization which we take into account is fixed in advance. We will
confine ourselves to two examples.

1. Constant intensity density on the positive half-line. Consider on Ry = [0, + o[
the family X' of all p = 94 where 1 is again the Lebesgue measure and & > 0. Let
n be a fixed natural number. For any u € .4'(X), arrange the points of carry in in-
creasing order:

carrp = {x;(u), x2(), ...}, 0 < x;(u) < x2() ...
Then n~'x, converges Psalmost surely to 9~*; hence

lim n~'x, if this limit exists,
77= n-»0

0 if not

is a perfect estimate of 2. See [9]; [18], [19] for a more detailed study of the esti-
mates n1x,.

3. Line processes. In the context described above, suppose that » % 0. Then
P,almost all u & A"(X) are carried by a sequence of lines Xn(p) = (p,,(y), on(p0))
whose distances from 0 are all different, and we can number them in such a way
that 0 < [P1(@)] < |p2(W)| < ... This is a “measurable numbering”, that is, the
Pn’s and @,’s are random variables in R and S, respectively. Moreover, the random
set {p;, ps, ...} behaves like the realization of a Poisson process on R with intensity
measure %(S)1, the random angles ¢, @, ... are independent and identically
distributed according to the law x° = w/x(S), and {py,p,, ...} and {90, 2, ..}
are independent of each other. Having observed x,, ..., x, where n is fixed in advance,
we estimate (S)~? as in the preceding example by p,/n, and »° is estimated by the
“empirical law”

N 1
70 =7(e% + ot

For n — oo, these estimates together give us a perfect estimate of #. In particular,
the assertions made above on the various kinds of convergence of #5 to # hold
as well for %2 and #°, respectively. For proofs and further details see [10], [20].

3. Filterring of the random intensity of Cox processes

Let # be a family of random measures in X. For every We# we can build the
Cox process Py. It is natural to consider the problem of statistical inference about
W, based on a realization of Py . For example, in the case of the basic space X = R*
and translation invariant laws Py, the ergodicity of Py with respect to the trans-
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lation group can be proved for every W of a fairly large class %" by using standard
arguments about correlation measures ([18], [19]). Then a perfect estimate of W
will be possible within the family (Py)pey-.

However, in most applications of Cox processes we are interested in a quite
different type of statistical inference which is not aimed at W. Recall that a typical
realization p of Py is obtained by first producing a realization ¢ of W and then
a realization 4 of the Poisson process P,. Now, usually we can observe 4 but not o;
in other words, the hidden realization manifests itself in the observable point mea-
sure 4, and we are interested in inference about g based on 4. Thus we are faced
with what is called a filterring problem: inference about the realization of one process
from the observation of the simultaneous realization of another process. Of course,
these two processes must be “jointly distributed”, that is, defined on the same prob-
ability space.

Examples of problems of this kind abound [23]. Apart from the one that gave
rise to the concept of a Cox process where ¢ represents the strength of a thread
running through a loom and # the sequence of instances where this thread breaks,
let us only mention the following one. A substance is injected into the veins of
a guinea-pig. Its concentration in the animal’s blood and in the course of time
is subject to chance, hence it may be regarded as the realization ¢ of a random
measure . Thus g is the object of our interest but it cannot be observed. We can,
however, “mark” the original substance with a radioactive substance, and the co-
ordinates in space and time of the emissions represent the points of the correspond-
ing realization u of the Cox process Py. Quite often 4 is observable, hence we have
the problem of finding ¢ from u.

From. a purely mathematical point of view, too, it is often more sensible to look
at the filterring problem and not at that of estimating W or a parameter of W. In
fact, there are many situations where every W e #  is carried by the same set X
€ %(.# (X)) which has the property that the P, with ¢ € X are mutually singular
laws. Then it can easily be shown that, for W, W' e#, we have Py | Py, if and
only if W | W' (see [19]). Hence a perfect estimate of W is only possible if the laws
We# are mutually singular, and this is rarely so. Speaking more intuitively,
when the observed realization y falls into the carrier of P,, it is in principle possible
to determine ¢ but impossible to say anything about the behaviour of W outside
the set {o} unless we have already a lot of a priori knowledge about W.

Three important classes of examples of such a set = were given in the preceding
chapter. In the first example, any Cox process Py such that W is carried by Z, is
a mixed Poisson process with respect to ¢. If, moreover, X = R* and ¢ = 1 is the
k-dimensional Lebesgue measure, then Py is ergodic for the group of translations
if and only if it is actually a Poisson process; thus in general Py is very much non-
ergodic,

In the third example, we have mixtures of translation invariant Poisson line
processes. Again, any of them is ergodic under the group % if and only if it is a Poisson
process. Let us look at the simplest parameter, namely the density of the intensity
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measure with respect to the surface measure on'X = Rx S. The surface measure
is Ay = Az ® As where 1z and Ag denote the Lebesgue measure on R and S, respect-
ively. The intensity measure of Py, being invariant under ¢, has the form

Yy = (W) Ax with  ¢(W)=> 0.

In order to simplify the notations, we do not regard W as a probability law in X
but in ., (S), by the identification » <> A®x. Then by (1.16):

W) =5 | %)W)
H(S)
this is the density in question. By the reasoning above, we can expect a perfect
estimation of the parameter ¢ only in the case where, for every We#", the func-
tion defined on ,.(S) by %> %(S) is W-almost surely constant, that is, almost
every ergodic component P, of Py has the same intensity density (27)~*2(S). In
fact, in this case the obvious estimator (27)~1%(S), with % given by (2.21), is perfect
for ¢ within #" (see [10], [17]).

Let us come back to the general situation. Since we are going to deal with
several “jointly distributed” processes, we start with a basic probability space
(@2, o, P) and three random elements on it. Firstly, we have a map ¢ of & into

+ = M, (X) which is measurable with respect to & and #(..). Hence its law
W is a random measure in the sense defined in the first chapter, but we will call 9
as well a random measure.

Secondly, we take a measurable map f of 2 into 4" = .#"(X) such that the
joint distribution P¥ of g and i is that of a random measure with law W and the Cox
process built on it. This means that for every #(#.)® #(MA ")-measurable and
P%-integrable or positive function g on 4, x .4~ we have

@ PPy ={ { g(e. wPi(du) Wido)
: My A
where

PP = | gdP" = {g(8(), i) Pldw).

Ry 2

Thirdly, there is a random element u on £ with values in some measurable
space, and we want to estimate u(w) on the basis of a complete or partial observa-
tion of fi(w). Quite often u will be a function, or “parameter”, of ¢ alone. For
example, u(w) might be §(w) itself, or §((w))(f) with a particular function f'e #,
or the value of the density dg(w)/do of g(w) with respect to a fixed measure ¢ in
a fixed point x,, etc.

For a given law Win ., the construction of a probability space (2, &, P)
and random measures § and f with the required properties is of course very easy:
is suffices to take 2= M. X A", o = B(M,)QB(A"), P = P¥ where P¥ is
defined by (3.1), and finally (o, u) = o, ji(o, ) = . The advantage of this “stand-

ard space” is that it leads to slightly simpler notations, and we will stick to it for
this reason. ‘

icm
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Suppose we are given a family # of laws in .#, . In the particular case where
u is a function of g only, our filterring problem amounts to a problem of statistical
inference about the indices ¢ of the family of Poisson processes (P,)pes,. The
difference with the situation treated in the second chapter lies in the fact that there
is also given, and known, the family #". In accordance with definition (1.15) of
a Cox process we may interpret every W as an a priori distribution in the set of
all P’s. The smaller #" is, the more specific a priori information we have. If %"
consists of a single law W, the a priori distribution is completely known, we are
in the pure Bayesian situation, and we can apply Bayesian methods. If %" is some-
what larger but not all of #(,), we have some information about the a priori
law, and finally if #” contains all laws W in ., we know nothing beforehand.
The last case is precisely the one treated in Chapter 2, and the two others will be
taken up now.

As usual, the quality of our decisions will be measured by a loss function.
Let 4 be the decision space, endowed with some reasonable sigma-algebra. Then
the loss function L is a real-valued function on #, x # x4, and Lo, ., 0)
represents the loss, or the cost, when § and /i take the values g and y, respectively,
and we take the action . Since our decision is to be based on the observation of
the point measure u, we mean by a strategy D a measurable map from . into 4.
For fixed g, the risk which we run with D is the average loss

K@, D) = | L(e, p, Dw)Py(dp),
-

and the Bayes fisk for an a priori law We ¥ is, by (3.1), equal to

32 K(W, D) = | Ko, D)W(do) = PYLG@, i, D o),

A

assuming, of course, that all these expectations exist. We are looking for strategies
that make the K(W, D)’s with W e #  as small as possible in an appropriate sense.

In most applications, the loss will not depend on w. In particular, if we are
interested in inference about a parameter of g, that is, if u(e, u) = u(g) does not
depend on u, the loss L(e, u, 6) = L(o, ) will usually be some kind of measure
of the deviation between the true value u(g) and the estimated value d. Abusing
our notations a little bit more, we will then regard § as a random element defined
on 4, as well as on £, namely as the identical map g(o) = o.

As explained in the preceding chapter, we will have to found a decision on
the observation of x in a compact subset X of X. Therefore, as long as we are look-
ing at a fixed domain and are not interested in the asymptotic behaviour of our
procedures for K # X, we will assume that X itself is compact,

Consider first the purely Bayesian case where we have a single well-known
W. Suppose that W-almost all ¢ have a density h, = dg/do with respect to a fixed
o€ M, . By (2.1), if we have observed the point measure (1.2), the likelihood func-
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tion is, up to a factor which does not depend on ¢:
arrexp(—e(0) | [ -
j=1
Therefore the a posteriori law of @ given the observation of x is the law, in ./,

defined by

exp(—e(X)) H ho(xp) W(do)
Widg) = —-
Sexp( 2'(X)) Hh (%) W(de')

(3.3)

 Now suppose that L is a function of ¢ and d only. The a posteriori loss caused
by a decision 6 is then given by

W.L@E, ) = | Lo, Wuldo),

My

and the usual Bayes theory [11] shows that, in order to have a strategy D which
minimizes K(W, D) it suffices to choose D(u) for every u € A" so as to minimize

8> W,L(G, 0) for & = D(u), that is,
W,L(@, D(w)) < W,L(g, )

Let us look at a real-valued parameter u(g). We will then naturally take 4 = R.
It is also very well known that for the loss function

for every ded.

(eX) Lig, &) = (u(@)—9)*
the a posteriori loss is minimal for the a posteriori expectation, that is,
(3.5 = D) = W,

gives the best strategy provided that u € &,(W,) for Pp-almost all . For the loss
function L(p, d) = |u(e)— d| if u has a continuous cumulative distribution func-
tion with respect to the law W, its a posteriori median minimizes the a posteriori
loss, that is, the strategy # = D(u) which satisfies
W, {u< u} =41

As an example, let us take a mixed Poisson process (1.18), so W is described
by a cumulative distribution Fon R, . Thus we are confronted with the same problein
as in Example 1 of the second chapter, namely that of estimating g itself, that is,
the parameter u(do) = 9. We assume that F is a I-distribution, partly because

it is mathematically expedient, partly becanse many distributions observed can
well be fitted to such a law:

Y9 lexp(— yB)

(3.6) dF(9) = e

By (3.3) and (3.6):
F(d9) = Co"+P-texp (- H(y+0(X)))

dy where y,f>0.

icm
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with some constant C which does not depend on 9, hence the 2 posteriori expecta~
tion (3.5) equals

B

y+olX)

Recall that the uniformly best unbiased estimator for 9 in the family (Pss)s<o had
been given by (2.13), namely,

6D i =

A_n

oX)
The two estimators coincide, of course, asymptotically if o(X) — co in the way
described in Chapter 2, because we will then also have n — oo almost surely.

Cases like the preceding one where (3.3) and (3.5) can be calculated explicitly,
are rather rare, however. It is often easier to find a best strategy among the linear
ones, in a sense to be defined, using £ ,-space methods. From now on we will employ
exclusively the loss function (3.4) where u is a given real-valued parameter of p.

We will need a few notations. Since we are now dealing with two random
measures instead of one, we have to use two different notations to replace the previous
{; for fe A# as defined after the formula (1.3): for w = (g, ) we set

or(@) = o(f),  jag(e) = u(f)-

Consider the real Hilbert space .%,(P"). We assume that W is a second order
random measure. By the remark before (1.16) this is equivalent to either one of
the following two statements: every g, with fe s# belongs to Z,(P¥); every i
with fe o# belongs to £,(P"). Of course, it suffices to require this with f= 1.

Let »j be the intensity measure of W. Then by (1.16):

rw(f) = Pwﬁfz PW@f, fes#,
and
(3.8) P¥(5r00) = P (f®8),

P¥(ipfg) = v§)(f@8) = (@) +rw(f)
for f, g € #; the respective covariances are obtained by replacing ¥ by y.

For any subset # < %,(P¥) denote by £" () the closed linear subspace
of &,(P") spanned by #, and by Proj”(v|.#) the orthogonal projection of an
element v € Z,(P%) onto £¥ (). By a linear strategy we mean an element of
LY, {f;: fe #}). This space is, of course, already spanned by the functions 1
and fi4—vy(4) with 4 € #. Note that a lmear strategy is, in fact, a strategy, that
is a function of % only.

Suppose now that u € Z,(W). By (3.1) this amounts to u o § € £,(P¥), and
we will use the letter u to denote the function u o g also. On account of (3.2) and
(3.4), for any strategy D such that D o i € #,(P¥), the risk K(W, D) equals the

squared distance of u and Do i in #,(P"). Therefore the best lmear estimate
of the value of u is given by

3.9) it = Proj"(ul1, {fia~vw(A); 4 & &}).
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Qur problem is to compute this, and in particular to investigate its dependence
on W.

Since the elements fi ,—w(4) have the projection 0 on the space of all constants,
and the projection of » on this space is # = W(u), we can write (3.9) in the form

(3.10) %= a+ProjW(u—ﬁ| {fia—rw(d); 4 € B}).

Next we make use of the following proposition which follows easily from
(3.8) and the completeness of &, (¥w).

PROPOSITION ([12], p. 116). Let v & %,(P¥). Then v € L% {jis—vw(d); A B}
if and only if there exists a B-measurable function f on X such that fi; € &, (P%)
and v = jiy —vy(f). This function [ is unique mod vy.

Essentially, the proposition says that the set of all ji;—»y(f) such that j, e
&,(P"),is a closed subspace of Z,(P"). Note that we cannot require f'to be bounded,
that is, in 2, but fi;(w) = u(f) exists for PP-almost all ® = (g, 4) because X
is compact and therefore x e .#° almost surely. By taking suitable monotone
limits in (3.8) we see that the condition fiy € %,(P") is equivalent to “g; € Z,(P¥)
and fe Z,(vy)”, and (3.8) still holds for any two fand g such that fiy, i, € L, (P¥).

By applying the proposition to the strategy (3.10) we find a function f such
that fi; € #,(P%) and
31D & = it fyr— ().

The random variable j—vr(f) is unique in £,(P"); hence f is unique modvy,
and it is characterized by the fact that u—u—(fiy—vw(f)) is orthogonal to all
fia—vw(4) with 4 € &, or equivalently, to all z,—»w(g) with g € #. This amounts
to

(3.12) cov(u, ft,) = covw(fy, fig)

for all g € o#. It suffices to have this for all g = 1, with 4 € #, but on the other
hand, it will then also hold for all g such that &, € Z,(P").

In order to transform (3.12) into something which might allow us to com-
pute f, we remark that for any #-measurable function g on X such that j, € Z,(P")
and any random variable u € %,(P¥) which depends on § only, we have
@19 P7(ufiy) = P"(u,).

If g € #, this follows immediately from the definition of a Cox process, the equa-
tion Po(it;) = 0(g) = 8,(0) and the usual “conditional” reasoning:

P¥(ufig) = P7(P¥(us,l8)) = P¥(upy);
the general case is then obtained again by taking monotone limits. By applying
(3.13) to centered random variables we get
covy(u, fi,) = covp(u, §,).
For fixed u, the functional

319 %w,o(g) = covw(u, §,),
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defined for all g with f, € £,(P¥), is a signed measure when restricted to #; so
we are justified in writing oy, (4) = aw (1) for 4 € . Condition (3.12) which
characterizes the function f appearing in the representation (3.11) of the best esti-
mator i can now be restated as

(315) OCW,u(g') = COVW(ZLJ‘: ﬂg);
which, by (3.8), is the same as
(3.16) aw,u(8) = ye(f®g)+vw(f2)-

This holds for all g with &, € £,(P¥), but it suffices to require it with g = 1,,
Ae A

By Pythagorean theorem, the risk run with #, namely P¥ ((u—)?), equals
vary(u)— vary(iiy); hence by (3.15) with g = £+

G.17 PY((u—it)*) = varg ()= oaw,u(f).

In principle, (3.16) allows us to find fand thus # if W is known. In fact, we see
that only certain aspects of W enter into (3.16), and therefore a certain partial
knowledge suffices: it is enough to know the number % = W(u) and the measures
. Vw and yp. In this sense we are in the situation mentioned above where we
have a class #" which consists of many, but not all, a priori laws: #" is the class
of all W with given, and known, W(u), oy, 7w and yy . As to the function » whose
value for an observed realization w = (g, u) we want to estimate, it enters only
via W(u) and dw,..

Before treating an example let us write (3.16), with g = 1,, in a more explicit
form: ‘

(3.18) §owald) = § fywdcd)+ {fG)rw(@).
A XxA A

If we want to estimate the value (k) where % is a fixed function, that is, if
u = @y, then (3.16) becomes

yw(h®g) = yw(f@8g)+rw(f2)-

In practice, however, only the case where W-almost all ¢ have a density with
respect to a fixed measure ¢ € 4, can be dealt with in a more explicit fashion
without appealing to disintegrations of measures. We will assume that W-almost
all ¢ can be written in the form

(3.19) o =w(,.)o

where x > w(p, x) is o-integrable, and o > w(g, x) is in £, (W), so we get effectively
a second order random measure. Consider the expectation function

BOY=Ww(-,») = § wle, ») W(de)

e

and the covariance function
@(x, ) = covp(w(*, x), w(*, ).
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Then vy = Bo, that is,
(@) = § B()g0) o(dy)

X
for every g € %, (vy), and

w(F® g = § e px, ») otn) o(@)

XX
for every g such that ji, € #,(P¥). Therefore, (3.18) amounts to

cov (i, w(+, 7)) = {0 p(x, 3)o(dx)+1) BG)

X

(3.20)

for c-almost all y e X.
We are now going to treat the case of a “perturbed” mixed Poisson process.
This means that w will be of the type

(3.21) w(e, x) = v(g)+e(e, %)
where v € &, (W) and where we have, for every x e X, e(-, x) € Z,(W), We(:, x)

= 0 and v and &(-, x) are uncorrelated. In this case, § is a constant, namely § = Wo,
and

(3.22) @(x,y) = vargo+cov(e(+, x), £(+, y)).

We are interested in two parametérs: first, u = v, that is, we want to filter
out the realization of the unperturbed mixed Poisson process, and secondly, for
fixed z € X, the value of the density w in the point z, that is, u,(0) = w(g, z). In the
first case the left-hand side of (3.20) equals varyw, thus (3.20) becomes

(3.23) vatyw = {f(p(x, ) o(dx) +10) Wo.
X
In the second case the left-hand side of (3.20) is equal to @(y, 2), thus (3.20) becomes,
with a function f; in the place of f,
(3.24) #0.2) = {£0e(, »)o@)+£.0) Wo.
. X
Moreover, # = i, = Wo, vy = (Wo)o. These relations and (3.22)~(3.24) show
that in order to find the estimates u and u, given by (3.11) in terms of f and f;,
respectively, we haye to know the numbers Wo, var,v and the covariance function
COVW(S(" x), ‘9(': y))
Let us look first at the case of an “unperturbed” mixed Poisson process where
¢ =0 and where the parameters u and u, coincide with v for every z. Then, by
(3-22), we have g(x, y) = varyo for all x and »; hence both (3.23) and (3.24) give

" vargw = o(f)vary v+ f(y) Wo
for all y which has the constant solution

f= vary o
T o(@)vargu+ Wo
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Upon setting .
= (Wo)? _ W
varyo " varyo °
the best linear strategy (3.11) takes the form
s = BE+B
) =y

which coincides with the Bayes strategy (3.7) for the a priori law (3.6).

Next we look at processes on the positive half-line R,. In many practical
situations, perturbations in regions far apart may be considered independent, and
so it might be reasonable to study a discrete analogon to the white noise. Let ¢,
with n = 0, 1, ... be a sequence of independent and identically distributed random
variables with finite variance 5% = varyc, and expectation 0, and set &(z) = Crn
for 0 <  where [¢] stands as usual for the greatest integer less or equal to £ Then

varpu+ 52 if  [x] = D,
P(x, ) = .
varpo if  [x]# Dl
We use the abbreviations
U= Wo, a®=varyv

and consider everything within a fixed interval X = [0, s] where s > 0. For ¢ we
take the Lebesgue measure in X. Then (3.23) still has a constant solution, namely

f=

which gives the best linear strategy

w(X)+7%/a>+3(b/a)?
s+0/a*+ (bja)?

Note that, for b/a — oo, this converges to ¥: thus for large perturbations relative
to a* we do not take the observation into account at all. For s — oo, we get, of
course, almost surely the estimator (2.13) again.

A solution of (3.24) can be obtained in the following form: set|

va? b?

al
sa*+v+b2 "’

u(u) =

P TEreeErers 0 1T o
Then i b # [
y/ 1 X Z],
S &) = =p+q it = I,
and
(u) = Eﬁ%’ﬁ +pu([0, D+ qu(llz], [z+11).

For s — o0, this estimator behaves almost surely like

- .
BB Tt e, e+ 1D
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Thus the two estimators of the type (2.13) based on the observation in the entire
interval [0, 1] and in [[z], [z+1][, respectively, are combined in the proportion
o: b
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