

MATHEMATICAL STATISTICS BANACH CENTER PUBLICATIONS, VOLUME 6 PWN—POLISH SCIENTIFIC PUBLISHERS WARSAW 1980

RECURSIVE INTERPOLATION OF PARTIALLY OBSERVABLE RANDOM FIELDS

A. A. NOVIKOV

Steklov Institute of Mathematics, Moscow, U.S.S.R.

The problem considered in this paper can, in a general way, be formulated as follows. Let (θ_z, ξ_z) be a partially observable field with the *n*-dimensional parameter $z \in D$, D being a set either in \mathbb{R}^n or in an integer-valued lattice \mathbb{Z}^n , $n \geqslant 1$, where θ_z and ξ_z are unobservable and observable fields, respectively. Our aim is to find a (stochastic) equation for the estimate

$$\bar{\theta}_z = E(\theta_z | F_D^{\xi}),$$

where F_D^{ξ} is the σ -algebra generated by ξ_z , $z \in D$.

In accordance with terminology for stochastic processes, introduced in [1], the problem given above will be referred to as the interpolation problem of partially observable field (θ_x, ξ_x) .

This paper is confined only to the cases of dimensions n=1 and n=2, and — concerning a set D — to rectangles of the following forms: $\Pi_T = [0, T]$ or $\{0, 1, ..., ..., T\}$ for n=1 and $\Pi_T = [0, T_1] \times [0, T_2]$ or $\{0, 1, ..., T_1\} \times \{0, 1, ..., T_2\}$, $T=T_1 \times T_2$, for n=2. As to the structure of the fields θ_z and ξ_z one assumes conditions analogous to those made for the Kalman-Bucy filtering scheme (cf. [1]). One may note that the result for n=1 presented below can be generalized to the case of the so-called *conditionally Gaussian processes* for which a solution (to the interpolation problem) was obtained in [1] in a different way.

Assume that the partially observable field (θ_z, ξ_z) is described by the following equations:

$$(1) L_z \theta_z = b(z) \varepsilon_z + a(z),$$

(2)
$$K_z \xi_z = A(z) \theta_z + B(z) \tilde{\varepsilon}_z + c(z),$$

where the operators L_z and K_z are defined as follows:

$$L_z = \frac{d}{dz} + a_0(z), \quad K_z = \frac{d}{dz} + c_0(z)$$
 for $z \in (0, T)$;

$$L_z = \Delta_1 + a_0(z), \quad K_z = \Delta_1 + c_0(z) \quad \text{for} \quad z \in \{0, 1, ..., T-1\};$$

$$L_z = \frac{\partial^2}{\partial z_1 \partial z_2} + a_1(z) \frac{\partial}{\partial z_1} + a_2(z) \frac{\partial}{\partial z_2} + a_0(z),$$

$$K_z = \frac{\partial^2}{\partial z_1 \partial z_2} + c_1(z) \frac{\partial}{\partial z_1} + c_2(z) \frac{\partial}{\partial z_2} + c_0(z), \quad \text{for} \quad z \in (0, T_1) \times (0, T_2);$$

$$L_z = \Delta_{(1,1)} + a_1(z)\Delta_{(1,0)} + a_2(z)\Delta_{(0,1)} + a_0(z),$$

$$K_z = \Delta_{(1,1)} + c_1(z)\Delta_{(1,0)} + c_2(z)\Delta_{(0,1)} + c_0(z),$$

for
$$z \in \{0, 1, ..., T_1-1\} \times \{0, 1, ..., T_2-1\};$$

and Δ_u denotes the shift operator, i.e. $\Delta_u f(z) = f(z+u)$. Functions a, c, a_i, c_i $(i=0,1,2), b \ (b\neq 0)$ and $B \ (B\neq 0)$ are assumed to be known. In the case of continuous parameter z it is also assumed that these functions as well as $\frac{\partial}{\partial z_i} a_i$ and $\frac{\partial}{\partial z_i} c_i$ (i=1,2) are continuous; ε_z and $\widetilde{\varepsilon}_z$ are independent Gaussian white noises (i.e. corresponding derivatives of the Wiener field w_z defined on rectangles) and solutions of the equations under consideration are meant in a generalized sense, i.e. for n=2, solution of equation (1), for instance, is meant in the sense of satisfying the identity

$$\int_{\Pi_T} L_z^*(\varphi(z))\theta_z dz = \int_{\Pi_T} \varphi(z)b(z)dw_z + \int_{\Pi_T} \varphi(z)a(z)dz,$$

for any function $\varphi(z)$ from the class of all finite functions on H_T with continuous second order derivatives, and with L_z^* denoting the adjoint operator. In the case of discrete parameter z the noises ε_z and $\widetilde{\varepsilon}_z$ are assumed to be independent and Gaussian with $E\varepsilon_z=E\widetilde{\varepsilon}_z=0$ and $E\varepsilon_z\varepsilon_u=E\widetilde{\varepsilon}_z\widetilde{\varepsilon}_u=\delta(z,u)$, where $\delta(z,u)$ is the Kronecker symbol. For simplicity, initial conditions for θ_z and ξ_z are assumed to be zeroes. In case n=2 the last condition means that

$$\theta_z = \xi_z = 0$$
 for $z \in \partial \Pi_T \equiv \{0 \le z_1 \le T_1, z_2 = 0\} \cup \{0 \le z_2 \le T_2, z_1 = 0\}.$

If n=1, then $\partial H_T=\{z=0\}$. We shall also use the following notations $\partial \check{H}_T^*=\{z=T-1\}$ or, depending on the dimension n, $\partial \check{H}_T=\{z_1=0,1,\ldots,T_1-1; z_2=T_2-1\}\cup\{z_2=0,1,\ldots,T_2-1; z_1=T_1-1\}$ for the discrete parameter z and $\partial \check{H}_T=\{z=T\}$ or, respectively,

$$\partial \check{H}_T = \{0 < z_1 \leqslant T_1, z_2 = T_2\} \cup \{0 < z_2 \leqslant T_2, z_1 = T_1\}$$

for the continuous parameter z.

Theorem. Suppose that the forementioned assumptions are fulfilled. Then the estimate $\overline{\theta}_z$ satisfies the following equation

(3)
$$L_{z}^{*}[b^{-2}(z)(L_{z}\bar{\theta}_{z}-a(z))] = \frac{A(z)}{B^{2}(z)}(K_{z}\xi_{z}-c(z)-A(z)\bar{\theta}_{z})$$

with the boundary conditions

$$\overline{\theta}_z = 0, \quad z \in \partial \Pi_T,$$

$$(5) L_z \overline{\theta}_z = a(z), \quad z \in \partial \widetilde{\Pi}_T.$$

An analogous theorem is valid for the vector fields θ_z and ξ_z . In the case of the one dimensional discrete parameter one can solve the boundary problem (3)-(5) by using a method of pursuit.

Reference

R. S. Liptzer, A. N. Shiryaev, Statistics of random processes II. Applications, Springer-Verlag, 1978.

Presented to the semester
MATHEMATICAL STATISTICS
September 15-December 18, 1976