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ESPECIALLY ANOVA PROCEDURES
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The effect of different kinds of pooling additional observations in the analy-
sis of variance is studied. A slight extension of a known result for the mono-
tonicity of the power of the F-test in the degrees of freedom is shown.

1. Formulation of the problem

Let (%, %, Py), 6 € O, be a family of probability spaces and yy, ..., y, a sample
of a Pp-distributed random variable, or, more generally, let y, , ..., y, have a common
distribution P, ,. For a given statistical decision problem, like testing, estimation,
selection, etc., defined by the triplet (@, E, L), the parameter space, the decision
space and the loss function L(0,e)— disregarding sigma-algebras here — we
usually search for decision functions ¢ mapping the sample space into E,

0] 0 Wi eens In) = (Vs s V),

or their randomized versions with ‘optimal’ or at least satisfactory properties.

Having a few observations only, we cannot hope in general to have good pro-
cedures from. the viewpoints of power, variance and error probabilities, respectively,
although they may perhaps be optimal in a certain sense. So it is natural to try to
improve the characteristics of a statistical procedure by involving some more ob-
servations and thus increasing the amount of information about the unknown
parameter. Although decision making in most cases works without explicit costs
of observations, one has in mind that they involve costs of course, and so intuitively
one demands that

(2) 6n+1.0’1.= ---,yn+1) = 6,,()’1, -~-’yn)’

i.e. that a decision function based on n+1 observations should be better than one
based on n observations only. As an adequate definition of a ‘better’-relation we
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take
(3) EUL(G’ an+1(y1» -~-:yn+1)) & E,,L(G, 5.-(}’1, L) yn)) for al] 0,

where strict inequality holds for some 0.

In this generality the question of improving any decision function 4, is not
difficult to answer, since 9, , the space of functions from the y, ..., Yy — sample
space, contains Z,, and, on the other hand, (yy, ..., »,) is in general not a sufficient
statistic of (Vr, ..., Yasrs). SO under mild conditions we can construct a ,,, —
possibly depending on J, — which is better than &,.

For practical purposes, however, one is more interested in comparing the risk
of a given standard procedure for 7 and n+ 1. So, for example in estimating a loca~

n1

n
. . _ 1 - .
tion parameter we will compare 3, = - ; YViwith ., = ArT th i, or a median

of yi, ..., yy With one of yy, ..., Yury, etc. If the yy, ..., ¥,y are not independently
distributed, it is easy to see that ¥,,, is not necessarily better than J,. This perhaps
demonstrates that the monotonicity property is not a priori trivially fulfilled. Even
inthe ii.d. case there exists no result according to which, say, a Maximum-Likeli-
hood-Estimate based on n+1 observations has a smaller Mean-Square-Error than
one based on i, ..., y,. Only for the corresponding bounds of the Rao-Cramer
type such monotonicity is shown. Obviously the non-monotonicity of a statistical
procedure could have unpleasant consequences for experimental designs.

*®
H

2. Additional information by parameter restrictions

Closely related to situations where we can use additional observations are those
situations where the components of the unknown parameter vector 6 are known
to fulfil certain functional relations, or, after regular transformation of the par-

ameter space, where some components of 6 are known to be zero. Roughly speaking
in a normal linear model

0) y=Xo+e,

where y is a random nx 1-vector, X is nx & and known, and 6 is a fixed but un-
known kx 1-vector, the information 6, = 0 leading to a new model

y=X**1e,

where in X* and 6* the first columns or components of X and 0, respectively, are
dropped, has partly the same effect as an additional observation

’
Put1 = Xny 10+ nyy.

They both lead to a 2 =41-distributed variable instead of a x2-variable for the estima-
- tion of ¢2,
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3. The F-test

For illustration we will use as an example an unbalanced one-way classification
model with observations

Vi1 ~~sy1.n,y

Yats veer Yany»
©) . !

Vi oves Yiengs

where y;; is drawn from an N(u;, o%)-distributed population with s; and o® unknowan,

i=1,..,k .
In order to prove the hypothesis of homogeneity, namely that the expec-
tations of the first r populations are equal, i.e.

Ho: py = pa = ... = p,
against the alternative

Hy: at least one inequality holds,
the F-statistic

1 - = =2
"}:’rigni(}i. y.)

© & & -
va Z L (ylj_yl.)z
N =
with "
_ 1
N=n;+ ... +m~k, yi.='l_iZyija
iz

1 r ny
v T e }]i
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is commeonly used. Its distribution is that of an F,_;, y-distributed variable with
noncentrality

1< _
0) P = ?’ZJ m(ui— >,

_ 1<
where @i = 7121 i
If we now have an additional observation in one of the k groups, the correspond~
ing F-statistic will be F,_,, y4 -distributed. If this group is one of the la.st k'-{~,
then the noncentrality remains unchanged; otherwise under the alternative it is
increased. .

If additional information in the form of an equality of the means of tw<.> groups
is present, i.e. u;, = u;,, then after pooling the correspond{ng observathns the
Fstatistic has a F_; wyq OF Fo.;,yio-distribution, respectively, depending on
whether x4, and u;, are involved in the hypothesis or not.
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In all cases the degrees of freedom of the numerator have been reduced or those
of the denominator increased and the noncentrality of the new F-statistic under
the alternative is at least not smaller than that of the original F,_; . ‘Under the
alternative’ means here that part of the alternative which underlies the given
restrictions of course.

Because of the monotone likelihood ratio the power of an Fitest is increasing
in 9* (see Lehmann [3], p. 312). Therefore the question if we get better properties
of an analysis of variance procedure by exploiting the information given by ad-
ditional observations or restrictions is answered if one succeeds in proving that the
power of an F-test, for noncentrality 2 and significance level « fixed, is an increas-
ing function of the degrees of freedom of the denominator and a decreasing func-
tion of the degrees of freedom of the numerator. If we denote by f,,, ,(y?) the power
function of an F-est for the hypothesis

® Hy: 9?> =0 against H: 92 >0

with significance level «, where the corresponding test statistic has m and n degrees
of freedom, it suffices to show for 2 > 0

(9) ﬁm—l-l.n('l/"z) < ﬂm,n("pz) < ﬂm,lﬂ-l(wz)'

This relation has only recently been proven by Das Gupta and Perlman [1].

In the following we extend this result slightly to the case where instead of (8)
we test
(10) Ho: 9> < 9§ against  H,:p? > g3,
which corresponds to the perhaps somewhat more realistic hypothesis that the
group means are ‘approximately’ equal, in the sense that —&12— Zni(,ui-ﬁ)z < i,

3§ being a suitably chosen constant. We need therefore the following lemma, the
proof of which is omitted because of its obvious correlation with the Neyman—
Pearson lemma.
LemMa. Let Py, and Py be two probability measures on a measurable space

(Z, W) with densities Po,(%) and py (x), respectively. If of and ® are two sets with
Py (\B) = Py (B\H) and

Po, (X)) pp,(x®)

Do, (%) Po,(x*)
Jor all x € A\ B and x* ¢ BN\, then the test with acceptance region & is for 0,

more powerful than the one with acceptance region &, both having the same significance
level.

Now we can prove the
THEOREM. For the test problem

Ho: 92 <9f  against  Hy: 92> 93

icm°
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we have, provided the tests based on the three test statistics discussed above all have
the same significance level,

Bt 1,3 < ﬂm,n("/’z) < Bu,ne 1@

Sor all p* > y}.

Proof. Let x; NN(L,I), i=1,..,m, and v; ~ NO, 1), j=1,...,n+1,
Vm
all independently distributed. Further, let
x4 L+ xd
X3+ xR tei4 L o2y,

zy =
(11) o,
X3+ kxEFvi4 L 02,
Then, if we denote by pya(z,, z,) the density of the variable (z,, z,), the likelihood
ratio py2(2y, 22)[py2(2, 22) for } > 9§ is a monotone increasing function of z,
X3+ ... +x2, v?
23+ ... +02, o}t ... +0%
independently distributed, the latter not influenced by y, and from the existence of
a monotone likelihood ratio for the F-distribution.

Since the F,,, ,.(-test corresponds to a test with acceptance region z; < ¢4,
and the F,..q, ~test to a test with acceptance region z,+ 2z, < ¢, while the F,, ,-test

Zy =

alone. This may be derived from the fact that are

.oz . .
corresponds to the acceptance regzon—c,—l,-+zz < 1, with appropriately chosen
(-2

constants ¢,, ¢, and ¢, which ensure the significance level «, it immediately follows
that the F,, ,..,-test, as the Neyman-Pearson test, is the most powerful one among
the three.

It remains to show that F,, , is better than F,,.,,,. Looking at Figure 1, we see,
however, that the lemma can be applied if we denote by &/ the acceptance region
of the F,, test and by & that of the F,,, ,test. The z;-coordinates and therefore

2

EAY 4

F\A

0 cx Ca z

Fig. 1
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the likelihood ratio are smaller on &\ & than on #\ . Thus the theorem is
proved. m

In their remark 2.2 Das Gupta and Perlman [1]already briefly discussed the geo-
metric approach of the proof of the theorem, without using it, however, for the
comparison of Fy.;,, and F ..

4. Multivariate analysis of variance

(It immediately follows from the preceding section that, if we have a normally dis-
tributed p-vector x ~ N,(u; X) and a Wishart-distributed variable with n degrees
of freedom S ~ W,(n, Z), Hotelling’s a-test for Hp: u = 0 against Hy: u 50
for Hy: p'Z 1y < p§ against Hy: p'Z~'u > ¢3), based on the Fdistributed up
to a factor statistic »'S~*x, has increasing power for raising n. This situation arises
as a special case of MANOVA models which we will describe in its canomical
form as follows. ‘

Let ¥; and Y, be random matrices with independently normally distributed

p-dimensional row vectors, each having the same covariance matrix X, We assume
EY; = M and EY, =0, ie.
(12) Yl ~ FXp(M:Z))

Y2 ~ Nuxy(0, 2).
With Sy = Y{Y; and Sg = Y,Y, the usual MANOVA procedures for testing
Hy: M = 0against H;: M 5 0 are based on the characteristic roots of Sy (Sy+ St
such as Pillai’s ¥ = trSy(Sp+Sp)~*, Wilks’ A = |S|/|Sx+Ss, Roy's Amax
= AmaxSa(Sg+Sg)~! and Hotelling’s T2 = trSySg'. Having now a random
(row-)vector

(13) Y3 ~ Nixy(0,2)
and denoting S = ¥;¥;, we can express the monotonicity property we wished
to show in accordance with the arguments used in the first two sections in the follow-
ing way: ‘

Each of the above-mentioned tests is better than the corresponding one with
Sy replaced by Sy+Ss, but worse than the one with Sy replaced by Sg+Ss,
provided they all have the same level of significance. Transforming

Z, =Y,Sg'*  Z,=Y,S512, W= AYS
we get after some manipulations the density
) pu(Zy,Z,) = ¢ |Z{Z + 2, Z, + 1|2 x
x { §S e no-r-vexp (tr (21 2, + 23 2,+ 11122, CMVI)d(C)d([)dW,

where d(C) and d(I") denote the Haar-measures on the orthogonal groups @, and

0,, respectively. The second factor of (14) depends for fixed M on the characteristic
roots of

Z1Z(ZIZ+ZZ,+ 1) = Y1 Y, (Y, Y+ Y5 Yot Syt
= Su(Su+S6+Sp),

e ©
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ALy -ees Agy 8 = min(r, p) only; so they form a sufficient statistic and the tests based
on them form an essentially complete class among the tests based on Z, and Z,.
On the other hand, from (14) via the monotonicity and convexity of the likelihood
ratio py(Z:, Z2)/po(Zy, Z,) in the characteristic roots 4, ..., A, it follows that
an admissible test has an acceptance region which is convex and monotone in
Ay ..rs A (see also Schwartz [4]).

For each test ¢ based on the characteristic roots of Sy(Sy+Sg)~! — where
we do not use Sg— or of (Sy+S¢)(Sg+ S+ Sg)~' — where Sy is replaced by
Sy+Se —we can construct another one ¢, depending only on 4, ..., 4, with
the same power function, namely its conditional expectation E[p(Z;, Zo)l Ay, ...s Ag-
The test ¢y, however, is strictly randomized and so contradicts the above-mentioned
conditions of an admissible test. Applying for instance Pillai’s ¥ to the model (12),
(13), we see that among the competitors tr Sy (Su+ Sg)~1, tr(Su+ Se)(Su+ Se+ Sg)~1-
and Su(Sy+ Se+Sg)~* only the last one can be admissible. (For its admissibility
see e.g. Schwartz [4].) However it has not been proved yet that this one really domi-
nates the other two. The only result which seems to exist in that direction in
MANOVA is due to Das Gupta and Perlman [1}, who proved that for the Wilks
test |Sgl/|Sy+ Skl leads to a more powerful test than |Sg|/|Sy+ S+ Sgl, provided
the rank of the unknown M is one.
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