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0. Introduction

This paper deals with a generalization of the secretary problem where m of n
(1 € m < n) candidates are to be chosen without the possibility of return to already
rejected objects. At each selection of a candidate the observation process stops.
Therefore the optimal decision rule is a multiple stopping rule. In the first part
of the paper we give a general solution of this problem. We then deal with secretary
problems with interview cost. Finally the case n — oo will be studied.

1. Denotations and general solution

Stopping problems have been considered by many authors in connection with the
so-called secretary problem. There are for example Chow, Robbins, Siegmund
[3] and Bartoszyriski, Govindarajulu [1]. Here we deal with a similar problem which
requires multiple stopping:

Given is a set of n objects such that we can decide between every two of them
which is the better one. Without loss of generality we order the objects so that the
best gets rank 1, the second rank 2 and so on. As in the secretary problem, we as-
sume that all permutations of the n objects occur with equal probability. The objective
is to minimize a given cost function which depends on the choice of m from among
those n (1 < m < n) objects. First of all the quality of the objects is unknown.
But we have the possibility to observe them sequentially. For any object observed
we have to decide on the strength of a comparison with already inspected objects
whether to select it or not. A return to already rejected objects is not possible. The
problem is to find a decision rule, i.e. a multiple stopping rule which minimizes
the given cost function.

The following generalized version of the secretary problem is a special case
of the above-mentioned problem which will be considered in the second part of
the paper:
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n candidates for m vacant secretarial positions will be interviewed one at a time
in a random order. After every interview one can either decide to employ the can-
didate or to reject her. A rejected candidate is later no longer available. The objective
is to choose good secretaries and is expressed in a cost function which sums up the
rank numbers of the employed secretaries and the cost of the interviews. The problem
is to determine a multiple stopping rule which minimizes this cost function.

We use the following notations:

R* — set of real numbers.

N — set of observations; N := {1,2,...,n}.

R; — absolute rank of the ith observed object; i € N.

Y, — relative rank of the ith observed object; ieN. Y; is the absolute rank
of the ith object with respect to the first i objects.

¥ — set of relative ranks; ¥ := {1,2, ...,n}.

J; — number of objects which are still to be chosen in the observations #, i+1, ...
«..,n; LEN.

M —set of possible numbers Ji; M= {1,2,..,m}; M:={0,1,...,m}.

Dy(y,j) — decision variable for the choice of the ith observed object with
relative rank ¥; = y if J; = j objects are still to be chosen; (i,,7) e NxV'x M.
This means:

1 Take the ith object!
Dib»J) = {o Don’t take the ith object!
ject !
We set Dy(y,0):=0,ieN, yeV.

D — set of decisions; D := {0, 1}.

§;—i-rank policy: Si{i,i+1,...,n} xVxM — D;iecN. Wehave Sy(k, y,j)
= Dy(y,j). We denote a 1-rank policy as a multiple stopping rule.

R; —set of all irank policies.

w(i,y,J, S;) —cost function at observation i for the expected cost in the
" time interval £, i+1, ..., nif ¥; = », J; = jand the itank policy S, is used; S; € R,
@y, )eNxVxM, y<i.

w(i,J, S;) —mean cost function; S; & R;, (i, /) e Nx M.
m Wi, 1, 8) 1= Ey,w(, Y1, ], Si),

u(K) — terminal cost; ke M. After the inspection of all n objects a penalty
u(h) will be realized which depends on the number & = J,—D,(Y,, J,). -
(2) W(n'i' 13 h: Sn+1) = u(h)

©(i) — stopping cost; i € N. Stopping cost v(7) will be realized at the first obser-
vation i, where J; = 0, which means that the observation process is stopped be-
fore i.

3) w(i, 0, 8)) 1= v(i).
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wk(i, j) — value func_:ﬁion at observation i if J; = j objects are still to be chosen;
ie{l,2,..,n+1}, je M. We define .

w*(i,j) := min W(i,j, ;) for all (i,/)eNxM,
SieR;

w¥(n+1, h) := u(h) for all he M,
w’f‘(i, 0) := o) for all ieN.
DERINITION. An i-rank policy ;e R; will be called optimal if for all je M
W(ihii Sz) = W*(i’j); ieN.
The solution of the given problem consists in the determination of an optimal
multiple stopping rule S¥ which mi}l_imizes the value of the mean cost function
w(, ..., 1) with respect to all S; & R,. We solve the problem by Bellman’s back-
ward induction (dynamic programming). The applicability of this method is guaran-
teed by the following two assumptions:

Al: A transformation f, fINXVxMxXxDxR'— R*, determines the cost
function w(i, y,j,dx Si.,) for all (i,y,7) eNxVxM, y<i irank policies
dx* Si.1(*) and given W(i+1,j—d, Sip) by the equation w(i,y,j, d*Si.;)
=f(ls ysj’ ds W(i+1,j-d, SH'IJ)'

A2: The equation

H].ig f(iay:j: d’ W(i'*'laj_‘d’ Sl+1))

S1416R143

=f(i:yaj$ ds m‘i_n W(l+17.’_‘da Si+1))

Si41€R141
is valid for all (i,y,j,d)e NxVxMxD, y <i.
These assumptions describe a large class of cost functions which includes
also nonadditive- ones. Now we can formulate the general solution:
T}{EOREM. (i) The value function is computed for all (i,j) e Nx M recursively
in backward steps by the Bellman equation
i

Wi, j) = %—Zmin(f(i, yidy L w1, j= 1), f(i, v, J, 0, wH(i+1, 1))

y=1
@
beginning with the terminal cost
® wk(n+1,h) = u(h), heM,
and the stopping cost
(6) w*(k,0) = v(k), keN.

(*) The i-rank policy d * Si..; decides at observation i with D,(Y;, J;) = d and at the remain-
ing ones it behaves like Spqg.
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(ii) A multiple stopping rule S, € R, is optimal iff Sy fulfils for all (k,y,))
eNxVxM, y <k, the condition )
0 if 4> B,

™ Si(k, y,j) = {alk,y,)) if A=B,
1 if A< B
with ,

A= f(k, p,7, 1, we(e+1,j-1)),
B:=f(k,y,7,0, w*&+1,)
and arbitrary a(k,y,j) € D.

For the proof see Platen [5]. The general solution given above enables us to
consider a large class of secretary problems. For example the nonadditive problem
of maximizing the probability to choose the m best secretaries from n is solved
by using this result in Platen [5]. :

There remains the problem of determining optimal multiple stopping rules
for special cost functions. Since we are interested in secretary problems with inter-
view cost which were already comsidered in a special case by Bartoszyriski, Go-
vindarajulu [1] we shall deal in the following section with additive cost functions.

2. Additive cost functions

We denote by e(i, r, j, d) the elementary cost at observation ieNif R; = r, J; =j
and Dy(Y;, J;) = d. After finishing the inspection, which means J; = 0, we set
e(i,r,0,d) = 0. Then the random cost in the interval i, i+1, ..., » with the use
of the i-rank policy S; and with J; = j is denoted by

n

® Efy 1= e(k, Ry Ty Silks Yoo J))+4(Jy=Dy(Yo, 1)
k=1

Then E Ef, will be the expected sum of the elementary and the terminal costs
if the multxple stopping rule Sy is used. Our aim is to minimize E Ef+, with respect
to all §; € R,. If we define for all S;eR;, Gy, NeNxVXM, y<i

® w(t, y, J: 8) 1= E(Ets 1Yy =y),

" an optimal multiple stoppmg rule will do this. But we have to prove the assump-
tions Al and A2.

Beginning with Al, we get from (9) and (8)
WG, p,J,d * Sis1) = E(e(i, Ry, j, )+ EStiy 4|V, = »)
' = E(e(i, Ri, j, d) Y, = }')+E(Eﬂ*1‘j_d|1’i = ).
Because of the fact that Esl 554 does not depend on Y; we have

BBy dlY: = y) = EES ;g = W(i+1, j—d, Sieo).

e ®
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Further, we define for all (i,y,/,d)e NxVxMxD, y<i

(10) g(i, ¥, 7, d) := E(e(i, Ry, j, DY; = »).

We now get

(11) W, y,js d* S 0) = g, 3,7, d)+w(i+1,j—d, Siyy)
= f(i,,J, d, w(i+1,j—d, Si11))

with

(12) W(k,0,8) =0(k) =0, keN,

and

13) W1,k Spy) = ulk), heM.

Therefore assumption Al is fulfilled. The proof of A2 is easy to see. If we finally
put (11)-(13) into (4)-(7), then the solution of our problem will be obtained.
We shall now define an important class of multiple stopping rules.

DEFINITION. A multiple stopping rule S, € R, will be called simple if it can be
characterized by the condition

. Uiy <D,
(14) 8.0 p,0) = {0 ity >z,
for all (i, y,j) eNxVxM, y < iand with z,(i,7) € {0, 1, ..., n} being an (n, m)-
matrix of integers. The following lemma gives a sufficient condltion for the existence
of optimal simple multiple stopping rules.

LEMMA. Let the elementary cost e(i, r, j, d) be monotone increasing with respect
to re{l,2,...,n} for all (i,j,d)eNxVxDj; then the simple multiple stopping
rule S¥ characterlzed by the (n, m)-matrix of integers
15
with g(i’y’j? 1)_g<is.Vaj30) < B
20 = if g, 1,7,1)-gG,1,7,0) > B,

w*(i+1, j—1), will be optimal.

{greatest ye{l,2,..,i}

B = w*(i+1,/)—

For the proof see Platen [3].
Now we consider a class of cost functions with interview cost ¢;, i € N, which
fulfils the assumption of the lemma. We suppose that for alli e Nand r € {1, 2, ..., n}

rd+e; if jeM,
(16) e(,r,j,d) = { it j=o,
and for all he M
(17 u(h) = hx, xe{0,1,2,...}.

This means that we are interested in minimizing the sum of absolute ranks of selected
objects and the cost of the interviews performed. Since the best objects have low
ranks, an optimal multiple stopping rule will choose good objects. If there are
selected A objects less than m until the nth observation, the terminal cost u(h) =
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= hx will also appear in the sum. Therefore u(f) may be intetpreted as a penalty
in the case where less than m objects are chosen. From (10) and (16) we get by
the statement E(R;|Y; = y) = y(n+1)/(i+1) (see Platen [S]) for all (i, y) e NxV,

y<i,
if jeM,
as) if j=o.

Using (11) and (18), we obtain from (4) the Bellman equation for all (i, /) e Nx M
of the form

ey fd) = {dy(n+1)/(z+1)+ci

(19 w*(@,j) = ~%—Zmin(y(n-{- DG+ D+ e+w*(i+1, )= 1), e+ w*(@+ 1, 7))

y=1

with w*(n+1, %) = hx, he M and w*(k,0) = 0, ke N. In the same way we get
from (15) for all (i,/)e NxM

g o _ |Ereatest ye {I,2,...,i} with y<p,j),
(20) Zp (l:]) - {0 If 1 > I)n(i:j)
with
@y 2, ) = (WL )= wH(i+1, /- D)+ D/(n+ 1).

Because of (14) it is optimal to decide with

if y<zZi(0,
iy >z

In a special case it is now easy to compute recursively the value function and,
further, the matrix of integers z}(#,j) which characterizes an optimal multiple
stopping rule.

It is intuitively clear that if the interviews are too expensive it will be best to
choose the first 72 objects in every case without looking at their quality. The follow-
ing lemma will give an assertion in this direction.

Lemma. If
(23)

forallieN, x >
observed object.

Proof. This proof is similar to one for another cost function in Bartoszynski,
Govindarajulu [1].

We denote by S, a stopping rule (whxch S, is indeed because of m = 1) which
only stops at the first observation. But §; will be an arbitrary stopping rule which
mever stops at the first observation. Because of P(Y; = 1) = 1 we get from (9)
using (8), (10) and (18)

@ 20, =1,

e 2 (n+D/(IG+1))
(n+1)[2+ ¢, and m = 1, then it will be optmml to stop at the first

w(l, 1,1, 8) = g(1,1,1, Dte, = (n+1)/2+4¢,.
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On the other hand, we have

w(l,l,l,S‘Q:ZZP(Ai!,)( k+l Zc) + (A5 )x

k=2 y=

n

i

k
g [ n+l 2
P43z (m + Zc:)+P(A5‘+1)x+

k
k=2 ;i;
n k
n+1
+ Y PR -
k=1 y=2

Zi Pl (751 +Z Jopeasiom,
k= =1

where Af: denotes the event of stoppmg at k with ¥, =y by §, and A,,+1

means that no object is chosen by §,.
Because of the assumption we have for k = 2,3, ..., n

k 1 k=1
+ch) —'(—’:I:—-—-FEG) = Cp—
=1 =1

o+l
k+Dk =

n+1
f+1

and therefore

Using this, we get

n

k
w(l,1,1,8) = (ICZZZIP(A% )+ P(4S +1))(
=2 Y=

Lic)

But by the definition of 5‘1 we obtain
Z ZP(AE‘»HP(A:%I) =1,
w2yl
and finally w(l, 1, 1, 8)) = w(l, 1, 1, S;) which proves the lemma.

3. The case n — ©

In order to consider the asymptotic behaviour of optimal multiple stopping rules
we norm the observation time by n. Further, we. denote the value function at a
normed time i/n for all ie {1,2,..,n+1}, jeMand n=1,2,... by

wi(ijn) := w*(i, j)-
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Let ¢,(i/n) := ¢;; then we can write the Bellman equation (19) for all (7, /) e N x M,
n=1,2,..., as the following difference equation:

Q4 (Wi(G+ D) /m)—wi(i/m) /(1 /)

]

- (Z min(y(n-+ 1)/ G+ 1)+ ea(ifn)+ wi(G+ /),
' y=1 .
e+ wi((i+ )/n) = wi(G+1D/n)

1

- Z min(p(n+1)/G+ 1)+ w2 (G+1)/n) = wh(@+1)/n), 0) = nc,(ifn)

r=1

. % Z (Wi(G+ Dfn) =l (G+ D/m)— y(n+ D/ (+ D)* = ne,(ifn), ()
y=1

where wh((n+1)/n) = hx, h e M and wi(k/n) = 0, k & N. If we assume that for all
t [0, 1] the sequence {n* c,([tn]/m)}sc1,2...(*) converges to a continuous function

1 .
e(t) with§ c(f)dt < oo, then the sequence {wi(t)},=1,s,.. of linear interpolated
(1]

solutions of the difference equation (24) converges for all ¢ € (0, 1]to a continuous
function w/(¢) determined by the analogous differential equation

@) W) =4 WO- W Oyl - ),
y=1

where w'(1) = hx, he M and w°(¢) =0, j € M. This proposition follows directly
from a theorem in Platen [5], which is also valid for many other cost functions.
Analogously to (20) and (21) we define for all t€[0,1] and je M
(26) @) = (W@~ w(1))t
as the limit of the sequence {p,([tn],/)}s=1,2,.. and in the same way
; greatest y € {1,2,...} with y<p/(r),
70 =1, it 1> ().
Because of (22) for great n it is asymptotically optimal to decide with
. 1 if y < 2@,
D) = {0 it y> 2@,
(i, y,)) eNxVx M, y < i. As examples show, this asymptotically optimal multiple
stopping rule is already good enough for practical purposes in the case n = 100.

In the following we will try to determine the function z/(¢). Obviously it follows
from (26) for je M

(29

@

@)

PO =0 and p(1)=x.

) (@)* := max(a, 0).
(®) [a] := greatest integer less than a.

e ©
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So we can define for all @€ [0, x] and je M
(30) H(a) := max{te [0, 1]: p/(¢) < a}.
On the other hand, we obtain from (25) by (26) for all 7 e 0,1 and jeM

L /()

Wy = 1 POy = cte) = >

y=1 y=1

€2Y) (P®O=) /2= ()

= [P'OIE O~ ([P O1+1)/2)/t*~ c(2).
Putting this in the derivative of (26), we get for j=1 and z e (0, 1] the differential
equation

(32) P = pr@O)/t+ (W @) = w()) e

= P'@O)/t+ [P'OI(p* O~ (' 1+ 1)/2) jt— c()

and forj = 2, ..., ma similar but more complicated equation. Since we are interested
in an analytical solution of (32), we restrict ourselves to stopping problems with
interview costs of the form

iz en,

c(n+1)/(iG+1)) if
c(n+1)/(en(en+1))  if
0<c<1,0<e<1l,n=1,2,.., icN. This means that we have to pay the
same for every interview at i < sn. A look at (18) shows that we do not have a trivial
stopping problem. It is easy to see that the sequence {n- ¢,([t7]/n)}uey. o, ... COR-

verges for all t € [0, 1] to the continuous function
c/t> if
O =g if

t

whith § ¢()dt = c(2/e~1) < 0. Therefore our assumptions on the interview
[}

(33) i = cyifn) = {

i< ¢n,

t>e,

34
G4 t<e,

cost are fulfilled and we can solve the differential equation (32). If we assume & < £1(1),
we get for t € [t1(a), b(@)], where [p'(t)] =a, a=1,2,...,x—1

a1
O P L (_?___”_-‘)
PO = 5ty +(z1(a)) 3 ari )
Because of (~g—--z{—r) > 0 we have p*(z)’ > 0 for ¢ € [t*(1), 1] (for z & (0, £1(1))

this is also true). Taking into consideration the continuity of p*(¢), we obtain from
(30

@33

Pttt D) = a+1

¢ '+ )\ a c
() (5-=51)

and from (35)

Pt a+1)) = ——2a— +
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It follows that

2 1/(a+1)
t'(a+1) 4T arl
'@ iz ’
4TET
and we get for all ae {1,2, ..., x—1}
K 2 1/(K+1)
6) #(a) = ﬁ < 1
2¢c
AR

Obviously this formula does not depend on . Further, we can see that the product
in (36) will converge if the terminal cost x tends to infinity, ie. if we are always
interested in choosing an object by an optimal stopping rule. In the case of infinite

terminal cost and no interview cost, i.e. x = o0, ¢ = 0, we have the well-known

result of Chow, Moriguti, Robbins, Samuels [2]. Taking into consideration the
properties of pl(?), it is easy to see from (27) that for all ¢ € [t'(a), t*(a+1)), a e
{0, 1, ..., x—1}, 2:(t) = [P"(£)] = a. Because of (28) for great » it will be asymptoti-
cally optimal to choose the 7th object with relative rank ¥, =y if i/n > t*(y).
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1. Introduction

Let {Xy;, 7> 1} be a sequence of independent random variables with continuous
cdfs (cumulative distribution functions) {Fy;, i > 1} respectively. Consider a linear

rank statistic Sy given by
N

(L1 Sy = Z cxian(Ryy)
=

where Ry, is the rank of Xy, in (Xyy, ..., Xyn)s (Cy1, -, cyw) are known (regression)
constants, and ay(l), ..., ay(N) are “scores” generated by a known real-valued
function @(#),0 < ¢ < 1, in either of the following ways:

(1.2) , ay()) = p(i/{(N+1), 1<i<N,
(1.3) ay(i) = Ep(UP), 1<i<N,

where UV is the ith order statistic in a sample of size N from the rectangular dis-
tribution over (0, 1).

We make the following assumptions:
(TA)  max [eyl/sy = O(V-1/2),
IsisN .
(IB) gD < klz(1—-0)]P~"42,i=10,1; 8 > 0, K a generic constant,
s% is approximate variance of Sy and is given by (1.7) and (1.8) below.
Our main results are the following:

THEOREM 1.1. Let the scores ay(i), 1 < i < N be defined as in (1.2). Then, under
assumptions (1A) and (IB),

(1.4 sup -0 a8 N- o0, sy#0,
X

I3 (M < x) — ()
SN
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