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It follows that

2 1/(a+1)
t'(a+1) 4T arl
'@ iz ’
4TET
and we get for all ae {1,2, ..., x—1}
K 2 1/(K+1)
6) #(a) = ﬁ < 1
2¢c
AR

Obviously this formula does not depend on . Further, we can see that the product
in (36) will converge if the terminal cost x tends to infinity, ie. if we are always
interested in choosing an object by an optimal stopping rule. In the case of infinite

terminal cost and no interview cost, i.e. x = o0, ¢ = 0, we have the well-known

result of Chow, Moriguti, Robbins, Samuels [2]. Taking into consideration the
properties of pl(?), it is easy to see from (27) that for all ¢ € [t'(a), t*(a+1)), a e
{0, 1, ..., x—1}, 2:(t) = [P"(£)] = a. Because of (28) for great » it will be asymptoti-
cally optimal to choose the 7th object with relative rank ¥, =y if i/n > t*(y).
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1. Introduction

Let {Xy;, 7> 1} be a sequence of independent random variables with continuous
cdfs (cumulative distribution functions) {Fy;, i > 1} respectively. Consider a linear

rank statistic Sy given by
N

(L1 Sy = Z cxian(Ryy)
=

where Ry, is the rank of Xy, in (Xyy, ..., Xyn)s (Cy1, -, cyw) are known (regression)
constants, and ay(l), ..., ay(N) are “scores” generated by a known real-valued
function @(#),0 < ¢ < 1, in either of the following ways:

(1.2) , ay()) = p(i/{(N+1), 1<i<N,
(1.3) ay(i) = Ep(UP), 1<i<N,

where UV is the ith order statistic in a sample of size N from the rectangular dis-
tribution over (0, 1).

We make the following assumptions:
(TA)  max [eyl/sy = O(V-1/2),
IsisN .
(IB) gD < klz(1—-0)]P~"42,i=10,1; 8 > 0, K a generic constant,
s% is approximate variance of Sy and is given by (1.7) and (1.8) below.
Our main results are the following:

THEOREM 1.1. Let the scores ay(i), 1 < i < N be defined as in (1.2). Then, under
assumptions (1A) and (IB),

(1.4 sup -0 a8 N- o0, sy#0,
X

I3 (M < x) — ()
SN
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where
D(x) = ——1__— S e t2 4,
V2r N
N o0
(1.3) v = Y et § p(HE))dFn(),
i=1 -0
1 N
a6 H) = W'Z, Fu(o),
N
an 55 = Sk Shi= V&I'(ANi(XNi)):
=1
N
A9 A =5 D (enim o) | U= FnO} ¢ THONARG),
=1
and
0 if y<x
(1.9) Trvey = {1 iF oy

COROLLARY 1.1. Let ¢(t) = F~1(t), where F is a cdf. Let the scores ay(i), 1 <
i < N be given by (1.3). Then, under assumptions (IA) and (IB), the conclusions
of Theorem 1.1 hold.

THEOREM 1.2. Let the scores ay(i), 1 < i € N be given by (1.2) and assumption
(IA) be satisfied. Let

(1.10) sup|p' ()] = |lg’|l < oo;
then
Sn—pow <
(1.11) sup |P — < x| —D(x)| € eyl y+ Ay,
x N
where
1.12) Iin = o/sy, ¢y = 0.7985,
N .
(113) 0= ok Qh=Eldn@y)P and Ay 0.
i=1
Furthermore,
N
(1.14) Ny = 0,19'lIsi* Y lewil.
1]

Remark. Theorem 1.1 has been proved by Hajek [7] (1968). His conditions
on the score generating function ¢ are milder than ours but the conclusion of our
Theorem 1.1 is sharper in the sense that the centering constant uy appears naturally
in place of ESy given by Hajek [7]. Corollary 1.1 is an extension of a similar
tesult proved by Chernoff and Savage [5] (1958) for the two sample problem and
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serves to remove some of the complications encountered in Hoeffding [8] (1973).
Theorem 1.2 is related to the results of Bickel [4] (1972), Juredkova-Puri [9] (1975),
and Bergstrém—Puri [2] (1976). However, the bounds obtained in these papers
are non-random and thus sharper than ours. On the other hand, our conditions
on the score generating function ¢ are milder. We believe that Theorem 1.2 is true
even when condition (1.10) is replaced by the assumption (IB). At the present time,
the theory of asymptotic expansion for sums of dependent random variables is still
at a rudimentary stage (Stein [12] (1970)) and it is doubtful if the random term
4y can be removed without additional assumptions on the underlying distributions.

2. Asymptotic normality of S,

The proof of Theorem 1.1 (and Corollary 1.2) will be along the lines of the Chernoff—
Savage theorem (1958) as given in Puri and Sen [11] (1971) with some modifica-
tions necessitated by greater generality of the present problem.

First we introduce the following notations:

N
) Hy) = ) Ty
i;l
@2 HE) = )" Fu(),
v i=1
@3) Ch(®) = Y Cuilxenrs
i=1 .
N
@4) Ce) = ) CiF).
i=1

Note that the functions Hy(x) and Cy(x) are stochastic variables whereas
H{(x) and C(x) are non-random though depending on N.
Then the following inequalities are obvious:

(2.5) [Cy®) < N IIE?‘);[leHn(x),

(2.6) [C(x)| € Nmax |[CylH(x), —o00 <x < o0.
1sisN

Proof of Theorem 1.1. We rewrite Sy defined in (1.1) as

© 3
N .
(27) SN = S w(—mHN(x)> 4CN(X) = HN+BIN+B2N+ ZDIN
o ‘ =1
where uy is given by (1.5), and

«Q

28) B = | g(H®)d(Crx()~CR),
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@ as N — oo for some &' > 0. To verify this, it suffices to show that
(29) Buwy= S (Hy(x)— H(x)) @' (H(x))dC(x),

1
- (2.16) S_gﬁ_z E[|B*Xy)|[NP+” >0 as N-— 0.
_ 1 ) i=1
@10) Div=7T S Hy(x)9'(H(x)) dCy(x), Choose ' > 0 such that (2+')(5—1) > 1. Then
(2.11) Dy = S (HN(x)—H(x))q/(H(x))d(CN(x)—C(x))= (2-17) wz'.;a/ ZE]B*(XNﬁ)/Nl2+5»
. 0 1 T 2407
2.12) Diy= S'{qa( i1 H,,(x)) p(H)— = SIS Zl S lS qD'(H(y))dC(y)l dFyi(x)

o0

1 " , ¢ 248
< "s'g«ﬁ?ﬁ?ﬁ’ZNZM,E}?;’CMP“ S 'S(P’(H(J’))H(y)’ dFy(x)

T==1

(0 o o) ().
The proof will be accomplished if we establish the following:

—00 X

N o
(@) luyl < o, < {max |Cyl/sy}2+* {|p(H 2+
S o H(x)|+ [p(H(x ¥ dFy:
(b) (Byx+ Bay)/sy is asymptotically normal, IsisN " ,Zl _Sm [P(HE)) PHEa)I} i)
(C) Diy = ap(SN)s i= 1: 2,3. ©
Proof of (a). Using (2.4) and (2.6), we obtain = O(N-%P) S {le(HO) + p(HExo)) P +¥dH(x) -0 as N— co.
© -0 .
@.13)  {punl < N max |Cy,l S lp(H(x))|dH(x) < 0, by assumption (IB). We now show that
1<isN S
o0
Proof of (b). To prove (b), we shall verify the Liapounov condition for B y/s, E;—i) =0,(1), where B(x} = [Hy(x)—H(x)|B*(x) (see (2.14)).
and B,y/s,. Integrating B,y by parts, we obtain N e

We note that
@) Bay= [H)-H@IBG|”, ~ B*(x)d[HN(x) H(x)]

PO = W )~ HO ?S«p’(ﬂ(y))dc o)
where
BG) = [ ¢/ (H)) dC0) < NP~ HeIOW|§ 9/ (HO))AHO) |
where x, is determined arbitrarily such that H(x,) > 0. < kNY ZIHN(")‘H(X)[{H(x)(l“H(x))}d—llz-

Now since Ve > 0, &' > 0, e(e, 8)
We first consider S B*(x)d[Hy(x)— H(x)]; we have

. (2.18) P[supN”z ~—~—~—-————-‘H”(x)_H(xn:—z > Ce, 6’)] <eg,
@19 | BHEG-HE = Y (B0~ BB GG, . R
e = it follows that with probability > 1—e¢,

‘We verify the condition
B(x)
’ SN

3 k{H(x)(l—H(x))}"“"C(a, 0)—->0 as x-— +o

N
1
— E - o
SHY £ BUA* G~ EB* A INF 0 by choosing &' < 4.
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Thus the Liapounov condition (2.16) is satisfied for Byy/sy. The verification
(of the Liapounov condition) for Byy/sy is similar, and the same is true for (B y+

+ B,y)/sy by using the C,-inequality. This proves (b).

Proof of (c). .
N N
Dunl L[S (Bt Coi < 3 D Vi
- @19) oS Wy %«p( X)) i < Z N
where
, CNi
(2.20) Vi = )¢ (Hy:(X)) ol
1

M=

To establish that Vy: — 0 in probability, it suffices to show that

7

I
P

N
(221) N"‘ZEIVN,-I“ < oo for some 0 < o < 1 (cf. Lodve [10], p. 241).
=1

Taking « = 2/3,
I
LN B
N Vil
=1

2]
< max Cni
< o

N2B ycicn

Sy

3 N ©
> § @0~ HE) )

i=1 —0

1 .
< KS {u(1—u)}**/*~du < oo uniformly in N.
o
Now consider

Doy = S (Hy(x)— H()) ' ((HE)) d(Cx(x)— C ().
Noting (2.18), it follows that with probability > 1—g,
\Hy ()~ HO) g (HOO)! < g

Set 0 < 6* = 6— &, choose ¢ < 4, and note that

Cle, 8" {H)(1—HE)Y "

o0

(02 o § {HO(1- HE)P 0y
N
= o 2 CnlH ) (1= FOG))™
Setting
(2.23) V= ”:NCN* {HX ) (1~ HXx)) P

N
1
@.24) - Z {Vai—EVyi} — 0 in probability.

i=1

This will follow if we show that for some « > 0,

N
(2.25) N-a+0 N Bl - 0.

i=1

Choose o > 0 such that (1+a)(6*—1) > —1 (i.e. 0 < o0 < 6*/(1—6%). Then

N
(226) N—(l-l-u)ZElVNill-}-a
i=1

NY2max |Cyy| |12 Y
1i<N

<
N“-Nl Sy |

E{H(Xw)(l — H(Xy i))}(1+°‘)("*-1)
=1

o

S (HE)(1- HO))} 9@ =DdH(x) - 0, as N oo.

-0

1

= 0() %

This proves (2.25).
Finally, consider

Doy = °§ {tp (—Jg—IHN(x))~¢(H(x))—(N]€:(:) —H(x))tp'(H(x))}dCN(x).

-0
We have to show that Dyy/sy = 0,(1). Write

D3y

(2-27) Cazv = ﬂﬁrf—zs—u_’

and note that

0

(2.28) |Cayl < O(1) S

—t0

o ) - ()~

_(Jlfi@

- H(x)) #'(H()| dHy(),

since

C
max 1 "i'ﬂ
1sisN S8 V'

= O(N-Y).

The proof that the right-hand side of (2.28) is 0,(N~*/2) follows precisely as in Puri

and Sen [11], pp. 401-405. Thus the proof of Theorem 1.1 follows.
Proof of Corollary 1.1. Write
N1
o) = Y ay, 0<t<1; ay(i)=Ep(UP), 1<i<N,

i=1

18 Banach
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where [o] is the greatest 1nteger o; and let

St = OSO on (M) dCy().

(2.29) T

The proof of the corollary will be accomplished if we show that (Sy—
in probability as N — co.
LEMMA 2.1. Under the hypotheses of Theorem 1.1 and Corollary 1.1,

SW/sy =0

(2.30) | Eﬂ”(’)=‘p(t)’
@3 ‘DSQ{ (e B} e o acuto)] = oy,

Proof. The proof of (2.30) is well known (see Puri and Sen [ll], pp. 408-409);
and so we prove (2.31).
Using (2.5), we obtain

(232) '_DS; {«Pg(NJIf i(lx ) )—tp(N]{,IfL(f ) )}de(x)

NHN(XNi)) NHN(XM))

C, —_

< x| ”‘[ - ”( v+ )\ AT
N

- s 3 o) ol

rmen | PANFT) TP\ FET

Now by assumption I(A),
N
()l
PM\NTT) P\ NET

i=1
N . .
= O()N-1/2 L (_1._
m ;¢"(N+l) PA\NFT

which ~ 0 as N — oo (cf. Puri and Sen [11], pp. 409-411). This proves the lemma;
and hence Corollary 1.1.

To compute the var(B,y+ B.y), note that

C
max |—2
1<isN| §

(233)

N
Biw = Z‘P(H(XM)) Cy;+constant,
i=1

1
By = — ya ZB*(X 1)+ constant,
i=1

where

x N x
B ) = [ ¢/ (HO)de) = Y Cyy | #/(HOY)dF) ).
%o Jj=1 Xo

e ®
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Noting that

P(H)) = § o/ (HG))dHO)+ p(H(x0)),
and setting

c N x N x
Ul
(o) = S ZS P (HO)aF )~ L 2w @ (HO) )
Xo J=1 Xo
1 N x

= 5 2 Cui=C) § o (OGN dFs ),

J=1 £
we obtain

N
Var(Buy+ Bay) = Y \var (Ayi(Xay)).-
i=1
Proof of Theorem 1.2. Using (2.7), we have
(2.34) Sv—py _ Tn ﬂ,
SN SN Sy
where
(2.35) Ty = Byn+B,y and Dy = D;y+Dyy+Dsy.
Write
(2.36) Fy(x) = P(M- < x), Gy(x) = P (—T—"— < x)-
- SN SN
Then
(2.37)  Fy(x) — &(x) = Gy (x— —-) D(x)
= o) o o 52 < [ole-52) o]
SN SN SN

Since (by Polya’s theorem), both Fy(x)—@(x) and Gy(x— Dy/sy)—DP(x~ Dy/sy)

converge to 0 uniformly in x, it follows that the random quantity

(2.38) @( - i) B

We now estimate

converges to zero.

Ay = sup
X

(2.39)

G (x_%) as(x- f_)‘ sup Gy ()~ ().

Observe that by the Berry—Esseen theorem (cf. Feller [6], p. 544),
CQN

sup
X

(2.40) sup]GN(x) D(x)] <
where C can be taken to be 0.7975 (cf. Van Beek [1] (1972), and Bhattacharya—
Ranga Rao [3] (1976)).

1
18%
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From. (2.40) and (2.37), we bhave
Coy

Sy

(2.41) sup |[Fy(x)—F(x)| < +Ady.

N
It remains to show that N*/24y = Ol,(llq)'[!sﬁ1 21 [Cxil)

From (2.38), since

(2.42) !(D (x—- &)—di(x)l - |Pxlg (x—- 3‘2&) _ for some o, 0K 2 < 1,
Sy Sy Sy
< —!_.—:: .Pi
= 1/275 Sy ’

N
it suffices to show that N*/2Dy = O,(||¢'|lsx* _21 |Cyil)-
i=
Now re-arranging the terms of Dy, we obtain

S (Hy(x)~ HG))dC().

-0

043 Dy= _DS; fol ey #0) - (21} o1

To simplify the proof, we drop the factor N/(N+ 1) since it does not affect the con-
clusion. By the mean-value theorem,

(244)  p(Hy(x))—¢(H(x) = (Hy(x)—H(X)) @' (éx(x))  for some £y(x).
Hence
| l%’z S (Hu(0)— Hx) 9" (Ex(x)) dCx(x)| < -]% SN1/2(HN(;&)~H(x))ch(x).

Let & > 0 be given. Then from Puri and Sen [11], there exists a constant C(g)
such that with probability > 1—e¢,

sup N*/2| Hy(x)— H(x)| < C(e).

Hence, with probability > 1—¢,

) N
@49 2] (- meapw o) < S
- (Y]

The proof of

© N
as9 | § wrmer ey epaces] <« S 1135

in probability is identical.
(2.45) and (2.46) establish the theorem (1.2),
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