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0. Introduction

This paper is concerned with the study of the random variable X®X, when X is an
infinitedimensional Gaussian random variable. It is shown to be a sufficient statistic
on Gaussian statistical spaces with unknown variance by means of the theory of
Generalized Exponential Families introduced in [I3]. Then, the calculus of its
characteristic functional when X lies in a separable Fréchet space, provides an
infinite dimensional non-central Wishart distribution as anounced in [14]. The
characteristic functions of quadratic forms of certain non-central Gaussian real
random functions are derived and then they are used in statistical applications
to the classical theory of goodness of fit tests and to the test of significance of the
mean function of an observed Gaussian process with known covariance function,
and other related tests.

1. Gaussian statistical spaces with unknown variance and generalized
exponential families

Let us first recall some definitions and generalities from [12], [13], [15] and then
we shall state the main theorem of this section which justifies the study.

A vector statistical space (V.S.8.) will be a triplet (E, o, &), that is, the math-
ematical model associated with a statistical experiment where E is a vector space
(over R) representing the space of all the possible (vector) observations x, & is
the o-field of subsets of E generated by the observable events and & is a family
of hypotheses concerning the probability distribution of the observed random
variable X in (E, o). Here, we shall consider especially infinite dimensional spaces
E, X being the natyral random variable associated with a stochastic process whose
sample paths are in E (random functions, random measures, etc.).

For the sake of generality and to avoid the consideration of any a priori topology
on E we shall assume for the o-field & to be such that the mappings: (4, x) > Ax
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of R x Eonto Eand (x,y) + x+y of Ex Eonto Eare measurable when R is endowed
with its Borel o-field. In this case, the pair (E, &) will be called a measurable vector
space (M.V.S.).

Let (E, o)" denote the dual of the M.V.S. (E, &), that is, the vector space
of all the s/-measurable linear forms on E. We shall systematically refer ourself
to the canonical duality (E, (E, &)™y and assuming it to be separated we shall
call the pair (E, ) a separated M.V.S. (S.M.V.8). In this case, the sub o-field
%(E, (E, #)™) of o generated by the elements of .(E, &)™, or also by the cylinder

subsets of E w.r. to this duality, will be called the weakened o-field of o7, and we have'

(E, %(E, (&, .pl)'"))"' = (E, )", A characterization of this dual is given in [12]
for a wide class of S.M.V.S. (E, ); especially, it is shown in [15] that every Borel
linear form defined on a separable Fréchet space is continuous, which may be written
(E, #(E))" = E', however it is well known that %(E, E’) = %(E) in this assump-
tion.

Now, if P is any probability on a S.M.V.S. (E, &) and if o contains all the
P-negligible subsets of E, the triplet (£, of, P) will be called a probability vector
space (P.V.S.). )

DEFINITION 1.1. The dual of the P.V.S. (E, &, P) is the vector space L(E, o/, P)
of the équivalence classes of the elements of the vector space Z(E, o, P) of all
the of/-measurable real functionals which are defined and are linear on a vector
subspace of probability 1 of E. These elements will be called linear real random
variables (Lr.r.v.).

Such functionals have been already considered by several authors (see e.g. [9]).
Evidently, the quotient space (E, /)"/P is contained in Z(E, o, P)/P =
L(E, o, P); a detailed study of this space is made in [15]. The functional @p

[resp. Ly] defined in L(E, o, P) by: ®p(&) = {edP for all & e L(E, o, P) [resp.
£

Lp(&) = Se5dP for £ e D(E, of , P) which is the convex subset of L(E, &, P) where
E

this integral is finite] is called the Fourier transform [resp. the real Laplace trans-
Jorm] of the P.V.S. and may be regarded as the extension of the Fourier transform
@p [resp. the real Laplace transform /p] of the probability P on (E, &) which is

defined in (E, &)™ by: gp(y) = &% dP(x) for all y e (E, )™ [tesp. [n(¥)
E .

= [ ex»dP(x) for y e (E, o)™ for which this integral is finite] since the value
E

of these functions at y depends only on its equivalence class in (E, &/)"/P.
Let us state now the definition of a generalized notion of that of exponential
families.
DeFINITION 1.2. A V.8.S. (E, o, &) is called of canonical exponential type
(CE.T) iff:
() 2 is a family of equivalent probabilities on (E, of);
(i) of contains all the P-negligible subsets of E, P € #;
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(iii) for some fixed probability P* e @,
{LogdP/dP*; P e #} < L(E, o, PH@®R.

A statistical space (Z, %, %) is of expoﬁential type (E.T.) iff there exists
a sufficient statistic 7" with values in a S.M.V.S. (E, «) whose image statistical
space (B, o, Pr = {PoT™1; Pe 2}) is of CE.T.
.+ Clearly, this definition does not depend on P* in 2. It is equivalent to the
following parametrical one:

DEFINITION 1.3. A statistical space (%, &, & = {Ps; 0€O)) is of ET. w.r.
to the sufficient statistic T with values in the S.M.V.S. (E, &) iff:

(i) O is a subset, containing the origin, of the convex D(E, o, Py o T~1) =
L(E, s, Py o T™*) (which is the domain of definition of the real Laplace trans-
Jorm Lpy.r-+ of the P.V.S. (E, o, Py« TY));

(ii) the Py, 0 € O, are equivalent on the sub-o-field of F generated by T (which
is assumed to contain the negligible subsets of & w.r. to the restrictions of the P,
on it);

(iii) for every 6 €O,
dap,
dPy

efeT
Ll’oﬂT"‘(ﬂ) )
Since actually we are concerned with Gaussian V.S.S., let P, be the Gaussian

probability on (E, o) with mean m e E and “variance” the non-negative quadratic
form Q, on (E, &)™, ie.

Pra(Y) = exp{im, »—10.(0)}, e (&, )™
Let H(Q,) denote the closure of (E, #)"/P, in L;(E, o/, P,) and let #(Q,) denote
the Hilbert space of functionals on (E, &)"/P, which is in correspondence with
H(Qo) by the isometry: Z Ep (Z-Y) = hy(Y), Y& (E, )P, Z € H(Q,).

PropoSITION 1.1. If 5#(Q0) < E, then L(E, s, Py) = H(Q,) and the Gaus-
sian statistical space with unknown mean (E, o, {Pn; me#(Qo))) is of C.E.T.
( denotes the completion of o by the Py-negligible subsets of E).

The proof is obvious and results from the density of the equivalent probabilities
Py, w.r. to Py when m & 5#(Q,).

PROPOSITION 1.2. With the same assumptions, the Gaussian statistical space
with unknown variance (E, o, Pq,), where Po denotes the set of all the centered
Gaussian probabilities on (E, sf) which are equivalent to Py, is of E.T. w.r. to the
suffcient statistic x = yp: x> x@x of K into the tensor product space EQE.

The proof results from the density of any P, & Pg, WI. to Py = (Pg,) which
is of the form: dPy/dP, = exp(lo)/Ep lexp(Le)] where Lo is a unique element
of the Hilbert space H(Q,)® H(Qo) which is the completed symmetric tensor product
of H(Q,) by itself \(see [7]), and from .
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Lemma 1.1. If E, = sp(x(E)) in EQE and if o, is the greatest o-field on E,
which yields y measurable, then, the Hilbert space H(Qo)éH(Qo) is isomorphic
1o a vector subspace of the dual L(E,, o, Po o 3~ *) and every element { € H(Q0)®
QH(Q,) can be written as & = & o y where £ is a unique Lr.r.v. on the P.V.S. (E,, "’;xr
Py x7h), (see [13], [15]).

Thus, dPo/dPs = exp(£q © 1)/Lpyey-+ (§q) Which shows that be statistical
space (E, o, Py ) if of ET. wr. to . m

The description of the C.ET. V.8.5. (B,, &, {Pqo x™*; Po€ Pg.}) induced
by y justifies the study of the probability Py o ~* which is the distribution of the
random variable X®X when X is Gaussian.

2. The canonical non-central Wishart cylindrical probability

Let E be a real or complex vector space and let u be a linear mapping of E into
itself. For every positive integer n, #"®, u"O, y»* will denote respectively the nth
ordinary, symmetric, exterior, tensor powers of u, which are respectively linear
mappings of the ordinary, symmetric, exterior, tensor product spaces E"®, EO,
E» into themselves. If u is of finite rank, let us set «,(#) = Trace(u™), oo(u) = 1

and det(1+u) = 2 a,(u) pointing out that the summation is finite and that it co-
nz0

incides with the determinant of the linear mapping (1) if E is finite dimensional
(see [4]).

Now, let H be a real or complex Hilbert space with scalar product <., >y.
(If H is real we shall denote by H, its complexification H+ iH, in case of need.)

Let HOH denote the Hilbert space obtained by completing the separated
prehilbertian  space HQH, for the scalar product {x®x',y® Yaor =
& Poulx, Y ou. ‘

Let HOH denote the Banach space obtained by completing the symmetric
algebraic. tensor product HOH, endowed with the trace-norm, which is called the
completed projective symmetric tensor product of H by itself (see [4], [11]). As usual,
the spaces HOH, HOH, HéH will be identified respectively with the spaces of
continuous self-adjoint of finite rank, or Hilbert-Schmidt, or nuclear operators
in H.

Lemma 2.1 (see [4]), For every positive integer n, w\—s o, (4) is a continuous form
on theA normed space HOH (for the trace-norm) and it admits a continuous exrension
to HOH. Moreover, ;ooc,,(u) is an absolutely convergent series and it is still denoted

n

by: det(L+u) when ue HOH. The operator 1+u is invertible iff: det(1+u) # 0.

The mapping 7+ det(1—zu) defined on the scalar field of H, is called the
Fredholm determinant of ue HéH
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Let us recall that if (E, F) is a separated duality, a cylindrical probability 3
on E w.r. to this duality is a projective system of finite dimensional P.V.S.: (E/M,
B(EIM), pisg)metvn,ry Where #(E, F) denotes the filter base of the subspaces
of E finite codimension. Such a cylindrical probability 4 = (Um)Mensr is uniquely

determined by its Fourier transform which is defined on F by: ¢,(0) = { e'du, (1),
R

y € F, where u, denotes the induced probability on (R, #(R)) by the linear weak
continuous mapping: x — {x, y> on E.

It does not necessarily define a probability on the S.M.V.S. (E, 4(E, F)).

If E is a separable real Hilbert space, say H, a cylindrical probability u-on H
(w.r. to the canonical duality {H, H)y) reduces to the projective system of finite
dimensional P.V.S.: (V, BV), pv)vesm), where F(H) denotes the family of all
the finite dimensional subspaces of H.

LEMMA. 2.2, Let u be a cylindrical probability on a real separable Hilbert space H.
Then the “quadratic mapping”: yu: x> x®x, x € H, induces a cylindrical probability
on HOH w.r. to the canonical duality (HOH, HOH upg of this separated pre-
hilbertian space. It will be called the “quadratic image of y” and it will be denoted
by: gu(u).

Proof. We have to construct a projective system (K, #(K), vx)kezwom of
finite-dimensional P.V.S. uniquely determined by x and yy. First, we observe that
the family

VOV, ZVOV), 2v(uv))resan
is a projective system of finite-dimensional P.V.S., since if ¥ o W in #(H), VOV
o> WOWin F(HOH), and denoting by Py y the orthogonal projector of ¥ onto W
and Pyoy,wow the corresponding one of VOV onto WO W we have

Pyorwow = PiQ, and  PiS e gy = yw e Py

It follows that - yw(uw). = xw ° Prw(ur) = P2, o yv(uv) = Prorwow(tv(w)),
which is the necessary relation of compatibility. )

Now, let K € F(HOH).If K = VOV for some V € & (H), then set: vx = yp(up)
if not, setting: Vyx = sp{yz'(K)} = H, VxQOVy is easily seen to be the smallest
element of #(HQOH) having the preceding form and containing K, then set: g
= Ppyyw,k(Wvy). It is now easy to verify that the family

(K, B(K), vx)xesHOH)

is a projective system of finite-dimensional P.V.S. Clearly, it is uniquely determined
by u and gy by construction. m

Let m be any fixed element of a real Hilbert space H and let us denote by g
the non-central canonical Gaussian cylindrical probability on H, whose Fourier
transform is: @, (x) = exp {i{m, x> g—ilx|l&}, x € H.

PROPOSITION 2.1, The Fourier transform of the quadratic image of Wy is:

(1) @) = det(l— 2i)~exp {i¢m, (1-2iu)~* o u(m)py,}, ue€ HOH.
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K, it is sufficient that (2.1) be true on every

Proof. Since HOH =)
KeF(HOM

finite-dimensional subspace of HOH, and by the construction of xu(t) we may
restrict ourself to the ones of the form VOV for ¥V € #(H). Now, if Ve F(H),
denoting by P, the orthogonal projector of H onto ¥, im, is thle Gaussia? prob-
ability on (¥, #(¥)) with mean Py(m) and “variance” the unit qua.dratxc form
on V. Thus, the calculus of the Fourier transform of yy(u,) results directly from
the following classical result:

Lemma 2.3 (Wishart-James). Let X be a Gaussian random variable on (R¥, 2(RY)
with mean a € R* and covariance matrix A. Then the characteristic function of the
random matrix: X-*X in the Hilbert space Sy of symmetric matrices of order k for
the scalar product (A4, B)s, = Trace(4-B) is:

oxix(U) = det(1=2iUA)~exp {i- Trace[a-'a- U- (1-2iUA)]},

And E(X-*X) = (a-‘a+A). (X denotes the transposed vector of X).

Indeed, assuming for the dimension of ¥ to be k, by the choice of an ortho-
gonal basis in ¥, ¥ becomes isometric to R* and VOV becomes isometric to Sj.
Taking @ = Pp(m) and 4 = 1 we obtain:

Prplim(#) = det(1= 2iu)~ 2exp {i- Trace [Py (m)® Py(m) o u o (1—2iu)~*]},

ueVov,
where det(1~2iu) is the value at 2i of the Fredholm determinant of the finite rank
operator u in ¥ corresponding to the matrix U, which coincides with the determinant
of the matrix (1-2iU) € S;+ iS;.

Finally, since Py(m)® Py(m) = P2O(m@m) = Pyor(m@m), we have

Trace [Py (m) @ Py(m) o u o (1—2iu)*] = (Py(m)@ Py(m), u o (1 —2it)™ Y romre

= {m@m, uo (1'—21'14)_1}}1‘@1{:

= {m, (1-20)" o u(m))a,
which implies that (2.1) is true for every u € VOV, V € #(H) since in this case,
Pratum)() = ‘I’xy(um,,)(”)'

DErINITION 2.1. The quadratic image yu(um) will be called the canonical non-
central Wishart cyclindrical probability with one degree of freedom and it will be
denoted by wg(l, m, ||-||x).

Now, we point out that the complex functional defined by (2.1) is continuous
on HOH for the projective topology. This results from the Fredholm theory [4].
Thus, by Lemma 2.1 there exists a unique continuous extension of this functional

to the completed space H( OH say @,z Which is still of positive type and such that
Pm,a(0) = 1. By a classical result we can state then:

PROPOSITION 2.2. There exists a unigue cylindrical probability on HOH w.r.
to duality CHOH, HOHY which is the restriction to these. spaces of the duality
CHOH, HéH),,@,, provided by the Hilbertian structure of H®H, whose Fourier

UESk,

e ®
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transform is:
Pm,n () = det(1—2iu)~Pexp{i(m, (1-2i)"* o u(m)py}, ue HOH,

and the restriction of this functional to the space HOQH coincides with the Fourier
transform of the quadratic image of the non-central canonical Gaussian eylindrical
probability on H.

3. The non-central Wishart distribution associated with separable
Fréchet space valued Gaussian random variables

This section deals with the study of an infinite-dimensional extension, in a quite
general case, of the non-central Wishart distribution based on the results of Sec-
tion 2.

PROPOSITION 3.1. Let E be a separable Fréchet space with Borel o-field B(E)
and topological dual E'. Let EQE [resp. E'QE'] be the projective symmetric tensor
product of E by itself [resp. of E' (endowed with its strong topology) by itself). B(EQE)
will denote the Borel o-field of the topological space EQE and E'QE’ will denote
the completion of the topological space E'QE!.

Let Nx(0, Q) be the Gaussian probability on (E, B(E)) with mean O and variance
the non-negative quadratic form Q on E'. .

Then there exists a separable Hilbert space 3 (@) = E with continuous canonical
injection and for every m € #(Q), there exists a unique probability on (EQE, B(EOE))
whose Fourier transform ¢ is such that for every t eE'éE’,

GD  p() = det(1-2ing(t)) ™ exp{im, (1-2ing(t))™* o o)) (0).}
where 1q is a continuous linear mapping of E’éE' into .;f’(Q)é.;f(Q) which is uniquely
determined by Q.

Moreover, if X is a random variable with values in (E, #(E)) of the form m+X,
where Xy has the Ng(0, Q) distribution, equation (3.1) determines the characteristic
Junctional of the random variable X@®X with values in (EGE, B(EOE)).

We shall denote by We(1, m, Q) the distribution of X®X which is so character-
ized, and we shall call it the “Wishart distribution with one degree of freedom with
parametets m and Q associated with the non-central Gaussian distribution Ne(m, Q)
on (E, B(E))". The non-central Wishart distribution Wy(n, my, ..., My, Q) will
easily be defined by convolution.

Proof. We have already pointed out that with our assumptions, #(E) = %(E, E")
and (E, #(E))" = E'. Thus,

Pap0. () = exp{—30()}, x' e’

Let us recall now an important theorem of the abstract Wiener spaces theory (see
[8D: “with the assumptions of the proposition, there exists a separable Hilbert
space 5#(Q) which is uniquely determined by Q such that the canonical injection j
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of #(Q) into. E is continuous and the image by j of the canonical central Gaussian
cylindrical probability uo on #°(Q) is the Gaussian cylindrical probability on E
w.r. to the duality (E, E’) associated with the Gaussian probability N;(0, Q) on
(E, #(E))”. In other terms, j “transforms” w, in a true probability on (E,%(E, F)).

Now let m € #(Q) and let u,, be the non-central canonical Gaussian cylindrical -

probability on #(Q) as defined in Section 2. The continuous mapping j is also
continuous for the weak topologies o(S#£(Q), !f(Q)) and ¢(E, E') and the image
of u, by j is the non-central Gaussian probability Nx(m, Q) and denoting by ¥ the
conjugate map of j we have,

P () = P (X)) = exp{i<rm, OV oy = 1T Bcn)
= exp{i{m, x>~ 30}, x' cE'.
Setting yz: x > X®x, x € E, we then have that yy o j(un) = ye(Ne(m, Q) is a prob-
ability on the SM.VS.: (EQE, €(EQE, E'OE"). But, by: y5 o j(m) = j% o
° l;g’(g)(]tm), we have

x'ekE’

PeaVem ) = P gptiem) © (PO)-
And using (2.1), we have, for every ¢ € E'QE/,

(B2 Premon()

= det(1-2i-j20(£))~*Pexp {iCm, (1+21- J2O(1)) ™" o POW) (Mot} -

Now it is quite easy to prove '(see [15]) that
(3.3) %(EQE, E'OE") = 4(EQE, E'QE) = #(EQE). -

Thus, (3.2) characterizes a unique Borel probability, i.e. xz(Nx(m, @) on (EQE,
A(EQE)).

But it is interesting in the applications to have an explicit expression of the
Fourier transform of this probability on the greatest subspace of the topological
dual (EQE)'.

Here, ‘(j%) = ()*@ and % is a weakly and strongly continuous mapping
of E'into #(Q) (see [11]), so that %20 is a continuous linear mapping of the projec-
tive symmetric tensor product E‘QE’ into the corresponding one #(Q)OH#(Q)
for the strong topologies on E' and #(Q), respectively [the last one coincides with
the initial topology of #(Q)]. So, let 5, be the canonical continuous linear ex-
tension of % of E’QE’ into #(Q)®2(Q). Then, by Proposition 2.2, the functional
¢ which is defined for every teE’éE’ by
G4 o(r) = det(1~2ing(1))™exp {im, (1~ 2ina()) ™" ° na(t)(M)da@r}
is the Fourier transform of a unique probability on the S.M.V.S. (EQE, 4(EQE,
E’ OE')) But, by (3.3), this probability is nothing else but yx(Ny(m, ), which
proves the first part of the proposition.

The second part is obvious since (3.2) and (3.4) characterize the same distri-

bution on (EQE, B(EQE)), that is, the one of the random variable X®X when X
have the Ny(m, Q) distribution. m
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Now, the following generalization of the Wishart-Bartlett theorem is immediate
(see [15)).

PROPOSITION 3.2. With the assumptions of Proposition 3.1, let X,, ..., X, be
independent random variables in (E, g?(E)) with common distribution NE(m Q).

Then the random variables X = ”‘ZX‘ and S = Z(Xi -XNeW,—X) are in-
i=1
dependent with distributions Ng(m, Q/n) and Wg(n—1,0, Q), respectively.

4. Quadratic analysis of certain Gaussian processes

This section deals with the derivation of the characteristic function of quadratic
forms of certain real Gaussian processes.

PrOPOSITION 4.1. Let T be a o-compact metric space and let {X(¢),t € T} be
a real Gaussian process with a.s.-continuous sample paths on T such that:

@) E(X@) =m(), teT,

(i) E(XE)X(@)—m()m@t) = ks, 1), (s,t) e Tx T,
(iii) the covariance function k is continuous on Tx T,
(iv) the mean function m belongs to the RK.H.S. #(k);

then, for every regular Borel measure v with compact support on Tx T such that
»(4 x B) =.v(Bx A) for all Borel subsets A, B of T, the characteristic function of the

reve Z, = SS X()X(t)dv(s, t) is given by:
. TxT

4.1) veR, gz(r)= det(l—2izd¥)~2%exp {ir{m, (1—2izA¥) ™! o AX (M), }
where A* is the self-adjoint nuclear operator in H# (k) defined by:

@2) fe#®@, AN = ke aris, 3
TxT .

and

E(Z) = (m, AKm)opgo+ Trace(d) = (§ im(s)m(0)+kGs, Db, 1).
r>T

As a particular case, for every regular Borel measure u with compact support on T,

the characteristic function of the rr.v.: Y, = SXz(t)d‘u(t) is given by:

(43) teR, @y, (7) = det(1~2ivBY)™Yexp {iv(m, (1—2izBf)"" o BL(m)> .}
where BY is the self-adjoint nuclear operator in # (k) defined by:
@4 Fe#®, BANC) = LADkE )du);
T
and

E(Y,) = (m, BSom)oro+ Trace(BY) = § [m2(t) +k(t, D] du(2).
T
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Proof. Let {X(t), t € T} be defined on an arbitrary probability space (2, o, p),
It is easily seen that: @ X(w) = X(, ), © € Q defines a random variable X
taking. on its values in the S.M.V.S. (C(T), B(C(T))), whete C(T) denotes the
separable Fréchet space of all real continuous functions on T (for the topology
of uniform convergence on compact subsets of T'), whose topological dual is identified
with the space Mc(T) of all regular Borel measures with compact support on T,
the canonical duality {C(T), Mc(T)) being defined by the bilinear form (see [8]):

Gy = {x(du(t),  xe CT), e Mo(T).

T

Moreover, the distribution P o X~ of X is Ne(ry(m, Qi) where Q, is the non-negative
quadratic form on Mc(T) defined by

0 = §§ ks, Ddu@dur),  uemy(D).

TxT
So that, @x(u) = E(*®) = exp{im, u)—10u(w)}, pe M(T) and H(Qn)
= #(k) (see [8]). ) '
So, within the framework of Proposition 3.1, the characteristic functional
of X®X is determined for all » € M(T)OM(T) by:

Prex0) = Blexo%) = Elexpli {{ X(5)X0)b(s, 1)})
) TXT
and .
Px@x(¥) = det(1—2i-520(5))~2exp {i(m, (1~ 21-20()) 1 o F20M) (M) sy}

It is now necessary to explicit the linear mapping %20 of M(T)OM(T) into
H# (k)0 (k) and then to show that it admits a continuous linear extension of the
space ME(Tx T) of symmetric regular Borel measures with compact support on
Tx T into the space #(k)O#(k) of self-adjoint nuclear operators in (k). It is
easily seen by density arguments that this extension ‘jzé is such that for all »
€ M3{(Tx T, %0(») is the operator A* explicited in (4.2).

Thus, by the results of Section 2, the characteristic functional of X' ®X is such
that for v € MH(T'x T),

Prgx(t) = det(1—214)~exp {i(m, (1—2id%)"* o AX(m)> e}
So that the characteristic function of the r.r.v.
Z, = (XQX,»)) = SS X(X(t)dvls, 1) is given by ¢z (7) = Pxgx(1y), TER,
TXT

which leads to formula (4.1).

Th‘e mean of Z, is deduced from an obvious extension of the corresponding
results in the finite dimensional case (Lemma 2.3). :

Now, as a particular case of this theory, we can deduce the characteristic func-
tional of the random variable G = X2(-) with values in (c(1), #(C(T))) which
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is de‘ﬁned for e My(T) by
76(u) = E@e<o) = E (exp{i { x2(t)du(n)}).
T

Indeed, let & be the measurable mapping of (T, (7)) into (TT, #(Tx T))
defined by: 6(t) = (t,1), teT.
Then,
1 due) = §§ x)x0)d(u = 51)s, 1)

r )T
and,

Po() = pxgxlue 671, ueM(T).

It is now easily seen that Af,,-: takes the form BY given by (4.4) from which we de-
duce formula (4.3). m

This proposition unifies and generalizes the known results about quadratic
forms of Gaussian processes related to Brownian motion in the central case. More-
over, the derivation of the characteristic function of these quadratic forms for
a wide class of non-central Gaussian processes, constitutes a progress which allows
us to look for statistical applications in two differents fields.

5. Statistical applications

(8) The classical theory of goodness of fit tests
After the work of Anderson and Darling [1], several authors have used a similar
procedure to that of Cramér-Von Mises for various hypotheses testing problems
and the bibliography in this domain is large.

Briefly, for testing some hypothesis H, on the basis of an n-sample of a random
variable they use a criterion which is based on some real statistic T}, and then,

- when investigating the asymptotic properties of the test under H, as n — oo, they

1
show that T, converges in distribution to a r.r.v. of the form Z = SXZ(t)vp(t)dt
1

where {X(¢);te [0, 1]} is a zero-mean real Gaussian process with known covari-
ance function and y is some fixed measurable positive function on [0, 1] verifying
others conditions, as the case may be. Morecver, it can be shown that the asymptotic

power of the test under some alternative H' in H§ envolves a r.r.v. of the form
1

Z = § [X(1)+ () () dt where § is some given function on [0, 1] (see e.g. [2]).

So, the results of Section 4 may be of some utility when deriving the distri-
bution of the r.r.v. Z and Z’, for several choices of the functions ¢ and § and thus,
they may provide some contribution to the asymptotic study of these tests.

Let us quote as examples of applications among the recent literature on the
subject:

— the goodness of fit tests when nuisance parameters are estimated from
the data (see [3]);


GUEST


300 J.-L. SOLER
— testing a sequence of observation from exponential-type distribution for
no change of parameter at unknown time (see [6]); .

— testing symmetry with a Cramér-Von Mises type statistic (see [(0]);

— etc.

(b) Test of significance of the mean function of a Gaussian process with known co-
variance function

Results of Section 4, especially formula (4.3), allow us to propound a class of tests

of significance of the mean function of certain types of Gaussian processes based

on a quadratic criterion, the power function of which are entirely explicited.
Actually, we are concerned with the problem of testing the hypothesis “m

= m,” against “m # m,” in the CE.T. Gaussian statistical space:

6.1 (CD), BCT)), {Neery(m; Q); m e #(k)})
all terms of which are defined in Section 4; m, being a fixed function in J#(k).
Without loss of generality we can assume that m, = 0.

DEFINITION 5.1. A quadratic test of “m = 0" against “m # 07, in the statistical
space (5.1), will be any test of the form

1o (o] > 1
B,.(x) = . xe (),

it [Jxodun]” <1,
T

for some non-negative measure u € Mc(T) and some positive real number 7

PROPOSITION 5.1, For every o, 0 < o < | there exists an unbiased quadratic
test of size o for testing “m = 0” against “m # 0”.

Proof. Taking for 4 the Dirac measure 6,a at some fixed point £ € T, the test
Q,%,l reduces to Ly »n(x); x € C(T). It is similar unbiased for testing the linear
hypothesis H, : “m(t,) = 0” against “m(ty) # 07, for, it coincides with the UMPB
test of the simple hypothesis “m(t,) = 0” against “m(z,) # 0” in the image statistical
space of (5.1) by the real linear statistic: x + {x, d, >, which is the scalar Gaussian
statistical space

(R, BR), {N(m(to), k(to, 10)); m(to) € R}).
Thus, for all m e #(k), the power function of the test (Dafml(!n.a) of size o is such
that:
if  m(ty) = 0,
if m(tg) # 0

=0
ﬂmato,l(tu,a)(nz){ >
as it is easily shown,
Consequently, the test @":n,mu,u) is unbiased of size o for testing “m = 0”
against “m % 0” since the value of its power function at any m # 0 in #°(k) is
2 o according as m(fe) # 0 or m(ty) = 0. m
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+00

Now, let x be such that S l9¥.(v)ldr < o0 where @Y, is given by (4.3) when
-0

the value of the parameter is m. Then, by a classical theorem on characteristic func-
tions, the d.f. F¥, of Y, is everywhere derivable and it is given by:

1 e

- et m

B = 5 | T
—00

so that the power function of the quadratic test @, is given for every m e #(k)
by:
+Sw e .

1 n
B T‘PY,,(TM%

Ba, m) = 1- -

In particular, the significance level of the test is given by:

1 +w e~ .
= = |- — 95 -1/2
%= fo, 0) = 1- 5 S ———det(1—2izB})~'*dv

which theoretically gives I = /(a, ).

PROPOSITION 5.2. For fixed | and u, the power function m»—eﬂ,pw(m) is .con-
tinuous on A (k). For fixed I and m, the functional p — Ba, (m) is continuous on the
positive cone ME(T) endowed with its vague topology.

These elementary results incite one to carry on the theory of quadratic tests
especially in the direction of the optimization of the choice of 4 when T is compact,
with respect to some criterion to be defined. Moreover, the study of the provided
confidence regions may be an interesting field of investigation.

Finally, quadratic criteria may be used to derive tests of equality of mean
functions based on observed samples x atid x' of two independent Gaussian pro-
cesses X" and X” with same known covariance function. Indeed, by similar arguments
to that used above, any test of the form

Uit [ xorao]” > 1,

T

P, ') = 1"
o if [§ -5 OPdatt)] <1,
T

x, x' € C(T),

will be similar for testing “m = m'” against “m % m'” in the product statistical
space: '

(C(T), B(C(T)), (Neery(m, 0, me #(H)}) - (C(T), B(CT)), Neery (' Q03
' € #()})

since X—X" ~» Neery(m—m', Qnp)-
This theory and several applications will be considered in subsequent studies.
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1. Introduction

Let X be a random variable with probability density f(x, 6). The parameter § belongs
to a set . The present author [5] studied confidence sets based upon the likelihood
function. The sets are of the form

_ g S0
S(x) = {0. ?Igff(x, ) > c},

where ¢ is the largest ¢ such that
(0Y)] P{leSX)} > 1—

From the confidence sets we can also easily derive a test of the hypothesis

H: 0 =20, against 6+ 0,;
the test rejects if 6, ¢ S(x). Then the probability of a false rejection is
Py {00 ¢ S(X)} < o

The author [5] has shown that under certain assumptions the confidence
sets (1) are unbiased. Then the test which rejects H when 6, ¢ S(x) is also unbiased.

In this paper we shall consider the situation where the distribution of X' depends
upon two parameters § and #, where 7 is a nuisance parameter. Suppose that there
exists a statistics Y(X) with density g(y,0) (with respect to a measure w) which

depends only upon 0 and not upon #. Then, from the likelihood function g(», 6),
we can construct confidence sets of the form.

_ 1y, &0, 6)
TO) = f: sup (7, 0) > C}'

Under the following assumptions Al-A3 (see Spjztvoll [5]) the confidence
sets T(y) are unbiased.
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