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Finally, lest us observe that splitting the prize has always a detrimental effect
on the expected return. When a = 1, b = ¢ = 0 (i.e. if we win a unit amount only
for getting the best candidate), the expected return is e~* = 0.3679. When we get
1/3 for stopping at any of the three top candidates, the expected return is lowest,
and equals only 0.2616. ‘

Table 1
Optimal thresholds x, y, and z, and the optimal return E for different prizes &
and ¢
¢ b x y z E
0 0 0.3679 1.0000 1.0000 0.3679
0.1 0.3594 0.9091 1.0000 0.3464.
0.2 0.3531 0.8333 1.0000 0.3281
0.3 0.3489 0.7692 1.0000 0.3124
0.4 0.3468 0.7143 1.0000 0.2987
0.5 0.3470 0.6667 1.0000 0.2868
0.1 0.1 0.3507 0.8849 0.9129 0.3323
0.2 0.3445 0.7956 0.9129 0.3136
0.3 0.3410 0.7258 , 0.9129 0.2983
0.4 0.3402, 0.6689 0.9129 0.2851
0.45 0.3409 0.6442, 0.9129 0.2793
0.2 0.2 0.3379 0.7501 0.8452 0.2985
0.3 0.3358 0.6771 0.8452 0.2774
0.4 0.3373 0.6208 0.8452 0.2717
0.3 0.3 0.3342 0.6236 0.7906 0.2696
0.35 0.3364 0.5957 0.7906 0.2640
0.33 0.33 0.3367 0.5868 0.7746 0.2616
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0. Introduction

The object of this paper is to analyze the necessary conditions which must be met
in order that the decision procedures applicable to one statistical decision problem
could also be used in other problems obtained from the original by suitable trans-
formations. The basic concept is that of F-reducibility of two statistical structures
(and of two statistical decision problems), where # is a family of mappings of the
underlying sample spaces. The paper gives conditions under which proximity of
measures in one structure is preserved in the reduced structure (which is a pre-
requisite for robustness of procedures), and under which a parameter in one structure
can also serve as a parameter in the other. '

Moreover, the conditions are given under which certain desirable properties
of parameters are preserved in the reduced structure. Applicability of the introduced
concepts to statistical analysis of stochastic processes is discussed.

1. Reducible statistical structures
By a statistical structure we shall mean a triple (%, , &), where % is an arbitrary
set, of is a o-field of subsets of &, and & is a family of probability measures on

(%, o).

Let now (%, &) and (%", #') be two measurable spaces, and let o and A"
denote respectively the classes of all probability measures on (%, o) and (%', L.
Next, let & be a class of &7/— /' measurable mappings f: & — &', With each

fe & we can connect a mapping f A~ A" by putting
FP(4) = P(f2(4)), A e
Let f-1P' = {P: fP = P'}. Futhermore, for & < A" and 2’ = A", let
F (@) ﬂ%‘, {F@} = (P ex FP = P’ for some P e and some f€F},

(29
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and ]
gy = {f@)
feF
= {PeA’: fP = P’ for some P'e 2 and some fe ZF}.

Let us consider two statistical structures 4 = (%, o, P) and A =
(&', o', #).

DerINITION 1. The structure .# will be called F-reducible to 4", to be denoted
by M M P < F(P) and P < F-1(P).

Two important special cases of reducibility are obtained if

@ P = F(P)
or
(i) P = FYP).

In case (i), we shall say that the structure ' is F-derived from M, symbolically
M| M (for the concept of #-derived structures in case of & consisting of a single

function see Barra [1]). In case.(ii), we shall say that the structure 4 is & ~primitive
for A', symbolically A4 =4 M.

Observe that these conditions are not symmetric: if .4’ is #-derived from 4,
then .# is, in general, not F-primitive for .#' (since 2 need not to be equal to
F~1(F(@)). Similarly, if 4 is F-primitive for ', then 4" is not, in general
F-derived from 4. ’

Before giving examples, it is worth to state the following simple properties.

Let ;= (%, o, P), i=1,2,3, be three statistical structures, and Jlet
F; be a class of appropriately measurable mappings f;: 4, - Zipy, ((=1,2).
Let # be the class of mappings f: &, — &, where f=f, of,, fi e F, fo € F,.

ProOPOSITION 1. If 4, Py Mo, and M, ;»2! Ms, then M, ped M.

PROPOSITION 2. If M, 2 M, and .ﬂz? My, then M, 2 M.

PROPOSITION 3. If either M, 2! > and ler;» My or M 1> My and M,
1 Fa F
;,' My, then M, is F-reducible to M. ‘

Let M = (2, o, P) be a statistical structure and let % be a family of measur-

able mappings & — 4. If & 7 M, we say that J is G-self reducible. Similarly,

if # = (P then A is G-self derived, and if @ = G~1(®) then .4 is G-self
jprnmtlve: Tf & is such that each ¥ for g e 9 is a one-to-one mapping of # onto &
then  is called invariant under %. In particular, we have ’

PROPOSITIO‘N 4. If 9 is a group and 4(P) = P, then 4 is invariant under 4.
. ‘The most 1mpo_rtant examples of the introduced concepts are in the domain
of time-series analysis. In all examples below, &, %7, and &' are equal to the space

RZof all doubly infinite se i
: quences of real numbers, and 7 will ] y
by cylinders with Borel bases. Hibe theo-ield enerated
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EXAMPLE 1. Let A = (%, &, 2) be the white noise structure, i.e. 2 is a family
of measures corresponding to the case where random variables £;, i e Z, defined
as £(x) = x for any x e &, are i.i.d. random variables with a (univariate) distribu-
tion belonging to some family, say Q, all members of Q being dominated by some
fixed measure A. It is assumed that E£} < co for any member of Q.

Let now % be a class of real sequences ¢ = {cx, & = 0,1, ...} with Y. ¢ < ©
and for any ¢ € Z and any ¢ € 4 let (no, 1y, ...) be a subsequence of integers such -

ny
that the corresponding subseqyence of partial sums S;,(x;¢,1) = S ex;—x con-
k=0

verges a.¢. 4. Let & be a family of mappings & — %" defined by the formula

limS,,(x; e, t)  if this series converges,
Xp =y /=

0 otherwise,
where ¢ € ¥%.

In this way, we obtain the structure .4’ = (%', , #') which is F-derived
from the white noise structure .. Depending on the choice of the class %, one
obtains here various structures of linear processes, e.g. linear autoregressive-moving
average (ARMA) processes, etc. (obviously, the choices of subsequences {ry}
have no influence on #"). ; .

EXAMPLE 2. Assume that ' = (2, of, %) is an linear ARMA structure.
Let #* be a family of mappings &' — %, where

Id
’ N 2\,
N | T R

k=0
(so that x’ is obtained by taking pth differences of x). If "' = F*~1(#'), then
M= (X, o, #') is a structure which is F*-primitive for the linear ARMA
structure. The structure '/ was introduced by Box and Jenkins [3] and was called
there autoregressive-integrated moving average (ARIMA) structure.

The common practical situations are formalized as those in which we can
observe elements of & in a statistical structure # = (%', &, #) sampled accord-
ing to some P €&, where J is defined as either #-primitive or F-derived from
some other structuré .#'. Here .#' and & provide a formalization of the reality
as represented by .. For any decision problem it is therefore important to know
how the “small deviations” from the model . influence & and .4’ and vice versa.
This seems to be the essence of the general concept of robustness as applied to the
present situation. In the sequel, we give a possible approach to this problem.

2. “Robustness” of reducible structures

From now on, we assume that %, &', ... are metric spaces, with distances denoted
respectively by g, o', ...; the o-fields &, o', ... will always be the Borel fields,
all measures will be Borel measures, and all functions under consideration will be
tacitly assumed appropriately measurable.
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Let P,, P, be two probability measures on the space . The Lévy-Prohorov
distance L(Py, P,)is defined as L(P,, P,) = inf{e > 0: VFclosed, P;(F) < P,(F*)+
+¢& and P,(F) < Py(F®+e¢)}, where F* is the e-neighbourhood of the set F. Then
(see Prohorov [6]), L is a metric in the space o~ of all measures on &, the space "
with metric L is separable and complete, if % has these properties, and L(P,, P) — 0
iff {P,} converges weakly to P.

We shall prove the following

THEOREM 1. Let M; = (X, &, Py), i = 1,2, be such that P, < P, where
%, is the e-neighbourhood (according to metric L) of @. Given a family F of map-
pings & - X', let M= (X', ', P;) be F-derived from M.
If all fe F are uniformly equicontinuous, then there exists a function k(e) — 0
as £~ 0 such that P, < (P;)*.

Proof. It was pointed out to the authors by V. M. Zolotarev that this theorem
(as well as the following one) follows from his theorems 1 and 12 (see Zolotarev
[8]) and theorem of Strassen (Strassen, [7]). Nevertheless in this case it is simpler
(and useful for further reference) to give an independent proof, which uses more
direct methods.

Under the assumption of uniform equicontinuity, there exists a function, say
r(e), with r(e) - 0 as & — 0, such that, for every /& &, o(x, y) < & = o'(f(»),/(»))
< r(e).

We shall show first that for any fe % and H = %' we have

2.1) STUHY < fHH®).

Indeed, x ef~!(H) =3y ef ~*(H), ¢(x, y) < e = f(1) € H, o(x, ) < & = ¢'(f(x),
fO) < 1&) = f(x) e HH® = x e f 1 (H'®).

Assume now that L(P,, P,) < &, i.e. P,(F) € P,(F*)+& for any closed F  &.
For any fixed f€ & let P{ = fP;, i = 1, 2. Then for any closed H = %' we can
write  (since f~'(H) is closed): Pi(H)= Py(f1(H)) < Po(f~*(H))+¢
< Py(fH(H®))+e = Pj(H™)+¢, which completes the proof since the right-
hand side does not depend on the choice of fe &.

For #-primitive structures, let us first consider the case where & = {/} consists
of a single function. We shall find conditions on f under which the inverse images
of two measures in %" which are close one another are also close, Clearly, one

has to restrict the considerations to such measures which have nonempty inverse
images under f,

We shall prove

_ THEOREM 2. Let L(P{, P}) < ¢ and assume that Jor some Py, Py &€ A" we have
fPl‘ =P, i=1,2. If f is one-to-one and S ds uniformly continuous, then there
exists k(8)\ 0 as eNO such that L(Py, P;) < max(e, k(e)).

Proof. Put k(6)=e'(§:1£< e(f7*(x), f7'(»). By assumption, k(e)\0 as

©
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&\ 0. We shall first prove the inclusion
(22 FHfHY) = 7,
valid for any H < %. Indeed, we have
x ef T (SIHY) = f(x) e f(HY
= Az e f(H), ¢'(f(x),z) <&
=3y el, f(») =z, /(f), /) <&
=yeH, o(x,y) < k() = x € H*®,

If L(P{, P3) < &, then Pi(F) € Py(F)+¢ for all closed Fc %'. We have
then for all H closed in & P (H) < Pl(f“l(f(H))) = P{(f(H)) < Py(f(H))+e
= Pz( Y f(H)"))-I«s < Py(H*®)+ ¢, This yields L(P,, P,) < max (k(c), ¢), which
proves the theorem.

The difficulties connected with. passing from one function fto a family &% of
functions for the case of primitive structures are caused by the fact that two measures
in A, even if they have nonempty inverse images under &, may involve entirely
different subsets of #.

THEOREM 3. Suppose that all functions in & are one-to-one and write

3 r, = Sup su -1(x), g71()).
@3) #e)= s supe(f )
If P, P}, have nonempty inverse images “1(Pi) and F~1(P3), and L(Py, P3) < &,
then L(P,, P;) < max (s, r#(e)) for all Pie F1(P}), i=1,2. ‘ )

The proof is analogous to that of Theorem 2, except that inclusion (2.2) must
be replaced by f~*(g(H)*) = H*®, valid for all f, g € ¥ and all H ¢ Z. Indeed,
we have .

x ef~!(g(H)) = f(x) e g(H)
=3z e g(H), ¢'(f(x),2) < e
=y eH, g(y) = z, (), g() < &

=y eH, o(f (), g7 (s0))) < r5(2)

= yeH,o(x ) < rs(e) > xe H#®.

Naturally, except for the case where all functions in & coincide, we shall have
r#(g) > n for all ¢ > 0 and some positive 7.

As a corollary, one can formulate

THROREM 4. If all functions in F are one-to-one and (%', &7, P)) are F-primitive
Jor (X', o', P, i=1,2, then for any ¢ > 0 the condition P| < (P3)" implies
gl = W:mx(u.ry(u)).

These theorems show the essential difference of conditions for using the #-de-
rived and #-primitive structures. In some oversimplification, the # -derived stf'ucture
is useful for constructing robust procedures if the images of measures whl‘ch. are
close one to another are also clos¢ (compare e.g. Hampel [4]). For &-primitive

3 Banach
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structures the situation is much more complex, and if & consists of more than one
function, the inverse images of “small” neighbourhoods heed not be “small”. As
will be shown in the subsequent sections, these facts are of some importance for
parameters of statistical structures and for decision problems.

3. Parameters of reducible statistical structures

DEFINITION 2. Given # = (%, o, %) and a set I, any function ¢: 2 — [’
will be called a parameter of # (with values in I).

Consider now a family % of mappings f: % — %" and the associated family
F of mappings f: A — A", Let M = (X', o', P') be the structure F-derived
from .

DEEINITION 3. We say that & preserves parameter ¢ of A in the F-derived
structure #' if VP' e &', Vf,_,fz eZ, VP,,P,e?

(ERY] fiP =P =f, P = ¢(Py) = ¢p(Py).

To grasp the intuition behind the concept of preserving parameters, it is best
to consider an example of a mapping which does not have this property. Let & = R2,
and let 2 be the class of all ‘bivariate normal distributions of the form
N(m,m, ¢,, 03, 0). Then the mapping ¢ which assigns the mean to each member
of 2 is a parameter of 4 = (R?, o, ). Suppose that & consists of a single func-
tion f: R* — R, defined as f(x, ¥) = x—y. Such mapping violates condition (3.1).
As a consequence, if the observation structure is .#’, one cannot make any infer-
ence about the mean.

Thus, condition (3.1) is essentially that of preserving “identifiability” of ¢ as
considered in statistical literature.

If (3.1) holds, one can define the parametet ¢’ = ¢'[g] of ' with the same
set of values I" as ¢, by putting ¢’(P’) = y if for some Pe % and fe # we have
@(P) = y and fP = P’. The existence of such P and f follows from the assumption
that ' is &-derived from .#. Condition (3.1) guarantees that this assignment
does not depend on the choice of P and f.

Suppose now that we have a parameter ¢': 2 — I" in the structure '

DEFINITION 4. We say that & preserves the parameter @' of M' in the F-primitive
structure M if VP e P Vi, [reF

(32 FP.LPe? = ¢(fiP) = ¢(> P).
If (3.2) holds, one can define the parameter ¢ = @[g'] of W by putting p(P) =
if for some f we have ¢'(fP) = y. Again, the existence of such f is implied by thc

assumption that .# is #-primitive for .#’, and condition (3.2) guarantees that

the definition of ¢ is unambiguous since the value @(P) does not depend on the
choice of f.

We have the following simple

icm
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PROPOSITION 5. If the parameter ¢ of M is one-to-one and F preserves @ in the
F-derived structure M', then F consists of one-to-one Sfunctions only.
For the case of “multidimensional” parameters, the situation is as follows.

" Suppose g: # — I'; and y: & — I', are two parameters of .#, and let 4 = (g, 9):

P I xI'y. We have an immediate consequence of Definitions 3 and 4:

PROPOSITION 6. Parameters @ and v are preserved in & -derived structure M' iff
h has this property. The same holds if ', ¢, and I’ are parameters of the F-primitive
structure M.

An important situation in which there is a “natural candidate” for a parameter
occurs when we have a structure .4’ %-derived from 4 such that Vf,ge %,
VP ,P,e?

(3.3) FP =3P, = f=g.

In this case we may put I' = & (i.e. members of the family &
parameters) and for P’ € 2’ define p(P') = fif P’
(3.3) guarantees that ¢ is well defined.

If all P €2 are dominated by some o-finite measure A, one can introduce
a natural equivalence among functions f/* & — %' by putting f~ g if A{x: f(x)
# g(x)} = 0. In such a case, one may weaken condition (3.3) by requiring that
fP, = gP, implies f ~ g, and define parameter ¢ with values in &/~.

An analogous condition for the, possibility of using elements of the family
as values of parameters in case of Z-primitive structures can be formulated as:
for all fe # and Pe @, if fPe P then Vge F [gPc P = f= g]. In this case,
we can assign to P the unique f for which fP e 2.

From now on, we assume that all spaces of values of parameters are metric
spaces with the metrics denoted by g, if necessary with identifying subscripts.

DEFINITION 5. The parameter ¢: & — I"is said to be sensitive if for any y € I"
and any & > O there exists a function g(s) \ 0 as 60 such that whenever o(y, y*) < ¢
then @~'(y*) < [p~(Y)IF® (where the neighbourhood on the right-hand side is
induced by metric L).

Since the bound g(g) is assumed to be independent of p, one can equivalently
say (see Bednarek-Kozek and Kozek [2]) that for any sets 4, B = I' with 4 = B*
we have g~'(4) = p~*(B)*®. We have then

THEOREM 5. Let M ;»l M and let ¢: P — 1" be a parameter in M preserved

serve as values of
= fP for some P & 2. Condition

in M. If @ is sensitive and all functions in' F are uniformly equicontinuous, then
@'[p] is also sensitive.

Proof. Let g(e) be the function appearing in the definition of sensitivity, and let
k(e) be the function appearing in the assertion of Theorem 1. Write ¢' = ¢'[¢];
let o(y, ¥*) < € and suppose that P{, P; are such that ¢'(P]) = y, ¢'(P3) = y*
The last conditions imply that there exist P;, P, € # such that p(P,) =y, ¢(P3)
= y*, and there exist f;, f; € # with f; P, = P{, f, P, = Pj. From the assumption

3%
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of sensitivity of ¢ it follows that L(P;, P;) < g{e). By Theorem 1 we obtain there-
fore L(P{, P3) < k(q()), which was to be proved.

For the #-primitive structures, arguing in a similar way, one can obtain the
following

THEOREM 6. Let M =g M and let ¢': &' — I" be a parameter in M’ which is

preserved in M. Assume tkat @' is sensitive, and all functions in F are one-to-one.
Let ¢ = [p']. If a(y, y®) < &, then for all Py, P, € P with (Py) = p, p(P,) = y*
we have

L(Py, P,) < max(g(e), rs(q(e)),

where rs(e) is defined by (2.3).
We have therefore

COROLLARY 1. Under the assumptions of Theorem 6, if F = {f} with = uni-
formly continuous, then @[] is sensitive.

4. Reducible decision problems

In classical schemes of statistical decision problems, the latter is defined (neglect-
ing the questions of measurability, essential in randomized procedures) as a triple
(#, D, c), where A is a statistical structure, D is the set of dectstons, and ¢: #x
xD — R is a cost (loss) function.

DEFINITION 6. The problem (#, D, ¢)is #-reducible to the problem (', D', ¢’)
if .4{; M' and for any fe & there exists a mapping 4 = h(f): D — D’ such that

h is one-to-one, and
YPe® YdeD c(P,d) = c'(fP, h(d)).

The #-derived and #-primitive decision problems are defined as above with
the only change that one requires either .# -l M or M s M.

Observe that if ¢ is a group of (measurable) mappings & — & such that
(#,D, c) is* F-self reducible and ¥(#) = Z then the problem, (W, D, ¢) is in-
variant under ¢ in the sense defined for instance by Lehmann [5].

A typical example of applicability of the introduced concepts is the problem
of point estimation of a parameter, involving either #-primitive or #-derived
structures.

Suppose that we have two structures # = (¥, o, P) and M’ = (X', A', D)
and a parameter g: 2 — I'. We consider the statistical decision problem (., I, ¢),
where ¢(P, y) is the loss function.

Assume that .4’ is F-derived from .#, and that condmon 3.1) holds, 50
that one can define the parameter ¢’ = ¢'[¢] in .4". Then we can choose ¢’ in such
a way that the problem (', I, ¢’) is %-derived from (A, I, c) The funclion

icm
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.

¢’ is obtained by putting ¢'(P’, ) = ¢(P, y) where P' = fP for some fe &
that the function % in Definition 6 is the identity for any f).

The same conmstruction can be carried out for Z-primitive structures when
condition (3.2) holds.

(so

5. Discussion

The concepts introduced in this paper aim at clarifying the situation existing in
the domain of statistical decision problems applied to stochastic processes, especially
in time series analysis. The subject is, of course, far from being exhausted, and
its further development (to be published in subsequent paper) concerns robustness
of decision problems, observability, and the problems of prediction.

The relevance of the results seems to lie in providing a unifying tool suitable
for the analysis of all situations which appear in statistical practice.

To borrow for a while the traditional cybernetic terminology, a typical situa-
tion in analysis of a stochastic process is that we can observe an “output” process
and should like to make inference about “input” process or vice versa. The connec-
tion between “output® and “input” is given by one (usually unknown) member
of the family #. The transformation of “input” process into “output” need not be
treated literally, in the sense that it need not have any counterparts in the modelled
reality: it may be a conceptual transformation of a process, real or hypothesized,
which ledds to a new process more amenable to analysis.

Typically, we want to make some inference, or generally, decisions, in a “diffi-
cult” statistical problem, for which there are no established procedures with known
properties. This problem is then reduced so that it becomes an & -primitive for
an “easy” statistical problem (i.e. such problem that the “appropriate” procedures
for it are known). The relevance of conditions such as for instance (3.2) lies in show-
ing how the choice of % must be constrained in order for reducibility of structures
to carry over to reducibility of statistical problems. Furthermore, concepts such
as separativeness help to realize that the “good” properties of decision rules concern~
ing .4’ (at least in the case of parameter estimation) are not automatically guaranteed
in the case of the & -primitive structure .#, even if (3.2) holds. A common practice
may be roughly described as follows. Suppose that ¢ is a decision rule, “good”
in the problem (.4, D', ¢’). Then, as a decision rule in the -primitive problem
(##, D, c) one is temped to take (x) defined as A~1d'(f(x)), where fis that member
of & which “occurs in reality” and A = A(f) is the function D — D’ appearing
in Definition 6. Even if f were known, there is no reason to assume that ¢’ is a good
procedure. The situation is still more complicated by the fact that f; and hence
also h, are unknown and must be somehow estimated. In effect, what is usually
recommended as a decision rule, is P o'( fA'(x)), where f is some estimator of f'and

= h[f ]. For such a rule to be meaningful, let alone good, f it self must be a par-
ameter of the F-primitive structure (this imposes additional constraints on %).
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Without checking the conditions of the type presented in the paper, the re-
commendation of such a decision rule as described above is based on act of faith
only.
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0. Introduction

The term “stability” has a long history. It has been used by Lagrange, Poisson,
Poincaré, and Liapunov in problems of mechanics. Ulam [14] discussed the notion
of the stability of mathematical theorems from a rather general point of view: “When
is it true that by changing ‘a little’ the hypothesis of a theorem one can still assert
that the thesis of the theorem remains true or ‘approximately’ true?”. Ulam decided
not to formulate a generally applicable definition of stability and we do mot try
to do it here, either. However, a review of theorems ‘on the stability shows that
there are groups of problems in which the stability can be treated from the same
point of view. Here we restrict ourselves to three types of “stabilities” which are re-
lated to some properties of transformations of metric spaces. We call them d&(s)-
stability, 0~1(e)-sensitivity and y(¢)-sensitivity of characterizations, respectively.
The present paper is strongly inspired by lectures of V. M. Zolotarev given in 1976
in Varna and Warsaw on his approach published in papers [15], [16] and [17]. In
particular we use the set-theoretical model of y(e)-sensitivity of characterizations
given in [16] and [17]. .

Let (X, ox) and (¥, gy) be metric spaces and let f'be a function from X into Y.
We are concerned with functions which have one of the following properties:

1. 8(e)-stability

f(C®) = f(C)Y

(intuitively: similar reasons have similar consequences);
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