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Then the following ordinary search linear model of the form (1) holds:
19 y* = {[G(43)]} &+ {[G(43)] 42} E..

Furthermore, (19) can be used to determine §; and ¥, as under ordinary search linear
models.

Proof. Equation (19) is obvious in view of (18) and (3). To show that y* at
.(19) has the structure of a search design, we have to show that conditions correspond-
ing to (2) in Theorem 1 hold; thus we need to show that

(20)  Rank{[G(4:)] 4, [G () 4z0} = Rank{[G(4s)] A, }+Rank {[G (43)] 50},

for all (N x 2k) submatrices 4,, contained in 4,. From (7b), (8b), and (7a), taking
Q = d;, and P = [A;: Ay0], we find that the Lh.s. of (20) equals », + 2k. Similarly,
the two terms on the r.h.s. of (20) are respectively v, and 2k. This completes the proof
of the theorem. ‘

We close the paper by recalling, for the sake of completeness, one procedure
for search and estimation under the ordinary search linear model (1) when con-
ditions (2) hold. We first compute [G(4)]y = y*, say. Clearly,

D E(y") = {[G(4)]14,}E,,

where in view of (2) and (8b), we have Rank [G(4,)]4,o = 2k, for all (Nx 2k)
submatrices 4,o of 4,. Then, we project ¥y’ on the sets of k columns of [G(4)]4,,
until (in the noiseless case) we obtain a set of k columns of A, which gives a perfect
fit. In the noisy case, ordinary least squares projection may be used. Notice that

the technique mentioned in this paragraph is essentially equivalent to method I in
Srivastava [1].

References

{17 N Srivastava, Designs for searching non-negligible effects, in: A survey of statistica
design and linear models, ed. by J. N. Srivastava, North-Holland Publ. Company, Inc. New
York 1975, pp. 507-519.

2] —, Sarfm' Jurther theory of search linear models, in: Contribution to Applied statistics, publ. by
the Smss—.Austra]ian Region of the Biometry Society, 1976, pp. 249-256.

BIJ.N. Srivastava and S. Ghos h, Balanced 2™ factorial design of resolution V which
allow search and estimation of one extra unknown effect 4 < m < 8, Comm. Statist. — Theor.
Meth. A6 (1977), pp. 141-166.

A ?5\1 . S‘rn; ast&;;l ac," Optimal search designs, or designs optimal under bias-free optimality
criferia, in: Statistical decision theory and related topics, II, ed. by S. C. Gupta and D. S ¥
1977, pp. 375-409, Y o snd B 5 Moore,

51 .T N. Srlyastava and D.W. Mallenby, Some studies on a new method of search
in search linear models (submitted for publication).

Presented to the semester
MATHEMATICAL STATISTICS
September 15~-December 18, 1976

icm°

MATHEMATICAL STATISTICS
BANACH CENTER PUBLICATIONS, YVOLUME 6
PWN~POLISH SCIENTIFIC PUBLISHERS
WARSAW 1980
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1. Introduction, notations and basic facts

Many interesting possibilities of quantifying the content of information in a stat-
istical experiment have been proposed and studied in the literature. Among the
most prominent are Fisher information and Kullback~Leibler information numbers.
Several of the principles for comparing designs of experiments are based on ideas
of measuring information. Most of the quantifications are designed for particular
problems. It is, therefore, not surprising that comparison by different measures
may lead to conflicting results. There is, of course, no hope to remedy this and no
single real valued quantity is likely to qualify as “the information number”. Any
measure is bound to be useful within limited scopes only. The particular measures
which I shall shortly describe are not exceptions — on the contrary they might
even appear quite artificial. I find them more interesting because of their construc-
tion than because of their usefulness in concrete applications.

Before proceeding let me at once remark that limitations of time as well as
on space, force me to present most of our results without proofs. Anyone interested
will find proofs and other information on the subject in [14].

Our point of departure shall be the view of statistical decision theory, i.e. that
the performance of a decision procedure is to be judged on the basis of the risk
it inicures. In order to give precise definitions, let us agree that a statistical experiment
& with parameter set @ is a family (Py; 0 € &) of probability measures on a common
measurable space, say (y, /). We may then write:

E=(y,4;P;0€0) = (Py;0€0).

Itis often convenient to identify experiments with the random variables defining
them. Thus, if our observation X is y-valued and o/-measurable and the distribution
of X under 8 is Py, then & may be considered as the experiment obtained by observ-
ing X.

If 8= (Ps,;0€0), i=1,...,n, are experiments, then their product is the

. n n
experiment ([] Py, ;;0 € ©) and we shall use notations as &; % ... X&, ot ‘]_[1 &1
=1 -
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for this experiment. Thus, if &; is obtained by observing X; and X, ..., X, are in-

n
dependent, then H &; is the experiment obtained by observing (Xi, ..., X,). The

experiment (P}; 6 € @) obtained by observing n independent replications of & will
be denoted by &".

In order to keep the mathematical apparatus within familiat bounds we shall
also assume, unless otherwise stated, that our experiments are dominated.

‘We shall need a few concepts and facts from the theory of statistical experiments.
Expositions, proofs and references may be found in Le Cam [5], [6], 8], Heyer
[3], [4] and Torgersen [11], [15].

Various functionals on experiments may be defined by using homogeneous
functions on R®. For example, we may define without ambiguity the Hellinger
transform of & = (Pp; 6 € ®) as the map Hg which to each prior distribution #
with finite support associates the number { ] (dP,)?. The Hellinger transform is
particularily useful for studying independent combinations of experiments. The
main reason for this is that the Hellinger transform of a product experiment is the
product of the Hellinger transforms of the factor experiments. If the experiment
& = (Py;0 €0) is more informative (see definition below) than the experiment
F = (0y;0 €0) then Hy < Hg.

Minimum Bayes’ risk for a prior 1 with finite support may often be written
in the form { —y(dPy; 0 € ©) where y is a sublinear functional on RE.

If A is a measurable and homogeneous function on [0, c0[®and & = (Py; 0 € 6),
then we may define h(¢) = § h(dPy; 0 € 0) as {h(fy;0 € @)du provided u > 4,
Jo = dPy/du; 6 € @ and that the integral exists. It is easily checked that neither
the existence nor the value of A(£) depend on the choice of p.

Le Cam [5] generalizing works of Blackwell and others, formulated the follow-
ing notion of a deficiency.

Let £ and & be experiments with the same parameter set @ and let ¢ be a non-
negative function of 0. Then we shall say that & is e-deficient w.r.t. & if to any finite
decision problem. where the loss function is bounded by 1 in absolute value and
to any risk function s which is obtainable in # there is a risk function r which is
obtainable in & such that r < s+e.

The smallest constant ¢ > 0 such that this holds is the deficiency of & w.r.t.
& and we shall denote it by 8(¢, #).

Associated with this deficiency is the distance 4 defined by

4@, F) = max(3(8, ), (¥, 6)).

If 8(8,F) = 0, then we shall say that & is more informative than & and oc-
casionally write this & > #. The ordering “being more informative than” is certainly
not.a. nice ordering. If, for example, we restrict our attention to linear normal ex-
periments with known variances, then [2] this ordering reduces to the usual ordering

of Fisher information matrices. If 4 @ = 2, however, then the ordering [11] is at
least complete,
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If 6 2 & and & > & then we shall say that & and & are eguivalent and write
this § ~ %. We might also consider deficiencies relative to a given class of decision
problems, e.g. testing problems. Comparison by minimum Bayes’ risks leads to
weighted definiencies: Let A be a prior distribution on @ with finite support. The 1
weighted deficiency, 0(€, #|1), of & w.rt. & is the greatest lower bound of all
numbers ; Aggy such that & is e-deficient w.r.t. &. The deficiency 6(£, #) may

be expressed in terms of weighted deficiencies by
8(&, F) = sup 6(&, F|%).
1

One very interesting feature of deficiencies is that several reasonable and ap-
parently different approaches lead to the same concept of deficiency. Time does not
permit me to go further into this. Let me just mention Le Cam’s fundamental rand-
omization criterion [5] for the deficiency of an experiment & = (Py; 8 € ) w.r.t.
another experiment & = (Qy; 0 € O):

8(¢, #) = infsup ||y M— Q||
M 0

where M runs through all Markov operators from the L-space of & to the L-space
of # and || || indicates total variation.

2. Deficiencies and information numbers

The deficiency 8(&, &) is a function of two variables & and #. Itprovides a partial
answer to the question: What do we loose by basing ourselves. on & rather than
on % under the least favorable conditions for this comparison?

The deficiency is monotonically increasing in # and monotonically decreas-
ing in &. It is also convex in each variable separately. Convexity is then defined
in terms of mixtures of experiments [16].

Suppose we have a family &,: ¢ € T of experiments and that & is some ideal
and unattainable experiment. Let us say that &, < & for all . Then we might con-
sider the numbers 6(&;, &), t e T, as information numbers. Small numbers will
then correspond to informative experiments.

We might, instead of considering an ideal and unattainable experiment %,
consider some “bad” experiment ¥ such that ¢ < &, for all 7. Then we might use
the numbers 8(%, &,), t € T, as information numbers. A small number will then
indicate that our experiment contains little information. As an example consider
the tails &;: X;, X;.4, ... of a2 Markov chain (X, X,, ...) with finite state space ©.
By the Markov property and by sufficiency this experiment is defined by X, alone.
Clearly, 6 > &, > ... and it follows from the compactness of 4 convergence
for finite O, [6], that 6(&,, %)J0 as tfoo for some experiment ¥ such that & < &,
for all ¢

The behaviour of this deficiency is treated in detail by Lindqvist in [9].
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Another example where it might be natural to consider deficiencies as informa-
tion numbers is the following:

Suppose we have observed n independent and normally distributed random
13

variables X7, ..., X, such that EX; = 21 a;f; and VarX; = o% i=1,..,n,
i=

where the a are known constants, the § are unknown parameters and o is known
or unknown. Suppose also that we have the possibility of observing a X,,, such

that
k

EX,, = ey and  Var X, =1
=1
where the VeCtor (2,4, 1, -.-, dns1.x) May be chosen freely within a certain subset
of R¥. How should this vector be chosen? If we do not have any specific decision
problem in mind then we might try to choose X, so that the deficiency of the
experiment defined by (X7, ..., X,) w.r.t. the experiment defined by (X, ..., X,.,)
is large. This problem have been investigated by Swensen in [10]. He has also, in
the same report, obtained, in several important cases, closed expressions for de-
ficiencies between linear normal experiments.

A word of caution is, by the way, in order concerning the interpretation of Jarge
deficiencies since these may stem. from decision problems of scant interest.

It is also possible to construct local measures of information based on de-
ficiencies, [12], but we shall not dwell on this here.

3. Deviations from total information and from total ignorance

In order to investigate the properties of such measures it is tempting to consider,
in spite of their artificiality, distances w.r.t. experiments which are either totally
informative or totally uninformative.

A totally informative experiment is an experiment (Py;0 € @) such that Py
is Py, singular when 6 # 0,. Although the deficiency of any dominated experiment
w.r.t. such an experiment is well defined, it is of no interest when @ is uncountable.
The reason is that in that case this deficiency always equals 2. We shall therefore,
in the following, when we consider comparison. w.r.t, totally informative experiments
assume that @ is countable. As any two totally informative experiments are equivalent
we shall use the symbol 4, to denote any of them. To fix ideas we might, if we so
prefer, let .#, denote the experiment (d,; 0 e ©) where &, is the one point distri-
bution in 6.

A totally uninformative experiment is an experiment (Py; 0 & @) where Py
does not depend on 6. Clearly, any two non-informative experiments are also equiv-
alent and we shall reserve the notation M for any of them.

For any experiment & the informational inequalities J#; < & < J#, hold.
The deficiency of ., w.r.t. & will be denoted by 6,(&) while the deficiency of &
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w.r.t. J, will be denoted by 8,(€). The A-weighted deficiencies of & w.r.t. .4, will
be denoted by 6,(£|2).

Thus our first proposal for a measure of the content of information in the
experiment & is the number 6;(¢). If this distance is small, then the chance mechanism
governing the random outcome is almost independent of the various explaining
theories in @. If, on the other hand, this distance is large, then there are situations
where an observation of & is helpful.

M, is the experiment of directly observing the underlying theory 6 in ©. An
experiment & may be considered to contain much or little information according
to whether & is close to J, or far away from .#,. Thus we arrive at the deficiency
of & wrt. M, ie. 6,(F), as a measure of the content of information in &.

A small value of 8,(&) tells that an observation of &, provided it is properly
used, is almost as good as knowing the unknown parameter. A large value, on the
other hand, tells that there are decision problems such that any decision procedure
is risky for some of the underlying theories.

The values of these deficiencies are often extremely large for all experiments &
under consideration. This reflects the fact that it may be much to ambitious to
compare with total information and much to modest to compare with no infor-
mation.

84(&) is related to the problem of guessing the true value of 6. This may, alterna-
tively, be viewed as a problem of finding optimal confidence regions with extreme
accuracy. If we relaxed the requirement on accuracy, then we might hope to find
other and more realistic measures of information than 8,(¢). Thus one might expect
that the usefulness of the measure 6,(¢) is limited to situations where the space
of underlying theories is, in some sense small.

Let us first consider the deficiencies 8,(£) and §,(&|4). It follows directly from
the randomization criterion that:

3.(&) = 2 infsup Po(M # 9)
M 0
while
8817 = 2[1—\\\0/ Al

Here the inf are taken over all randomized estimators of 6. Thus 8,(8)/2 is the
minimax probability of guessing wrongly the true distribution while §,(814)/2 is
the minimum Bayes probability of the same event.

If @ = {1,2} then §,(6)/2 is the unique number «y in [0, I] such that the
Neyman-Pearson test for “P;” against “P,” has power 1—d, in P,. 8,(&|4) may
then be written ||A; P A 1,.P,|| while the probability of an error of the second kind
for the Neyman-Pearson test for “P,” against “P,” at level o is the smallest number
e > 0 so that & is (2o, 26) deficient w.r.t. ,.

As time does not permit a discussion of both J; and &, we shall, from here
on, restrict ourselves to d,.
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4. Replications

How do these quantities behave under replications? It follows, as is well known,
from the weak law of large numbers that 8” — ., provided P, # P, when 0, # 6,
and that @ is finite. This implies that, for any experiment & such that 0 ~ P, is
1-1, &" converges weakly to .#, in the sense that the restrictions of &” to finite sub
parameter sets converge to the same restrictions of .#,. This does not, however,
exclude the possibility that 6,(6") = 2 for all n. On the contrary, one is tempted,
when @ is infinite, to say that this is the usual case, and that strong conditions are
needed to ensure convergence. If convergence takes place at all, then the next problem
is to decide the rate of convergence. This cannot be done on the basis of 8,(#) alone,
since there are experiments & such that §,(€) has the maximal value 2 while 6,(¢%)
is less than, say 1/10'%, In that case any guessing procedure based on one observa-
tion is almost certain to guess wrongly the true distribution for at least one value
of § while two observations are as good as knowing the true value of 6. If @ is finite,
however, then there are inequalities which show that 8,(#) has to be small when
34(€?) is small. [The topological fact that 8,(£,) ~ 0 whenever 6,(&2) — 0 follows
in this case directly from the compactness of the 4 distance.]

Consider first the case of dichotomies; ® = {1, 2} say. Note first that the
inequality:

min{A,f181, 22/282} > min{A,fy, Aofo}min{gy, g2}

holds for any non-negative numbers 4;, 4,, 1, f2, g1, and g,. Putting & = (P, P,),
F = (G, Q); fi = dPiJd(P1+P2); g1 = dQ,/d(Q,+Q,) we find, by integrating
w.rt. (Py+P;) x (Q;+0,), that for any prior distributions (A1, A2) and (uy, po):

0@ F|2) > 36810 d(F 1}, D) > 18(814) - 16(F|w).

Maximizing w.r.t. 1 and u we find:

306X F) 2 £6,(8) - 16,(F).
Thus, in particular,

30:(8) < V10,87 .

Considering replications of the same experiment, we find, by the same inequality,
that

10.(8™") 2 18,(8™)18.(8").
It follows that

i/&,,(é"") —+C as n- o0,
where C = sup i/ 30.(6").

What is C? That is, is there a simple and explicit expression for this quantity?

Consider a non-negative loss function L(z) such that for all @ there is at least one

“correct” decision ¢ satisfying Ly(t) = 0. Then the risk of any good procedure
based on n observations should be at most %maxL,(t) C", Tt follows that, asymptoti-
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cally, the nth root of the risk should be at most C. Furthermore, it is not difficult
to show that the rate of exponential convergence does not, except for the trivial
decision problems where no observations are needed, depend on the particular
decision problem. Now, Chernoff [1] found that
imY/ |4, PTA L BRI = oinfodPi"’dP;

<t<

for any non-degenerate prior (4, 4,). Thus
C= inf {dPi-ap;.
0<t<l
In order to be able to extend these results to larger parameter sets let us, for
any experiment &, put
C(6) = sup inf {dPjtapy,.
0,0, 0<t<1
As is well known, pairwise sufficiency implies sufficiency for dominated experiments.

It is therefore perhaps not too surprising that C(#) defines the exponential

rate of convergence whenever the parameter set is finite, i.e.

V5.60 - c@®
when # @ < co. Again C(¢) defines the exponential rate of convergence for minimum
Bayes’ risk for a large class of decision problems, although not for all decision
problems. In general, it yields only an upper bound for the exponential rate of
convergence.

What about the case of an infinite and countable parameter set? Again EXCR)
converges, as n —> o0, to a limit ¢(&) such that ¢(6") = ¢(&); r=1,2,..If @
is infinite, however, then o(8) may be strictly larger than C(&) so that the constant
C(&) does no longer determine the rate of exponential convergence. In the case
of a finite @ a value of C(&) as, say, C(6) = + would indicate that §,(8") ~ 27"
If O is infinite, it may happen that C(§) = 1 while (&™) = 2 (so that o(8) = 1).
Also if exponential convergence does not take place, i.e. o(€) = 1, then we might
ask for the actual rate of convergence. It turns out, however, that there is no alterna-
tive to exponential convergence, except no convergence at all.

If & has an accumulation measure for set wise convergence of probability
measures, then 8,(6") = 2. This is, in particular, the case when ‘the sample space
of & is finite while @ is infinite.

I would like to conclude by mentioning a few problems.

The limit ¢(&) = lim 'i/ 8,(6") exists for any experiment &. If @ is finite, then

n

o(6) may be expressed directly in terms of &. If @ is infinite and countable, then
our expressions for o(#) involves all replications. It would be interesting to have
an expression for o(¢) which involves & only, say in terms of the Hellinger trans-
form of &. Even in such a well structured case as the case of translation experiments

- on the integers this problem appears open. Using the fact that properly specified

maximum likelihood estimators are optimal in this situation, it is not difficult to
see that exponential convergence takes place (ie. o(€) < 1)—but what is 0(&)?

21 Banach
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One might consider the more general problem of the asymptotic behaviour
of deficiencies 8(&", F") as n — oo. It is known that we ‘may have 6" > F" when n
is sufficiently large, although &(¢, #) > 0. Then V&(é’", F") — 0. Are there other
situations where J/5(¢ , #™) — 02

Clearly,

limsup }/8 (8", #") < limsup V(8™ < 0 (8)
" n

while

It follows that }/8(8", #") — ¢(8) whenever o(8) > o(F). We do not, however,
know the limiting behaviour of sequences |/ & F", n=1,2,..., when o(&)
< o(F).
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In connection with the Cramér-Rao inequality many important investigations were
made for the non-regular case, i.e. when the supports of the underlying densities
in the sample space do not coincide. In their pioneering papers, D. G. Chapman
and H. Robbins [2] (1951), J. Kiefer [4] (1952), D. A. S. Fraser and I. Guttmann [3]
(1952) consider mainly the case of a real parameter (using also further restrictions)
given various bounds for the variance of an unbiased estimator. The aim of the
present lecture is to give a brief account of the results of the above-mentioned papers
pointing out that almost no assumption is needed concerning the structure of the
parameter space (see also Barankin [1] (1949)). )

In the second part of the lecture the following modified form of Pearson’s chi-
square statistic is investigated:

N0 (K—E?
Zz"—‘ Zm( mo’f l)—ﬂlu
i=1

where E;and o; (i = 1, 2, ..., r) are the conditional expected value and the variance
of the variable restricted to the ith interval of the partition, while »; is the number
of sample elements falling into the ith interval and having arithmetic mean Xg.
This statistic utilizes besides the number of sample elements lying on the respective
intervals of the partition also their positions within the intervals. In a joint paper
with E. Csaki [7] the authors show that this statistic is asymptotically distributed —
when the sample size n tends to infinity — according to the chi-square distribution
with parameter r, i.e. the number of intervals chosen — contrary to the r—1 be-
longing to Pearson’s statistic. When n — o and r = O(n®), 0 < « < 1, the distri-
bution of
Fi-r
Var

tends to the normal law N(0, 1). Whenever the relation

r _¥R2

Z(El ZEI) Pi*>0
oj

i=1
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