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SOME REMARKS ON LARGE DEVIATIONS FOR
WEIGHTED SUMS IF CRAMER’S CONDITION
IS NOT SATISFIED

W. WOLF
Technical University of Dresden, G.D.R.

1. Introduction

1.1. We consider a sequence of independent identically distributed random
variables X, X, ... with EX; = 0 and D*X; = 1 and a double array {a} = {au,
1 < k<€ n1<n< o}of nonnegative numbers, We want to study the asymptotic
behaviour of the probabilities

(L) Pl{ayXi+ ... +@uX, > x} or  PlayXi+ ... +apX, < —x}

in the case where if n — c0 also x = x(n) - 0. Large deviation theorems for
weighted sums under Cramér’s condition were studied by S. A. Book [1], [2], L. Saulis
and V. Statulevidius [6]. Our aim is to derive asymptotic representations for the
probabilities (1.1) if Cramér’s condition is not satisfied. '
1.2. In the following, g always denotes a function with the following properties:
g(x) is nondecreasing and continuous if x > C(g) and satisfies the conditions

(1.2) e(x)Inx < g(x) € C*(g)x*, O<a<l1
and
(1.3) g(x)x~! is strictly decreasing.

(Here o(x) is an arbitrary monotone increasing function with lim g(x) =
X0

C(g) and C*(g) are positive constants depending on g.)
Furthermore, let the array {a} satisfy the following condition (see [6]):
There exist numbers 6 and 8, 0 < 6 <1, 0 < # < 1, such that, for every
sufficiently large n, for at least dn of the @,.’s the inequalities

(14) ) Oy 2 ﬂyn

hold; here

(L.5) TR yn = max{ay, 1 <k<n}.
. k
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1.3. We introduce the following mnotations:

V) = P{X <x},  ot) = B, jZ”'u 3 24
(1.6) = Za,,j, = B,(V8By,)"t Wi=BIH;?,
x S exp( t2/2) (t~ z)"dr
() = (Y2 ) S exp(—t2/2)dt,  wp(z) = — ey .
- { exp(~12/2)dt

The cumulant of order k of the random variable X; is denoted by y,. Let A (n)
be the root of the equation

%)) Ix*=Hig(x) (>1).
Then from (1.2)
(1.8 A,() < (C*(g) BA(3B2y2)1) M=,

If p is a nonnegative integer, then

p—1
Zﬁ(’) = Z Ajnﬂ:
J=0

where 1,(t) is the Cramér—Petrov power series [3] and
g1 2 B2
L,(z,p) = Zan(Z) (Z/l/” " ZZ Zeuv—-znn""/227"'6031-21(2’)+
v=1I=1 (=0
p=3 v B2 p—y—1
T+ ZZ Z I Z Mi(2) Z/l/’l)
=111 1=0

Here
_N,,,,(Z) = Z ( “1) w,(z)z biyns

I=1

~

1

M) = 3

r=1
1
by = Z H bipn.
el 1
kst ki=k
Ly(z, 1) = 0, L,(z, 1) = 0. In our case the coefficients A;,, by, and ey, are ex-

2" Wry.31-21(2) by

R 1 ¢
pressed in terms of the cumulants of the random variable X, and of the sums - kZl s
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! =2, ... For example,

;»—f( (Z ,,k)y,, l—2,...,j+3)

and the coefficients of the series L, (z, p) are defined by the first cumulants Y2,

(1.10)

s Ypi2
and the sums»~? k21 ay, 1= 2

by L. Saulis [5].

y -, p+2. The series L(z, p) was first introduced

2. Large deviation limit theorems

2.1. In this paper the following condition plays an important role:
*) Eexp{g(1X,])} < co.
THEOREM 1. If x > O and if condition (A) is satisfied, then

ot el 3

ﬁi(m—)”f—} = expl= (- )| [1o (522
o[

o o
in th j < x € A,(n). He = = >
as n— co in the domain 0 < x < A,(n). Here s [l-at] If[1 oe] i
then it is allowed in (2.1) to consider only the first s terms in the Cramér—Petrov series.
We have some consequences of this result.

TueorReM 2. If condition (A) is satisfied with o = r—iil Jor a fixed positive in-

teger r, then

He ot o)

P{Z(%;_zcjﬁ - exp{——wl"’( Hz)}[p,o("j{?")]

22)

as n— o in the domain 0 < x < A (n) with A,(n) =
Theorem 2 implies the following result:
THEOREM 3. Suppose that the conditions of Theorem 2 are satisfied. If

(CH(@) HR)+nie+n,


GUEST


icm

350 W. WOLF . LARGE DEVIATIONS FOR WEIGHTED SUMS 351
[x] < (CHg))M+PI+DHICH and yy = 0 for k =3, ..., r+2, then THEOREM 5. If conditions (A) and (C) are satisfied, then :
. P{S > xW, } . g
@3 A 0("1““_“'2)' x _eXP{—Z[ H](Hz)}[HL( ’q)+0(H )]
B, H, 1— 9,(H )
This assertion is a consequence of relations (2.2), (1.10)'and the inequality (2.6) !
1 w2 A ) . l:{lg'L< {PK.} =e J_ x_sarwu X
I~ (x) = g(—x) < v e for x> 0. (,g(“i‘_,) xPl mh Hn 1+L, k] +0(H2”
. H,, )

ExAMPLE. Let a,, = | for every k, (1< k< n); then y, =1, =1, =1, . ) . ] ]

B2 =n, H, = y/'n, 4,(n) = A(n) < (C*(2)n)"/*~*. Under the condition of Theorem as n = oo in the domain H, < x < Aufw). Here q > 1 is an arbitrary integer and s

was given in Theorem 1.

1 we obtain from (2.1) Theorem 1 in [8]: X
@1 ! Theorem 5 implies some results similar to Theorems 2 and 3. We shall give

PiXi+ o +Xy > x} exp{iz/l{,‘”](—x—)} [1_}_0_{:1117_1_)]’ one of them.
1—g ( xﬁ) n n / THEOREM 6. If condition (C) and the conditions of Theorem 2 are satisfied and
Vn ; Ye=0 for k=3,..,rt+q+2, then
(2.4) ‘ o ) @ Pl } ) 0( x4-1 IZ)
: S . < X¢— = =
PXi+ .. +X, < —x} _ exp{—-’%lﬁ‘f”(—-%)} [1"”0(”&3/“”‘” B, ?() e

qg(_ =
Vn
. . < x< . f L= pl/2
as n— oo in the domain 0 € x < A(n). The same result holds if g, = n for 3. Some remarks about the proof of the large deviations
every k (1 <k<n). -

limit theorems

in the domain 1 < |x| < (C*(g))+DI@+ngTIC+n,

2.2, In the following we give a large deviation theorem, under the condition ‘ n i
Let ¢, c;, ... be positive and &, ¢, ... small positive constants. [*|¥; denotes
j=1

B)- . S E|X|* < o
- T the composition of the distribution functions ¥, V,, ..., ¥,. Furthermore, ¥,;(x)
for a certain fixed k > 3 !
THEOREﬁ 4 condition (B) is satisfied, then - ) , k = V( ;:j ) is the distribution function of Y,; = a,X;. F,(x) denotes the d.f. of
"
2.5 P_{Mﬁ_ 51 M 51 : Sn. Then we have F,(x) = I_*—J V,;(x). For y > 0 we define new distribution func-
. ’ - J= E
x x
1- ( - ) 1- (- ) tions V3;(x): . )
? Hn v Hn - ’ an(x)’ x & O:
asn— oo in the domain 0 < 'x < Y (k[2—1) HZInHZ . : Vi) = i—V"J(y)+V"j(x)’ 0<x<y
Relations (2.5) express the large deviation problem in the central limit theorem We denote ’ x>
(see e.g. [7D. N n
V(%) = .
2.3.If condition (A)is satisfied, then there exists the kth.moment of the random £ I j:l V@)
variable X; and we are able to get asymptotic expansions, for large deviations for Then we can write
weighted sums. Asymptotic cxpansxons for large deviations were first obtained 1=F\(xW,) = 1= FX(xW,)+ F(xW,)— Fy(x W,).

by L. Saulis [4].

In the following we suppose that The following inequality holds:

- ol ' v | y
© o memeesno L romy-sw<nfi=+(2])

n
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Put y = A,(n)y,. We introduce a parameter s with

L < éﬁ”)

' <h<e, ER
Further, using the method proposed in [9], we obtain relations (2.6) or (2.1) of
Theorem 5 or Theorem 1.
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ROBUSTNESS: A QUANTITATIVE APPROACH

RYSZARD ZIELINSKI

Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

According to Box and Anderson [1] who introduced the notion, a test is “robust”
if it is “sensitive to change, of a magnitude likely to occur in practice, in extraneous
factors”. Furthermore, a test is said to be “powerful” if it is “sensitive to change
in the specific factor tested”. In the note a real valued function on the parameter
space of a statistical problem is constructed which measures robustness of a test
similarly as the power function measures its “sensitivity to change in the factor
tested”.

®  More precisely, given a statistical structure M, = (%, #, Do), Po < 2,
2 being the set of all probability measures on , we will use a larger structure
M, o M, to express “changes, of a magnitude likely to occur in practice, in extra-
neous factors”. Let m: P, — 2% be a function such that =(P)> P and define M,
= (%, o, P) with #, = Lg‘ 7(P). Let ¢ be a fixed statistic and ¢ a real valued

P

function on 2, #| = {P’E('n) = P((t7*(+)), Pe}. A function r: Po— R
defined as
r(P) = sup{p(Q"): Qen(P)}—inf{e(Q@): Q€ w(P)}

is called g-robustness of the statistic ¢ in the extension My of M.

ExaMpLE. Let d be a metric in the space # and for a given statistic 7 let d, be
a metric in 2. For a given statistical structure M, = (%', &, #,) consider M,
defined as s-extension of M, constructed by the mapping =(P) = {Q € #: (P, Q)
< ¢}. The distribution-robustness of the statistic ¢ in e-extension of M is given
by

re, o P) = sup{d(P', 0): Q e=(P)},

A qualitative Hampel’s [2] definition of robustness is: ¢ is robust in a neighbourhood

of P if for any 8 > O there exists & > 0 such that re.o(P) < 0; t is robust in the
structure M, if for any positive & there exists & > 0 such that s;pr,_,(P) < 4.
0

The full text containing some further discussion and examples (power-robustness
of the two-sided Student test with Tespect to change of variance; a Tisk-robustness
of sample mean and sample median in estimating expected value of a normal dis-
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