Put $y = \Lambda_a(n)\gamma_n$. We introduce a parameter h with

$$\frac{c_1}{H_n} \leqslant h \leqslant c_2 \frac{\Lambda_a(n)}{H_n^2}.$$

Further, using the method proposed in [9], we obtain relations (2.6) or (2.1) of Theorem 5 or Theorem 1.

References

- S. A. Book, Large deviation probabilities for weighted sums, Ann. Math. Statist. (1972), pp. 1221-1234.
- [2] —, A large deviation theorem for weighted sums, Z. Wahrscheinlichkeitstheorie und verw. Gebiete (1973), pp. 43-49.
- [3] V. Petrov A generalization of Cramér's limit theorem, Uspehi Mat. Nauk 9 (1954), pp. 195-202 (in Russian).
- [4] L. Saulis An asymptotic expansion for probabilities of large deviations, Litovski Mat. Sb. 9 (1969), pp. 605-625 (in Russian).
- [5] —, The limit theorems which allow large deviations if Ju. V. Linnik's condition is satisfied, ibid. 12 (1973), ibid. (1973), pp. 173-194 (in Russian).
- [6] L. Saulis, V. Statulevičius, On large deviations in the scheme of summing of weighted random variables, ibid. (1976), pp. 145-154 (in Russian).
- [7] W. Wolf, Große Abweichungen im zentralen Grenzwertsatz, Wiss. Z. Techn. Univ. Dresden (1975), pp. 393-398.
- [8] —, On the probability of large devations in the case where Cramér's condition is not satisfied, Math. Nachr. (1976), pp. 197-215 (in Russian).
- [9] —, Asymptotische Entwicklungen für Wahrscheinlichkeiten großer Abweichungen, Preprints TU Dresden Sektion Mathematik 07-01-76, 07-02-76; Z. Wahrscheinlichkeitstheorie und verw. Gebiete (in print 1977).

Presented to the semester
MATHEMATICAL STATISTICS
September 15-December 18, 1976

em[©]

MATHEMATICAL STATISTICS
BANACH CENTER PUBLICATIONS, VOLUME 6
PWN—POLISH SCIENTIFIC PUBLISHERS
WARSAW 1980

ROBUSTNESS: A QUANTITATIVE APPROACH

RYSZARD ZIELIŃSKI

Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

According to Box and Anderson [1] who introduced the notion, a test is "robust" if it is "sensitive to change, of a magnitude likely to occur in practice, in extraneous factors". Furthermore, a test is said to be "powerful" if it is "sensitive to change in the specific factor tested". In the note a real valued function on the parameter space of a statistical problem is constructed which measures robustness of a test similarly as the power function measures its "sensitivity to change in the factor tested".

More precisely, given a statistical structure $M_0 = (\mathcal{X}, \mathcal{A}, \mathcal{P}_0)$, $\mathcal{P}_0 \subset \mathcal{P}$, \mathcal{P} being the set of all probability measures on \mathcal{A} , we will use a larger structure $M_1 \supset M_0$ to express "changes, of a magnitude likely to occur in practice, in extraneous factors". Let $\pi \colon \mathcal{P}_0 \to 2^{\mathcal{P}}$ be a function such that $\pi(P) \ni P$ and define $M_1 = (\mathcal{X}, \mathcal{A}, \mathcal{P}_1)$ with $\mathcal{P}_1 = \bigcup_{P \in \mathcal{P}_0} \pi(P)$. Let t be a fixed statistic and ϱ a real valued function on \mathcal{P}_1^t , $\mathcal{P}_1^t = \{P^t(\cdot) = P((t^{-1}(\cdot)), P \in \mathcal{P}_1\}$. A function $r_t \colon \mathcal{P}_0 \to R^1$ defined as

$$r_t(P) = \sup \{ \varrho(Q^t) \colon Q \in \pi(P) \} - \inf \{ \varrho(Q^t) \colon Q \in \pi(P) \}$$

is called ρ -robustness of the statistic t in the extension M_1 of M_0 .

Example. Let d be a metric in the space $\mathscr P$ and for a given statistic t let d_t be a metric in $\mathscr P^t$. For a given statistical structure $M_0=(\mathscr X,\mathscr A,\mathscr P_0)$ consider M_1 defined as ε -extension of M_0 constructed by the mapping $\pi(P)=\{Q\in\mathscr P\colon d(P,Q)<\varepsilon\}$. The distribution-robustness of the statistic t in ε -extension of M_0 is given by

$$r_{t,s}(P) = \sup \{d_t(P^t, Q^t): Q \in \pi(P)\},$$

A qualitative Hampel's [2] definition of robustness is: t is robust in a neighbourhood of P if for any $\delta > 0$ there exists $\varepsilon > 0$ such that $r_{t,\epsilon}(P) < \delta$; t is robust in the structure M_0 if for any positive δ there exists $\varepsilon > 0$ such that $\sup_{\mathcal{P}_0} r_{t,\epsilon}(P) < \delta$.

The full text containing some further discussion and examples (power-robustness of the two-sided Student test with respect to change of variance; a risk-robustness of sample mean and sample median in estimating expected value of a normal dis-

R. ZIELIŃSKI

354

tribution; power-robustness of a test with respect to unequal probabilities in Bernoulli trials; size-robust tests) appeared in [3].

References

- [1] G. E. P. Box and S. L. Anderson, Permutation theory in the derivation of robust criteria and the study of departures from assumptions, J. Roy. Statist. Soc. Scr. B 17 (1955), pp. 1-34.
- [2] F. R. Hampel, A general qualitative definition of robustness, Ann. Math. Statist. 42 (1971), pp. 1887-1896.
- [3] R. Zieliński, Robustness: A quantitative approach, Bull. Acad. Pol. Sci., Sér. math., astr. et phys. 25(1977), pp. 1281-1286.

Presented to the semester
MATHEMATICAL STATISTICS
September 15-December 18, 1976

MATHEMATICAL STATISTICS BANACH CENTER PUBLICATIONS, VOLUME 6 PWN—POLISH SCIENTIFIC PUBLISHERS WARSAW 1980

COMPLETENESS FOR A FAMILY OF NORMAL DISTRIBUTIONS

ROMAN ZMYŚLONY

Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

1. Introduction

In this paper the problem of completeness of minimal sufficient statistics for a family of multivariate normal distributions $\mathscr{P} = \{N(\mu, \Sigma) \colon \mu \in \mathscr{X}, \Sigma \in \mathscr{V}\}$ is considered. Here \mathscr{X} is a subspace of *n*-dimensional Euclidean space R^n and \mathscr{V} is a set of $n \times n$ positive definite matrices containing non-empty open set relative to the sp \mathscr{V} (the smallest linear space containing \mathscr{V}).

For special cases this problem has been considered by Graybill and Hultquist [1] and Seely [3], [4].

2. Minimal sufficient statistics

Without loss of generality we assume that the identity operator I belongs to \mathscr{V} . Let $\mathscr{W} = \{ \mathcal{\Sigma}^{-1} \colon \mathcal{\Sigma} \in \mathscr{V} \}$ and let W_1, \ldots, W_k form a basis for sp \mathscr{W} . Then for $W \in \mathscr{W}$ we have

(1)
$$W = \sum_{i=1}^{k} w_i(\Sigma) W_i,$$

where $w(\Sigma) = (w_1(\Sigma), ..., w_k(\Sigma))'$ is the vector of linearly independent functions from $\mathscr V$ to R^1 . Let $\mathscr R$ be the smallest subspace of R^n such that $\Sigma^{-1}\mathscr X \subset \mathscr R$ for all $\Sigma \in \mathscr V$. Note that $\mathscr X \subset \mathscr R$, because $I \in \mathscr V$. Let $x_1, ..., x_p$ and $x_1, ..., x_p, x_{p+1}, ..., x_r$ be a basis for $\mathscr X$ and $\mathscr R$, respectively. Moreover, let for $\mu \in \mathscr X$ and $\Sigma \in \mathscr V$, $f(y|\mu, \Sigma)$ denote the $N(\mu, \Sigma)$ density functions with respect to Lebesgue's measure.

LEMMA 1. The functions $T(y) = (x_1'y, ..., x_r'y)'$ and $W(y) = (y'W_1y, ..., y'W_ky)$ are minimal sufficient statistics for \mathscr{Q} .

Proof. Let R denote the $n \times r$ matrix $[x_1 \dots x_r]$. Since $R(R'R)^{-1}R'$ is the orthogonal projection on \mathcal{R} , we have

$$\Sigma^{-1}\mu = R(R'R)^{-1}R'\Sigma^{-1}\mu = R\alpha(\Sigma,\mu),$$

[355]