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1. Introduction

The set U of all possible limijt laws of linearly normalized sums of an infinitely in-
creasing number of independent and identically distributed random variables is
called the class of stable laws. Further, the letters G, f will be used to denote dis-
tribution functions and characteristic functions of the stable laws, respectively.
Letter X will denote a random variable having a stable probability law.

It turns out that the most convenient way of describing all distributions from
the class U is to use characteristic functions of those distributions.

A form proposed by A. Ya. Khinichine (see for ex. [4]) is the most common
form to record the function f. This form will be called form (A):

log f(2) = ity— At|%w4(2, a, B),
where

[ 1—iftan (% oz)signt it o,
(DA(ta o, ﬁ) = 2
I+iﬁ—T—r-log],t]signt if a=1.

The parameters which are present in the above formula change within the following
bounds:

0<a<g2, -1<€f<1l, —-w<y<owo, 1z0.

Hence, the set 1 is a four-parameters family of the probability laws. Class 1l contains -
such well-known probability laws as the normal law (¢ = 2), the Cauchy law (x = 1,
f = 0) and the Lévy law (¢ = 1/2, f = 1).

The above-mentioned probability laws together with a law similar to the Lévy
law (@ = 1/2, f = ~1) are the only laws whose densities g can be expressed with
the help of the elementary functions (including of course those variants of stable
laws which appear when we change the values of the nonfixed parameters y, 4).
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Stable probability laws appear in applications to astronomy, physics and techno-
logy. So the problem of constructing statistical estimates of the parameters de-
scribing them is becoming more and more the problem of the day. At present there
exist several papers devoted to the problem of estimating the parameters of stable
laws. Some of them have a general character and make use either ¢f the method
of maximum likelihood [7] or of the method of moments [6]. There do exist also
papers oriented toward applications; namely, they deal with the construction of
specific calculating algorithms for the estimation of the parameters o and 1 (]2,
[3} [6]. [12], [13).

The main difficulty in the application of the results of the well-developed theory
of estimation of the parameters is connected with the fact that the explicit formulae
for the densities of stable laws are known only for the few cases mentioned above.

The construction of the stable law parameter estimates stems from the method
of moments, well-known in statistics, and is based on ihe sequence of analytical
properties of the stable distribution described in the present author’s paper [8].
The solution of this problem is presented below.

2. Some properties of the distributions from the class U

We shall start presentation of the properties of the stable distributions from writ-
ing the function f in another form. In many cases this new form turns out to be
more convenient from the analytical point of view.
This form is believed to be obtained by the author for the first time in [8] and,
in a little bit changed form, in [9]. It will be called further form (B):
logf(r) = ity— Alt[*ws(t, o, B),
where
exp{—iinfK(«)signt} if a#I,
wg(t, a, f) = {1+iﬂlo . . -
glt|signt if a=1.

We denote here K(x) = 1—|1—a| = min(e, 2—a) and the parameters «, £, ¥, 4
can be changed within the same intervals as in form (A).

Parameters appearing in forms (A) and (B) are related by the following formulae
(indices A and B of the parameters denote their membership in one or another
form):

O = g = 0, YA =7Yyp=7Y.
If o # 1, then
Ba = cot(} na)tan[} ©K(x)fs],
Aa = Apcos[3nK(x)Bs].
If « = 1 then
ﬂA = ﬁny ﬂA = Ag.
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The four simple propertigs of stable laws given below will be formulated in
terms of the random variables X(z, 3, v, 2), as it turns out to be more convenient
(properties will be more readable and illustrative). Parameters in brackets following
the symbol of the random variable are related to the distributions of those random
variables. The equality between random variables (i) is understood as the equality ;
between the corresponding distributiqns. Further random variables appearing !
on one side of the d-equality are assumed to be independent.

PROPERTY (2.1). For any possible values of the parameters, we have

X, B, 7, &) = aX(x, 8,0, 1)+b.
We have here (irrespective of the form to which those parameters are related):
a= 2" and b=yif a# 1 and b = p+@2/m)BAlogl if & = 1.
The above property shows that parameters y and 4 are connected with the choice
of scale and the zero point within the set of values of random variable X,

PROPERTY (2.2). For any admissible values of the parameters (irrespective of
the form) we have

X, =B, ~y, B = =X, B, 9, D).
PROPERTY (2.3). For any two admissible systems of the parameters (a, p', ¥, A,

(e, B "', X") and any real numbers c', c", h one can find a system of the parameters
(«, B, y, A) such that

X(, By y, )= X, B, ¥, K)+c"X(x, B, y", X)) +h.
The relation between the system of parameters a, B, v, A and the random vari-
ables describing them turns out to be simplest in the case where form (A) is used:

Z — }’Ilclla_*_ ll!lclllu’
BA = f'XN|c'|%signc' + B A"|c"|%sign.c”,
'V - Cl,yr_i_cuyu_}_h_l_ho’
where hy = 0 if o # 1 and
ho = =2 (@ clogle +p7e K ogle") i 4= 1.

We shall mention three particular cases of the last property, assumipg that
all the parameters are related to the form (A)

(2.38): For any admissible values of the parameters,

X, By vy H=X(, B, 7, 1) = X(x,0,0,22).

(2.3b): For any admissible values of the parameters,
X@, B, 7, N~1X(, B, v, D=3X(d, B, v, ) = X, B% 9%, 19,
where T

o= (1421792, pri*x = (1-21"%p1,

2 .
(obviously we have |B*] < 1); y* =0 if a % 1 and y* = —ﬂl-;logz fa=1

24 Banach
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(2.3¢): For any admissible choice of the parameters,
X, oy, B = a1 X(@, 1,0, D= X(2, 1,0, 1)+

1 1fo - 1o
=( gﬁ) , L,Zz(z‘.ﬁé,ﬁ_) ,
aF 1,

where

y if

%(cllogcl-—czlogcz)-!-y if a=1.

The properties (2.1)-(2.3) can be found in paper [8]. However, those relations
between stable distributions can easily be checked by the reader himself. This can
be done by equalizing the left and right-hand sides of the above quoted formulae.

As can easily be seen from the form of function f, stable laws are continuous
(in the sense of weak and even strong convergence of the distributions) with respect
to the parameters (8, v, A) within the region of all their admissible values. They are
not continuous, however, with respect to the parameter « in each neighbourhood
of any point (& = 1, § # 0). As « — 1 and the values of all other parameters are
fixed (8 # 0), the whole mass of the probability distribution diverges to infinity
if the parameters are related to form (A), and concentrates at one point if the par-
ameters are related to form (B).

Continuity with respect to parameter « in the neighbourhood of the point
a = 1, however, can be reached in the most convenient way by using form (A).
It suffices to construct an additional shift of the distribution which would compensate
the divergence of the probability mass to infinity.

PROPERTY (2.4). If two parameter systems (&', ', ', A') and (1, 8,9, A) related
to form (A) change in such a way that

1#a' =21, p' -8,

X, By, A)— Ap'tan fwa’ = X(1, B, v, A),
where the convergence of random variables is understood in the sense of the con-
vergence of the related distributions. This convergence is either in the Lévy metric
in the general case or in the uniform metric of 4 > 0.

The above limit property is presented in [8]. One can check it, however, without
any difficulty by observing the convergence of the appropriate characteristic func-
tions. The fact that for A > 0 the convergence can be understood in the strong sense
or even as the convergence of the variances results from the following property of
stable laws. Namely, it turns out that stable laws are absolutely continuous with
any number of everywhere continuous derivatives.

Y=y, XA,

then

3, Stable laws of the subclass I3

Subclass W of the class U is defined by the following additional condition:
G(x,a,B8,y, Held,

e ©
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if y = 0 in case where @ % 1 or § =0 if & = 1. The set W is of course a three-
parameter family of stable laws. It turns out to be more convenient to describe
this family by another system of parameters which do not appear in forms (A)
and (B). This new system of patameters (v, 8, 7) is related to the parameters (x, 3,
v, A) appearing in form (B) by the following relations:

[ K(a)
y=a"2% 0= i

B, if a#l,

2
?arctan(y/l) if a=1,

20

where C = —/"(1) = 0.577 ... is the Euler constant.

Characteristic functions related to stable laws of the class ¥ can be written
in the following way ((form (C)):

log f(t) = —exp{v~'*[log|t|+ v— i nBsignt+ C(1—»'P)]},

where parameters », 6, 7 can be changed within the following bounds:
6] < min(1, 2y/»—1),
One can easily notice that all stable laws belonging to the set 2 are continuous
with: respect to the parameters (v, 0, T) on the set of all their admissible values.

The above form of denoting the laws of class IB is not obviously superior
to forms (A) and (B) except, of course, for the fact that in this form there are no
discontinuity points. There is, however, one property of the laws from class I8 which
turns out to be very important in solving the problem of parameter estimation.
This property is connected with so-called characteristic transformations of the real
random variables, which play the same role with respect to the operation of multi-
plying independent random variables as characteristic functions play with respect
to summation (see for it [10] and [I1]).

According to its definition the characteristic transfornmtlon of the random
variable Y is a diagonal matrix

0 0 e
Wy(t)=[(’f " ] wi(r) = EI¥|""Gsign V),

where it is assumed that 0" = 0 for every .

It turns out that for stable laws of class I the characteristic transformation
Wy has a specially simple form.

Since it is known (see [4]) that for any admissible values of the parameters
we have

T =- L log(}.2+'y1)+C(—i-~ 1),

v =4, -0 < T < 0.

E|X(a, B, v, DI < 0,

we will use, instead of the characteristic transformations themselves, their analytical
extensions,

—~l<Res<a,

Wx(—is), —1<Res<a,

24%
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denoting
u(s) = E|XF, o(s) = E|X|signX.
Expressions describing functions u and v were given in [8]. If one transforms the
formulae obtained there by using parameters (v, 0, 7), then one gets the following
theorem as a result of that operation.
THEOREM 1. Assume that random variable X(v, 0, v) has a distribution belonging
to class . Functions u, v can then be expressed in the following form:

cosils I'(1—sy/)

Cosims 1U=5)
a1 , o
s - sm;ﬂl(lmsl/vl_
v(s) = exp{ws+ {1 ‘/v)cs}-s—iH%ws ~Ta=s
The above theorem allows us to get a number of interesting corollaries concern-
ing the construction of stable laws, formulae for moments of logarithmic order,
and so on. Some of them will be presented below.
THEOREM 2. Let X(v,0,7) be a random variable whose distribution belongs
to the set M. Let B, be such constant that 6] < 16,] < 0o = min(1, 2yv—1).
Then the following decomposition is true:
X(,6, ) = X, 0,, 0¥,
where the random variables on the right-hand side are independent and
Y = |X,] signX,, X, =X(1,0/0,,0).
In particular, if v > 1 and 0, = 1, then
X@,0, 7) = X@,1,0X(, 6, 0)c".
Let X = X(»,0, 7) be a random variable with distribution belonging to m.
Write :

u(s) = exp{us+ (1= /) Cs}

U-EU,
= V—EV.

U == signX,
V = logiX|,

I

U
v
‘We then have
u(s) = Eexp(sV), v(s) = EUexp(sV).

Having really simple expressions describing those functions, we can also get

simple formulae for the mixed moments:
EU»V* = EV*, EU+yk= EUVY; r,k=0,1,..

(U? = 1 with probability 1) by expanding functions u(s) and v(s) into power seties

with respect to 5. In particular, taking into account only the first two summands

of those expansions, we note that
(€))] EU=0, EV=rt, EUV=0v=EU EV.

The above formulae permit us to get expressions for central mixed moments
EU'V*, This can be done in the most convenient way with the help of the following
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moments:

LY = EV¥%, L} = EUVHEU, k=0,1,..
If = EU = 0 one can get an expression for L by letting & — 0 (such 2 limit always
exists).

The calculation of those moments can be made with the help of the semi-
invariants (for LJ) related to them or their analogues (for L}). To obtain this we
will expand the logarithms of the functions u,  into power series with respect to s.
This can easily be done by recalling the expansions of the functions logl(1—z),
Iog( sinz

z
As a result we get after a few transformations the following expansions:

)and logcos z into power series (see [5], 8.342, 1.518).

o0
— Sk
logu(s) = s+ k};z 6 (1-09+ 062 D] 7
where

k
af = @-DB., b = TR

B, denote here Bernoulli numbers and (p) the Riemann dzeta-function. Note that
if k is even, then
k
B0 = I'(k)E (k) = 1k~ 2%-1p,

In the case where k is odd the quantity {(k) can be made arbitrarily near to 1 as &k
increases

(3) = 1.202..., (5 = 1.037...
Hence we can use the asymptotic estimation
b ~ I'(k).

Similarly, for positive values of 6 (the case of negative values of § can be reduced
to the case of positive values due to the property X(», —6, 7) L —X(,0, 1), for
the case § = 0 we have v(s) = 0), we get:

loga(s) = logf+7s+ Y . [ah(1—6%)+ b} (42— 1)] -

k=2

7]:k

Fa

Quantities ¢} = al(1—0%)+bL(**—1); i = 0, 1, play the role of semiinvariants

and their analogues (for i = 1) with respect to L}. The relation between them is

exactly the same as the well-known relation between cumulants and central moments
(of course, this remark is nontrivial for i = 1). We have for example:

b=1, Li=0, Li=c}, Li=d, Li=ci43(h)*
THEOREM 3. For any values of r,k=0,1,2, ...,

@ (- YET 5= L Y° ( ;)or—f_‘Lkl T (;)g,_,-“

where ' at =—=-B,, bi=25).
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where 2" denotes summation over all even and Z 1. summation over all odd values
J varying from 0 fo r. .

The proof of the above fact can be reduced to the following. The quantity
T = (U—6) is expanded according to the binomial formula, and further we use
the fact that U7 = 1 with probability 1 for all even values of j.

THEOREM 4. For any integer, positive values of r, k the following equality is true:

cov(T", 79 = (- 1y 2 (;)0’“fcov(f7, 79 = (-1 @-LH Y (;) fr-i+,

Proof. We will calculate EU" using the fact that EUJ = | for jeven and EUY = 0
for j odd

o = Sirmcrlp(e-s e

Using (2), we get
cov(T", P*) = EU'7*— EUTEV* = (~1y (Lg—LH) X! (;.')0'—-'“.
Putting r = 1, we find that
cov(U, 7% = EUV* = —0(L3—L}).

The assertion of the theorem easily follows from the above relation. In particular,
if r = 4 it follows from (3) that

“@ EU* = 1 +202—30%

‘We will now mention the most interesting corollaries which follow from the above
facts. We will keep in mind all the time that

B,=% By=3 andthat By, =0 forallk>1.

COROLLARY 1.
) DU = 1-0?, DV = in?(1—0%)+in(v—1).

The above together with relation (1) gives us the possibility of finding all three
parameters describing the distribution of the random variable X

6 3
© v=—p DV= = DU+l, 0=1IU, v=EV.

COROLLARY 2. Random variables U™ and V* are uncorrelated if and only ij one
of the following relations holds:

@ 0=0; () L)=L.

. Ijhe case where 6 = 0 is not interesting, as it is connected with an obvious
situation. If 6 5 0, then the above uncorrelation property can only follow from
the last condition. Further, as

=1, Ii=0, I}=L}
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(the last relation holds because ¢ = c}), then except for the trivial case k£ = 0,
we get two nontrivial cases for k=1 and % = 3. For any
@7y and (U7
form two pairs of uncorrelated random variables. Condition 2 is not necessarily
satisfied for larger k. We shall now mention one case where all the above will not
be true.
Let » = 1 (it is related to the Cauchy distribution with a linearly transformed
argument). Then for all & we have c = ai (1-6%).
Since al, = 0 for odd k (because By = 0), we also have L, = 0 for odd m.
Hence
cov(U", 75 =0 if k is odd.
COROLLARY 3. Recalling the expressions for DU and DV (see (5)), we have
EUV? = —1n?DU,
%) EV* = in*(1—0%)+ &r* (2 — 1)+ 3(DV)?,
EU2V2 = DUDV+4n2DU(1-DU).

4. Reduction of the general problem of the parameter estimation

The general problem of the estimation of the unknown parameters of a stable law
G(x, , B, v, &) or a part of those parameters will be broken into two parts.

First part — estimation of the parameters («, 8, 4) or a ypart of them, for
example estimation of the parameters («, 2).

Second part — estimation of the parameter y.

The reason for this division of the general problem is connected with the ana-
lytical peculiarities of the stable laws. We can see the essence of those peculiarities
when analyzing the properties of the two transformations below.

Let X,, X,, X, be independent random variables having the same stable distri-
bution, described by the parameters (a, 8, ¥, 4) used in form A).

Let us generate the following random variables:

X0 = X, —X,, X*=X;—iX,+Xs)
One can easily notice that the random variables X° and X* have again stable
distributions with parameters univocally defined by the parameters of the distri-

butions of the random variables Xj.
Namely, we have (see properties (2.3a) and (2.3b)) in form (A):

0 =0, =0, =24
Br = (1—-2-9BA/R%, 2 = (1+2794,

o = a,

a* = a,

pr=0 if a=#l; y*=—lﬁ72:-10g2 if a=1
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Note one singularity of such transformation:
1B < 11=27%/(1 427 <

Tt is easy to notice that the fact that X° and X* belong to class 2 is the conse-
quence of the above relation.

In order to pass to the system (v, 8, 7) of the parameters used in the class I8
(form (C)) we should first of all pass to form (B), i.e. act according to the scheme
(of mutually univocal relations):

o*, 0, v)c > (o, B*, v*, A, (@, B5 7 2y > (%, B*, ™, A¥)a.

Parameter y does not appear in those transformations because in passing to
the two random variables X° and X* this parameter reduces.

In passing to the random variable X° parameter f also reduces.

As a result, in passing to the random variable X° there are only two parameters
(o, A) which undergo essential transformations.

(@, 5+ &)+ (@,0,0, 29, = (°,0,0, 2% < (+*° 0, °%c.
On the other hand, in passing to the random variables X* three parameters («, 8, 1)
undergo essential transformations.

In order to create n independent random. variables X?, ..., Xy we should dis-
pose of the samples of the size 2n, and to create the same number of random vari-
ables X¥, ..., X — of samples of the size 3n of independent random variables
with stable distributions.

After finding the estimates of the parameters («*, 0%, v*) (or only (°, 79))
we would get the estimates of the parameters (o, 8, 4) in the form interesting for us
with the help of the reverse transformations.

Though all those transformations are elementary, in the general case of the
three-parameter estimation, however, they are quite complicated. Namely, if the
original parameters (z, 8, -, 4) are taken in form (A), and (x,f, -, Da &
(%, B*, p*, A¥)5 < (v*, 0%, 7%)¢ (for the simplicity of the denotations we do not use
the star for the estimated parameters, i.e. » = v*, 6 = 0%, 7 = 7%), then

P o= g2

>

2 1—21-= -
0 =0(x, B) =Earctan[ﬂ—irﬁ:;tan (—;C—oc)] it a1,
(1,9 = lme(a p) = - -arcta ( -1—%2-);

=12, B, 4) = -i—{logﬂélog [(1+21‘“)2+
+F2(1- 21" tan? (g«a)]+C(1—a)} if oasl,

T(l,ﬁ, ﬂ) = limi»,;(a! ﬂ’ l) IOg(ZA)—l— [l+ﬁz(log2 ) ]

i::m
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And conversely

=_ﬁ;

B =pm,0) = 1+exp[(1—1/y/v)log2]

1—exp[(1—1/y/»)log2]

_ tan(3m0/y/ ¥)
tan(inl/y'v)

v#1,

B(L.0) = 1111}/3(1},6) = -3
A= A@,0,7)
cos(370/y/v) [ . ( )] '
R 270 NN L R O
T+exp[(1—1/y/)log2] "L y/5 vl A
M(1,0,7) = 126, 0, 7) = Jevcosrf).

1.0Y.
ogp G

I

However, in passing to the random variables X° (i.e. in estimating only a pair
of the parameters o and 1) the original as well as the reversed transformations
are not very complicated. Namely, if the original parameters («, -, -, 4) (itrespective
of the form) correspond to (»°, 0°, %), then

W0 =2, 0= 7° = a~tlog(24)— C(1—a~Y),
where C is the Euler constant. And conversely
@ = (%12, i=lexp{(z*+C)»°)"2-C}.

5. Estimates of the parameters of stable laws

In the last section we have seen how the problem of estimation of the parameters
(x, 8, ) of some stable law G can be reduced, in what is in fact an equivalent way,
to the problem of parameter estimation of another stable distribution G* belonging
to class .

We will now be concerned with this problem. That is why we assume at first
that G e I and that the parameters («, 8, 4) correspond in form (C) to the par-
ameters (7, 0, 7). The well-known method of moments and the relations (1) and (6)
are the basis of the estimation of the parameters (v, 8, 7). Further, we use the follow-
ing facts well known in statistics (see for example [1]). Let ¥’ be any random variable
with a finite fourth moment. Write

a=EY, b*=DY, c¢=E¥-a"

Assume that we are given a sample of n independent observations Y, ..., Y,
(n > 2) of the random variable Y.

We create a sample average

1 n
A= DY,
1
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and sample variance
n
BIZ’ = —n’_:T{An_A%}-
Hence Ay and B are the unbiased estimates of a and b2, respectively, i.e.
® EAy = a, EB} = b>

Moreover, variances of these estimates can be calculated and have the following
form:

b2
(9) DAY = 7!
(10) DB} = L (cmb¥) 4 — 2t
n nn—-1) °
Suppose now that we have at our disposal n independent observations X7, ..., X,;

n 2> 2 of the random variable X = X{(y, 0, ) which has a distribution belonging
to class IB. We create, using this sample, the following pairs of independent random
variables:

(U; =signX;, ¥V, = log|X}); j=1,2,....,n.

According to what was presented above, we could take as the estimates of the
parameters (v, 6, 7) the following random variables:

§ B3 Bps1, G=dy =4,

2 2

1) 7=

The above estimates would have very good properties because U as well as ¥
have finite moments of any order.

This should not be done in general because the region those estimates belong
to, i.e.
0=1{0,0,7):v> 1, 6/<1, ~0 <7< o0},
turns out to be substantially larger than the region of the admissible values of the
estimated parameters (see Fig, 1)
Q= {@,6,7):» >} 6l < min(l, 2y/7-1), |7] < ©}.

The situation could be improved by such an additional transformation of the
random variables (5, 8, %) into new variables (3, , %) that, on the one hand, range Q
would be covered by region Q, and, on the other hand, that transformation would
not damage to much those properties which the random. variables (%, b, 7) had.

This can be done in many ways, and that is why we will choose the additional
bounds in such a way as to change as few of the original variables as possible. We
should change one of them, however. It turns out that changing only one variable
can be sufficient. Namely we change #:

12 ]

1

max{#, }(1+B19), 0=5, + =2
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It can easily be seen that the region of changes of those estimates é is equal
to the range Q (the sense of transformation (12) lies in the fact that we transfer
the point 4 = (7, f) in a parallel manner so that it enters the range Q).

The next step consists in examining the properties of the chosen estimates
.0, ). Write

02 =Df, of=DbH, o= D7

A
LemMa 1. Estimates 8 and % turn out to be unbiased estimates of the parameters
0 and v with variances

a3 ph=c=2Y pr-g-2Y

Besides we have
(14) (Ep—»)? < EG—9)? < o2+ 0f.

The first part of the assertion of the lemma is an easy consequence of the
choice of the estimates (3, % and property (9). Further, since we always havey =
max(v, (1+ 181)2),

$mr = max(¥, 2(1+6)?)—max (v, 5(1+16D)?)
< max{F—v, 2[(1+ 62— (1 + 1)} < max{F—», [0 -6]}.
Moreover, it is obvious that #—» > #—v. Hence
G- < max{(F—2)7, @—6)2} < G-+ E-0)
The second part of the assertion of the lemma can be got from the above.
In order to give the estimates (14) the ultimate form, we should calculate the
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value of the variance ¢2. To do this one needs not only property (10) but also the
following general fact concerning sample variances.

‘We consider any pair of the uncorrelated random variables (¥, Z) which have
zero expectations and finite fourth moments. Further, let (¥, Z)), ..., (¥,, Z,)
be a sample of independent pairs of random variables all distributed as (¥, Z).
Let us form the sample variances B and BZ on the basis of that sample. Then one
can prove the following

LeMMA 2. For any n = 2 the following equality holds:

(15) cov(BE, B) = —’-11—cov(Y2, Z%.

Proof. We will transform the left side of (15) using property (8):
cov(B¥, BY) = EB} B;— DYDZ.

We present the first summand in the form of four summands

2
n
EB;BZ = (m) E{AyzAzz—Ayz(Az)z_(AY)2A22+(AY)2(AZ)2}

= n :
n—1

) E{Jyy=J12=Ja1+ a2}
We have (the indices i, j, k, / change independently of one another within the bounds

from 1 to n):
1
EJ, = —B-ZEYZZ Z, = —«2113Y222 »l--E./“,
n
X .
EJy, = FZEY,YAk = ——z_lEY’Z2 = ~—EJ11,
EJ,, = »—}_‘EZZ YWY, = —, -ZZ,ZY2 = -—-EJ“.
Hence

2p2 _ 21 1
EB}BZ = EJ,, = 7;Z—-ZEY,ZZZ = — {1~ 1) EY* EZ*+nEY*Z?)
= DYDZ+ %—{EYZZL EY2EZ?).,

The required equalit_y follows, as can easily be seen, from the above relation.
LevMA 3. For all n» 2

16 o= Dv"_{ -1+ »(9—502)(%1)+3(1—02)(3+02)}+

1
M) - {20— 1)+ 6(1-0%)(r— 1) +9(1-0%2}.
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Proof. According to (11) we have

3 36
~—Bu) X By 2 pEz— % cov(B, BY).

6
0‘&=D( By )

Making use of properties (8) and (9) of the sample variances, we give the following
form to the right-hand side of this equality:

1)36 . 2 9 [74 2
”n"lT [EV*—(DV)]+ 4 [EU*— (DU)"]—

- 1—— cov(V?2, U’)} !

72 5, 9 ;
1) { = (D7) +7(DU) }

We will transform the first three summands with the help of the expressions
of the moments (see (4) and (5) ’

' 6 ..
- (DV)2]==——W2+6(DU+ )W+9DU

where we denote W = %DV— %DU for the sake of simplicity,

—%[E?J’“—(DU)’] = 9DU(1-DU), %cov(ﬁz, V%) = 6DU(1—DU).

As a result we obtain

0} = —}1;-{2 W2+6(DU+ 4 )W+3DU(4 DU)}
1
n(n T
1t remains to perform the transformation W= y—1, DV =1— 6%

We will now formulate the results of the construction of stable law parameter
estimates in the form of the following assertion:

THEOREM 5. The estimates of the parameters (v, 9, 7) defined according to (11)
and (12) on the basis of a sample of size n have the Sfollowing properties:

1. Estimates 0 and % are unbiased with variances of order O(1/n) (the exact values
for the variances are given in (13) and (15)).

2. Estimate » is asymptotically unbiased. Moreover, the square of the bias and the
mean square difference between the estimate and the real value of the parameter v
have order O(1/n) (the exact expressions of those number characteristics are given
in (13), (14), (16)).

After obtaining estimates (v, 0, 1), in the transformation chain which brought
us to the parameters (v, 6, 7) (see Section 4) one has to follow the way of the inverse

transformations

.

=Ty W+ 60U W+9(DUY}.

(;’, é, %)c ind (&: ﬂAx f’a i)B b (&: ﬂA’ ';" }:\)A'
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Letnow («, #,-, A)4 be the parameters of a stable law G W and (o, B%, y*, 2% Ya
the corresponding parameters in the reduced problem, that is,

(@, B, +5 Da o (@, B*, 7%, A9a o 0%, 0%, 1%)c.
In the same way as above we can get an expression for the estimates (»*, ﬁ*, )

of the parameters (v*, 0%, 7*). Unfortunately, in the general case we cannot carry
out the inverse transformation of the estimates

G, 6%, #)c - @%, f*, 7%, 9,
because the range those estimates belong to, i.e. é"‘ = {(¥¥, b*, )} = é, turns
out to be essentially larger than the range of estimated ‘parameters

O* = {(,;*, 0%, ) p* 2 :Ii’ w*l < H(W*), |‘r"‘| < oo},

_ 2 WcanJ exp[(1-1/y/7)log2]-1 a1
0= Ve G et (5 7))

where

if £> }and 7 # 1, and
H(1) = limH(z) = 2arc tan(ﬁ’ﬁz_).
=1 b1 T

H(t)is a continuous and strictly monotone function with H(}) = 0 and H(co) = 4.
(see Fig.2).

6
1
0.5~
1
37
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_%E ______ v e e 2t e
~0.5—
-1

Fig. 2

’ There are some cases where we can use the estimates *, g , ¥) to construct
estimates of the parameters of the original stable law. We shall consider here
the simplest two cases. The first is concerned with the construction of the main
parameter of the stable law, i.e. a. As in the chain of the transformations, we. have
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o =of = off > v* = (af)"? = a2

Hence the following random variable is the estimate of the parameter o of the
original distribution.
(17) & = (g*)—uz'

We encounter of course a similar situation when we decide to pass to the random
variables X°. The estimate & can be constructed in this case with the help of the
estimate 7° according to the same formula

18) &= (%12,

THEOREM 5. Estimate (17), defined on the basis of the sample of size 3n, and
estimate (18), defined on the basis of the sample of size 2n, are asymptotically unbiased
estimates of .the parameter «. The square of the bias and the mean square distance
between the estimate and the real value of the parameter is of order Q(1/n). More-
over, the mean square distance between estimate & and o is at most four times as great
as the mean square distance between v and v.

The proof, as can easily be seen, should be made only for the last part of the
above theorem. Let & = (3)~1/2 (where #=7* or 5=%°) As o = (»)"1/2, we have

. 9]
la—o| = —=—7—=
vWi+i Yy ‘
because » > and # > %. The last part of the assertion of the theorem obviously
follows from the above.

The second case is concerned with estimation of the parameter 4 when passing
to the random variables X°. We have here also a very simple chain of transforma-
tions of the parameter A:

<4p—sl,

Aes 2 =24 = 18+ 70,

One can see from the above that as an estimate of the parameter one can take
the following variable:

1=lexp{(®+C)0)12—~C} if 0% L
In the general case we can use, instead of the estimates (¥, 6:", 7*) other esti-
mates (7%, 0%, 7*) which are constructed with the help of the estimates (¥*, 6%, T*)
in the following way

(19)

f* = min(f*, HG®)), 7 = #*.

It is not difficult to see that the corresponding range of those estimates, 0 *
is equal to the range Q*. Hence there is a possibility to carry out the inv_erse trans-
formation of the estimates (5%, 0%, T¥)¢ = (@*, f% ¥*, 2¥) 1~ @, B, *» Ma-

THEOREM 6. Defined on the basis of the sample of size 3n estimates (19) are
asymptotically unbiased estimates of the parameters (v*, 0%, ©*) of the corresponding
stable law in the reduced problem. The square of the bias and the mean square distance
between estimate and real value of each parameter is of order O(1/n).

7* = max(}, ),
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Unfortunately, the analysis of estimates (d, g, +, %) is an essentially more

complicated problem than the analysis of estimates (7%, g*, 7*) and requires a separate
consideration. Therefore, the problem of “estimation of the parameters of group
(2, f, 7) has a solution which however requires additional analysis.

The problem of estimation of the shift parameter y is based on transformations
which are essentially different from those which were used for the estimation of
the parameters («, 8, ). The point is that there are no known analytical relations
in an explicit form with the help of the characteristics of the moments.

Great difficulties involved in the estimation of the parameter y concern also
the discontinuity which appears within the set of stable laws at point o = 1.

A separate paper will be devoted to the problem of obtaining and examining
the estimates of the parameter y. Also, some experimental results concerning the
estimation of the stable law parameters of the group (x, 8, 1) will be given else-
where.
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