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1. Introduction

In [1] A. D. Alexandroff has presented an exhaustive study of weak convergence
of finite measures and finite-signed measures on normal spaces and completely
normal spaces. In [2] I gave a survey of Alexandroff’s theory, considering measures
and I there also gave some applications to weak convergence of stochastic processes
into the C-space and the D-space. Here, using these theorems, I shall give a more
complete presentation of the theory of weak convergence of probability measures
on the C-space and D-space.

Alexandroff’s main tools are linear functionals. Since weak convergence means
convergence of linear functionals, it seems natural to rely heavily upon linear func-
tionals throughout in the theory.

Alexandroff has two main theorems which I here state for measures. Here
a measure means a finitely additive non-negative set function on an algebra in
a o-topological space. A measure is called o-smooth if it is c-additive.

THEOREM 1.1 (Alexandroff’s first theorem). Let v be the Stone vector lattice
of bounded continuous functions from a normal o-topological space S into the real
number field R and L a non-negative bounded linear functional from v into R. Then L
determines uniquely a regular measure u on the algebra generated by the closed
sets and u satisfies the relation
@ L) = feu(d,  fev-

COROLLARY. For a metric o-topological space Theorem 1.1 remains true if
is changed into the Stone vector lattice v of uniformly continuous functions from S
into R and (i) still holds for f& .

THEOREM 1.2 (Alexandroff’s second theorem). Let S be a completely normal
space and & the algebra generated by the closed sets. Let {u,}§=3 be a. sequence
of a-smooth finite measures on 8. If {1} converges weakly to a measure s on &,
then u is o-smooth.

5 Banach [65]
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The first theorem is not difficult to prove. The second one is much deeper
and requires results from the set theory and the functional analysis which, though
elementary, are rather complicated.

"2. The C-space and the D-space

We shall apply Alexandroff’s theorems to the space C of real-valued bounded con-
tinuous functions on [0, 1] and the space D of all real-valued bounded functions x
on [0, 1] such that x(t—) exists (finite) for t & (0, 1], x(t+) exists finite and x(¢)
= x(t+) for ¢t [0, 1).

In the C-space we use the uniform metric

[Ix=yll = sup [x(t)—p()l
rel0,1]
and in the D-space the simple Skorohod metric defined by

@1 o(x, ) = inf max{|lx~y o A, [|A-2|}

. €4
where A is the set of continuous strictly increasing functions A (on [0, 1]) with
40) =0, A1) = 1, and % is the identity function () = ¢ on [0, 1].

We shall represent the functions in the C-space by infinite series of Schauder
functions and the functions in the D-space by sequences of modified Schauder
functions and related sequences. The system of Haar functions on [0, 1] is given
by

. 20-012 for  te[(k—1)27", k271,
folt) =1,  fioma(t) =1 —20"D2  for te[k2™", (k+1)27"),
0 otherwise,

and for k odd < 2" (k > 0). Denote by N the set oan.ll points k27", k odd < 27,
k>0,n=1,2, .., together with 0 and 1, and by N, the set of the points k2~",
kodd <2" k>0,n=1,2,..,r, together with 0 and 1. Then the Haar func-
tions can be denoted by f,, ¥ €N with f1 = 0. The Schauder functions g, are the
integrated Haar functions

) = {f(2)dr.

0

The formal Schauder series of a function x on [0, 1] is then given by (2.1)

() = xO)+ Y 6,8
veN

with

o =x(1), Cigmr = 2 VR2(k2 ")~ x((k+ D2 ")~ x((k—1)27")].
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Besides (2.1) we consider the partial sums

@2) X0 = x(O)+ Y ¢,8,0).
veNy

Generally, the expansion (2.1) is only formal but we have the following classical
result ([4], p. 50).

TBEOREM 2.1 For any real-valued function x the relation x(t) = x"(t) holds
Sfor t eI\AJr. Series (2.1) is convergent and equal to x(t) at any continuity point t of x,
and uniformly convergent if and only if x is continuous on [0, 1], i.e. if x € C.

LetT = (t;, t2, ..., ), 1y < t, < ... < #;be aset of points on [0, 1]. The vector
X7 = [x(t,), ..., x(t;)] is called t}le projection of the real-valued function x. Intro-
ducing the projection operator =(T), we write

i = m(T)x.
For given T these projections, x & C, generate a vector space CT and clearly #(T)
maps C onto C”. For the particular projections belonging to T = ]\Af, we use the
notation #® and write C® instead of CT. We also consider the mapping V® of
C® into C defined by
VO = 50

where x® is given by (2.2). Then ¥®z® is a mapping of C into C. The following
lemma. is easy to prove.

LEMMA, 2.1. @™ is a continuous mapping of C onto C® and V) a continuous
mapping of C® into C;, consequently V®"n® is a continuous mapping of C into C.

Put

de(x) = |lx—x7].
LEMMA 2.2. The function d, is a uniformly continuous mapping of C into R.
Also this lemma is easily verified. Clearly, x € D cannot, like x € C, always

‘be well approximated by the continuous functions x® since x € D may have jumps.

However, defining
_Q-(")(t) —_ x(f)(t(')) — x(t"))

where ¢® is the number in J\}, closest to the left of ¢ (¢ = rif ¢ Ej\A’,,), we get a pure
step function which agrees with x at the point ¢ € N,. We may use more general
step functions, formed in the same way as X, as approximations of x. Let T® be
a set of finitely many different points 2§ on [0, 1],

0=tP<tfP<..<tP=1, r=12,..,

max tf?—1{2 = k).
J=lynsdr
We call T® a net of points on [0, 1] and say that T¢+" is a refinement of T® if
all points in T® belong to T'¢+1. We shall only consider nets 7 such that T+
is a refinement of 7 for any r = 1,2, ... and also assume that A(r) — 0 (r > + o).

5%
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+
Note that then | 7% is a dense set on [0, 1]. We call {T®™} a dense increasing
r=1

sequence of nets.

Clearly, T'® determines a projection #(7*’) which projects D onto a space
D™ of vectors {x(t{?)}. We write shorter 7" instead of A(T™) also in the general
case where TV is not necessarily N, and put a®x = ¥, #"D = D®, Further
we define the mapping P from D® into D by VA',FC(') = 3 where ¥® is the step
function equal to x(¢) for ¢ € T™ and equal to x(¢') for ¢’ < t < " where t' and ¢
are neighbour points in 7.

LeMMA 2.3. The projection %" of D onto D™ is measurable and the mapping
V0 of D™ into D is continuous. It is possible to choose a sequence {#"} to a given
probability measure p on D such that a® is almost surely continuous (u) for
r=1,2,...

Proof. The fact that P is continuous easily follows. Indeed, if for a sequence
{x} in DO, £ — 50 (n— +00), ¥ e DO, then o(kP, M) - 0 (n = +o0)
since (X, ) < ||#P—3®||. The statements about # can be proved as in
[3), p. 12L.

Now put

dA(’)(x) = g(x, x").
Then we have

LEvMA 2.4, d® is a measurable function from D into R and 4" ’(x) > 0 (r— +oc0).
For a probability measure p on D the sequence of projections 7% may be chosen
such that aﬁ is almost surely continuous (u) for r = 1,2, ...

Proof. The fact that ri"’(x) =0 (r = +0) easily follows.

Indeed, to x e D there exist points 7;, 0 = 7, < 7, < ... < T, = 1 for any
given number & > 0, such that the oscillation of x on any open interval (z;, 7i44)
is smaller than e. Take r sufficiently large and let (" be the point in 7 closest
to the left of ;. For sufficiently large r there are points £, 1Ry, 18, 10y, 1D,
in T®such that 7;_; < 5 < 1@, < 1P, < DS 7 <Dy < thyn < by < T4y
for 0 <j<j+1 < 1, where s, ..., t{); are the closest points to 7; satisfying
these inequalities. Define A(z) = v+’ = 1, A(0) =0, A(l) =1, AMty-z) = tq,
Altj4+2) = tj42, A continuous and linear on [tj-2, 7] and [v;, £;.,;] In this way 4
will be defined on certain intervals. On the remaining intervals we define A(f) = 1.
It then follows that

F(AOW)~20W)] < &, |AO()~1] < h(r)
where A(r) — 0, ¥ = +co for any & > 0. Thus 0(x, 30y = 0, r = + o0, according
to definition (2.1) of o.
By Lemma 2.3, 2 is measurable for any sequence of projections considered
there, and it is possible to choose the sequence for a given x such that # is almost
continuous  for all . Now consider the mapping

2.2) T gROV,ZM),  r >y, O = 30y R0 = PO,

icm°
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We claim that this mapping is continuous. Indeed, if 2 — %9 (m— +o0),
then x,(¢) — x(t) for those ¢ which determine #"» and thus since r, > r,

oG, &0)— o, 30)] < 02, 2) +0(, 30)

< IEP= Y+ EO-EP > 0 (1> +00).

Since the mapping x — X2 is measurable and the mapping (2.2) is continuous
and thus measurable, the mapping x — o(x, x) is measurable for any r, > r.
Letting r; — + oo and observing that

lo(x, 5)= (&2, 30)] < glr, x™) = d(x) » 0 (r, = +00),
we conclude that the mapping x — g(x, ) is measurable.

Let now p be a probability measure and let 2(” be chosen such that it is almost
surely continuous for r = 1, 2, ... This means that there exists a subset D' « D
with u(D) = 1 such that for any x €D’ and any sequence {x,};= with x, €D’
and p(x,, x) > 0 (n > +c0) we have #(x, — 2®x(n — + o). Since P®is a con-
tinuous mapping of D™ into D, this implies

P = PORIx, » VORI = 50 (n > +00).
Hence

lo(x, X —0(x, XM < 0(%,, X)+ 0GP, X)) 50 (n = +0),

which proves that cﬁ')(x) = p(x, X) is almost surely continuous ().

3. Weak convergence in the C-space and the D-space

Consider a sequence {u,,}+*, of probability measures on the C-space or the D-space.
For these spaces we use the same metrics as in Section 2. We now give our main
theorem for the D-space and the corresponding theorem for the C-space as a cor-
ollary.

THEOREM 3.1. Let {un )2y be a sequence of probability measures on D and
{A}*% a sequence of projections belonging to an increasing dense sequence {T™}
of nets, defined in Section 2. Suppose

(i) that the sequence of probability measures S = (A1) for any r =
1,2, ..., converges weakly to a measure p on D" = "D as m — + o,

(i) lim  limsup g, {x: 21,(x) > e} =0;

P00 me 400
then {u,}:2, converges to a probability measure u on D. Conversely, if {im}52y
converges weakly to a probability measure u on D, then sequences %" for suitable
nets T for u satisfy conditions (i) and (i) and then {u$P}h2, converges weakly
to u@"~1(-)) (which necessarily are probability measures).

Remark, Nets T are suitable for p if the corresponding mappings 7" are
almost surely continuous.
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COROLLARY. The theorem holds true for the C-space and for the projections
7™ which are continuous.

Proof. Let % be the Stone vector lattice of bounded uniformly continuous
functions from D int6 R and let 2 and ¥ be the mappings defined in Section 2.

(2) Suppose that (i) and (ii) are satisfied and put

3.1 L) = PO pu(dn)  (fe7),
D

62 Lo(f) = {f0)pn@®)  (feD),
D

33 () = | APz up@se),

D (ry
and, by assumption (i), let u{ converge weakly to u® as m - +oo. Since v
is a continuous mapping of D™ into D, we thus get

34 hm L")(f) = LO(f) = S (V"’x")) U5,

1.5y
We now use the obvious inequality

G5 1Ln, ()= L, (NN < Ly, (1)~ LR+ LGN = LG+ LX)~ L, ()]

‘We have
GO ILuN=IP) = |§ )~ ()]
D
< sup If(x)-f(fc(")|+2l|flf S Him(dx).
(% %)< a(x.?c('));!s
By (ii)
S Hn(dx) = p{x: d.(x) > e}

o% 3 ze
tends to O as first m - + oo and then r — +oo. This is true for any ¢ > 0. The
first term on the right-hand side of (3.6) is arbitrarily small for sufficiently small
e > 0, since f is uniformly continuous. Hence
(X)) lim hmsup]L,,,(f) LO = 0.

r~+400 m—

Since 4 converges weakly to u(, we find by (3.3) and the definition of weak
convergence

3.8) lim |[ZE(f)—~ L] = 0
:g»+w
for 7 =1, 2, ... Combining (3.5), (3.7) and (3 8), we get
mhlf | L ()~ L ()l =0  for fei.

ma~ + 00

e ®
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Hence
(3.9) L(f) = lim L.(f), few,

m-> 40

exists and clearly L is a bounded non-negative linear functional. By Alexandroff’s
first theorem it defines a measure p such that

L) = {f0u@n, fep,

and by Alexandroff’s second theorem u is a g-smooth measure since the u,, are
o-smooth. Choosing f(x) = 1 in (3.9), we find that u is a probability measure since
the u,, are probability measures.

(b) Suppose that {um}5n%; converges weakly to a probab:hty measure 4 on
D. Since P is a continnous mapping of D onto D®, po-1p o
for any closed set F’ in D™. Then the relation

F is a closed set

limsup,u,,,.(f/")'lF’) < ,u(I;")“lF’)

me 40
is a consequence of the weak convergence of u,, to x. On the other hand, this re-
lation for any closed set F’ in D™ implies the weak convergence of ,u,,.(i}(”‘l(- ))
to ,12(17,(,,'"10 ))- [This holds true for normal spaces. For metric spaces see [3],
p. 12.]

Now, define g, as that continuous function which is equal to 0 on (— o0, 0],
equal to 1 on 7 > &, linear on [0, &]. Choose T such that &% is almost surely
continuous. Since c?,(x) = g(x, X), then by Lemma 2.4 d. is an almost surely
continuous function from D into R, the function f,(x) = g,(d,(x)) is a bounded
almost surely continuous function from Dinto Rand 0 < f,(x) < 1forallx, f,(x) = 1

for j,(x) > &. Hence

penld (%) > €] (m — +00).

< @ nld) > {0
D D

But f,.(x) = 0 (r » +00) since d,(x) > 0 (r = +c0). Thus

lim limsup pi[x: dx)=d=0
rr 0 mer 0

for any ¢ > 0.
Thus we have proved the theorem and the corollary is obtained by this proof.
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SERIATION WITH APPLICATIONS IN PHILOLOGY

L. BONEVA

Istitute of Math ics and Mechanics, Bulgarian Academy of Sciences,
Sofia, Bulgaria

1. Introduction

Seriation has turned out to be a common problem not only in archaecology but
in philology and other fields as well. Generally speaking, the basic idea of the re-
cently developed new mathematical, statistical and computing methods connected
with seriation was the reconstruction of the “true” chronological order of a set
of objects using only the available nonmetric information about the similarities
(or dissimilarities) between pairs of objects. These methods have done a good service
to all problems dealing with a great amount of data for numerous objects about
which only a chronological ordering is needed. We are going to discuss here the
SKXK-method, which we call so in honour of the names of the three most famous
men (Shepard-Kruskal-Kendall) who took part in creating the “main body” of
this useful technique.

In fact, the seriation problem was formulated for the first time by the English
archaeologist Flinders Petrie [19] at the very end of the last century. He was con-
fronted with a very difficult problem —to find an approximate dating for 4000
prehistoric Egyptian graves, each containing pottery, jewellery and other objects
permitting a final classification into types of varieties. Evidently, a chronological
trend of these types is to be expected according to which the approximate dating
of the graves might be done. Actually, Petrie managed to arrange 900 graves con-
taining a total amount of 800 varieties. The weakest point of his laborious work
is the “reverse connection” between graves and varieties, i.e. the varieties were
classified according to the graves in which they were found, while the graves were
ordered according to the varieties they contained. However, he is to be thanked
for the so-called “Petrie’s Concentration Principle”, which shortly states that the
more close together in temporal order two graves are the more likely they are to
contain varieties of the same or similar types.

A second merit of Petrie’s work should not be omitted. It is he who gave the
initial impulse (though it resounded about 50 years later) to many mathematicians,
such as Robinson [20], Shepard [23], Kruskal [17], [18], Kendall [10]-[16], Sibson
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