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1. Introduction

Seriation has turned out to be a common problem not only in archaecology but
in philology and other fields as well. Generally speaking, the basic idea of the re-
cently developed new mathematical, statistical and computing methods connected
with seriation was the reconstruction of the “true” chronological order of a set
of objects using only the available nonmetric information about the similarities
(or dissimilarities) between pairs of objects. These methods have done a good service
to all problems dealing with a great amount of data for numerous objects about
which only a chronological ordering is needed. We are going to discuss here the
SKXK-method, which we call so in honour of the names of the three most famous
men (Shepard-Kruskal-Kendall) who took part in creating the “main body” of
this useful technique.

In fact, the seriation problem was formulated for the first time by the English
archaeologist Flinders Petrie [19] at the very end of the last century. He was con-
fronted with a very difficult problem —to find an approximate dating for 4000
prehistoric Egyptian graves, each containing pottery, jewellery and other objects
permitting a final classification into types of varieties. Evidently, a chronological
trend of these types is to be expected according to which the approximate dating
of the graves might be done. Actually, Petrie managed to arrange 900 graves con-
taining a total amount of 800 varieties. The weakest point of his laborious work
is the “reverse connection” between graves and varieties, i.e. the varieties were
classified according to the graves in which they were found, while the graves were
ordered according to the varieties they contained. However, he is to be thanked
for the so-called “Petrie’s Concentration Principle”, which shortly states that the
more close together in temporal order two graves are the more likely they are to
contain varieties of the same or similar types.

A second merit of Petrie’s work should not be omitted. It is he who gave the
initial impulse (though it resounded about 50 years later) to many mathematicians,
such as Robinson [20], Shepard [23], Kruskal [17], [18], Kendall [10]-[16], Sibson
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[21], [22], Wilkinson [24), etc., for developing new techniques or for refining old
ones. ‘

The availability of high-speed computers has given lately a powerful push
to the seriation problem not only in archaeology but also in psychology, in history,
in classical and modern philology, in the reconstruction of maps, etc. A consider-
able amount of literature on this subject is contained and referred to in the excellent
Edinburgh University Press edition of the Mamaia Proceedings [8].

2. Mathematical formulations and algorithms

The mathematical approach is mostly due to D. G. Kendall and could be divided
into cases A and B.

Suppose we have n objects and k varieties, i.e. we have # k-dimensional vectors
or an (nx k)-matrix 4 = {a;} which has as many rows as there are objects and as
many columns as there are varieties. The problem could be formulated shortly
with several definitions and theorems.

Case A. Seriation from incidence matrices
The following four definitions could be summarized here:

D.1. We call 4 an incidence matrix when

1 if the ith object contains the jth variety,
%=\ 0 if the ith object does not contain the jth variety.

D.2. We call 4 Petrie (or a matrix with Pattern P) if in each column there is
only one sequence of consecutive 1’s, provided such a sequence does exist.

D.3. We call 4 petrifiable if there exists a permutation matrix s such that =4
is Petrie (Pattern P).

D.4. We say that a square symmetric matrix is in the Robinson form (Pattern R)
if, when going to the left or down from any position of the main diagonal, the elem-
ents never increase.

It has been proved firstly that to decide whether there exists a row permuta~
tion that will bunch toghether the 1’s in each colummn of A4 it is enough to know
V = A'4 and, secondly, that if 4 has such a property then it could be rearranged
if we knew G = A4', thus, V' = 4’4 and G = 44’ contain, respectively: (i) in-
formation about the possibility of such rearrangement of A4, and (ii) sufficient in-
formation for constructing a sorting algorithm, provided A is- petrifiable.

Now we could formnlate, in the language of D.1, ..., D.4, the two main theorems
in this case, the first due to Fulkerson and Gross [7], and the second due to Ken-
dall [11].

THEOREM (F and G). If 4 and B are two incidence matrices with the same number
of rows and columns, and if V = A'A = B'B, then B is Petrie if and only if 4 is Petrie.
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Consequently, the knowledge of the matrix V suffices for answering the ques-
tion whether 4 is petrifiable or not. There is a nicely formulated graph technique
in [7] permitting us to identify a petrifiable matrix 4 only from its ¥ matrix.

Evidently, a more important seriation question is whether there exists a possi-
bility of applying a sorting algorithm. To answer it Kendall showed that it is enough
to know G = A4’ (called similarity matrix with elements, s;;, the experimentally
obtained similarities between objects i and j) by proving the following

TueoREM (K.a). If an incidence matrix A is petrifiable, then the same row per-
mutations which petrify A will, when applted both to rows and to columns of G = AA',
turn G into Pattern R.

So, A'4 shows us whether there exists a seriation solution, while 44’ gives us
all the relevant information for finding it.
Case B. Seriation from abundance matrices
Here the four definitions differ as follows:

1. If 4 is again an (nx k)-matrix but with arbitrary real numbers a;; (or fre-

k
quences, say p;;, for which Z pi; = 1) as elements, we call 4 an abundance matrix.
=1

2. Instead of Pattern P we deal with Pattern Q here, i.e. we say that an abun-
dance matrix 4 for which there exists at least one row permutation # turning zA
into

Pattern Q: the elements of each column are unimodal functions of i for each j,
is liable to seriation. '
3. Instead of petrifiable we say queutrifiable matrices.

4. The similarity matrix, which has to have Pattern R, is S = 4 o4’ here
with elements

Al .
Sy = (Adod)y= Zwkmin(a,k, ay), where wy > 0 but arbitrary.
k

It is shown by Wilkinson [24] that no relevant information is lost if we deal
with the “promoted” matrix .S o S with elements

(S o8y = z Winnin (S, Syx)
%

as well as with some of its “degrees” (S o.S)e (S S), etc.

Kendall’s theorem could now be formulated as

TuroreM (K.b). If an abundance matrix A is queutrifiable, then the same row
permutations which queutrify A will, when applied both to rows and to columns of
S =AdocA, turn S into Pattern R.

We know so far that from V we can learn whether there exists a solution; but
if so, how to find it?
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A natural approach will be to rearrange the rows and columns of the similarity
matrix until we get Pattern R. But this would be practically impossible if # is large
enough (remember Petrie’s case).

Then other seriation techniques could be adopted, such as MDSCALL, proposed
by Kruskal, or HORSHU, proposed by Kendall. Both procedures use G or S,
or some of their degrees, as an input and produce a #-dimensional configuration,
t > 2, as an output. We shall call the joint technique a KK seriation algorithm
because it could be said that MDSCAL+ (S = A4 o 4") = HORSHU,

This KK-algorithm, which has been worked out and continuously improved
during the last 15 years, could be schematized as a geometrical representation
of n objects by n points. More precisely, it consists of finding » points in a ~-dimen-
sional space (a configuration) in such a way that the distances between the pairs
of points correspond (in some sense) to the similarities (dissimilarities) between
the pairs of objects. The basic hypothesis is that distances and similarities are mon-
otonically related. Some more details now:

Suppose that n and z > 2 are fixed. Let us call the arbitrarily chosen points
Py, ..., P,. Let d;; denote the distance from P; to P; and let (xy, X2, ..., Xy) be
the orthogonal coordinates of P;. We can use for the distances the /metric

t
1je
dy = (Z 1xis"‘xjs\'} / where r > 1,
s=1

but we mostly use the Euclidean metric, e.g. when r = 2. To evaluate how well
the distances match the similarities we produce first of all a scatter diagram of all
(#, /) points with coordinates (s;;, d;)) forall i < j,i=1,...,n—land j = 2, ..., n.
At each step of the algorithm, i.e. for any configuration, we perform a monotone
regression of similarity upon distance. The best configuration (the output) is sup-
posed to represent the ith object with the ith point in such a way that for two differ-
ent points, say (,) and (/, k), we have s;; > s, whenever P,P; < PP, i.e. the
smaller the distances the more similar the objects. If the objects are liable to seria-
tion, then intuition tells us that the output-points should be on a straight line but,
as Kendall has shown experimentally, they are plotted along a horseshoe curve
(or something like an arched Milky Way, when “noise” is available) which, as proved
by Wilkinson, has turned out to be the shortest Hamiltonian circuit (or the shortest
path in the travelling salesman problem). But let us go on with the rough descrip-~
tion of the algorithm. If we ignore s;; and suppose that §;; = ;, and also that
there are no ties (equal similarities), then we have M = n(n—1)/2 similarities,
which we could arrange in a strictly ascending (descending) order Sidy <o < St
Usually we do not expect the corresponding M distances to be in ascending (des-
cending) order because the starting configuration is absolutely arbitrary. The aim
is to find numbers 4 which are supposed to be as near to the d;; as possible and
monotonically related to them, i.e. satisfying the (Mon) condition

*
dfy, < dYy, < < dfy,,
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In fact, df; are the ordinates of the M points when we move them, (say, with step-
size o) so as to make the curve which is passing through the M new points with
coordinates (sy;, dff) a monotone ascending one. The KK-algorithm enables us to
find the best configuration with a reasonably small number of iterations (usually
no more than 50), each time finding a new 4 and a new monotonically ascending
curve belonging to a family of “nonparametric” curves. A natural measure for the
“goodness of fit” seems to be the number

& @y—dpy -

30, where = }_‘ dy;.
hl = 2 5 M )
y%m oy

For finding the best fitting configuration we have to minimize S in two ways: at
each step, fitting each time new df’s, ie.

stress S =

stress of fixed configuration = S(Py, ..., P,) = min S,

and as a whole, ie.

stress in z-dimensions = min = S(Py, ..., P,).
all t-dimensional
configurations

For this purpose the well-known numerical method of the steepest descent
was used. It should be noted here that to ensure that the resulting minimum is not
only a local one (even if it happens to be very close to zero, say < 0.025) it is ad-
visable to repeat the whole procedure several times, starting from different initial
configuration each time.

And one last remark. If ties are available, then we have two possibilities: (i)
Primary treatment of ties (PTT) — we do not care if 5;; = s and deal as if there
were no ties, and (ii) secondary treatment of ties (STT) — we accept that when-
ever §;; = Sy then d;; must be equal to dy;, and we diminish the configuration even
if d;; # dy. Therefore we put the additional restriction 4% = dif whenever s5;; = 5.
PTT and STT should be taken into account when dealing with the algorithm for
fitting 4% [17].

Up to now there have been some additional facilities for improving the final
configuration like CIRCLEUP (which replaces S by S .S) or an option which
permits a choice between PTT and STT, etc., proposed by Kendall. Of course,
there are other algorithms, proposed by other authors, but we would like to refer
to [8] once more,

3. Applications in philology

We came to the idea of applying SKK in classical philology when looking through
a work of Cox and Brandwood [6]. They give a linear model for finding the chrono-
logical order of Plato’s last 6 dialogues with the help of the maximum likelihood
test. About 10 years later Atkinson [1] attacked them, challenging the linearity
of their model, dealing again with the same 6 works of Plato.
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However, Plato has written 45 different dialogues and it seemed worthwhile
to try to arrange all of them, considering the “Republic” as 10 and the “Laws”
as 12 separate books (because it was so in fact). For more than 110 years many
philologists and philosophers argued frantically about the chronology of parts
of them. Some managed to arrange 2 or 3 but none more than 6 books. For order-
ing all the 45 dialogues we used their clausula frequency distributions, done in
1904 by the German philologist [9] Kaluscha. The clausula chosen by him consists
of 5 syllables of two types —long and short one — or altogether 2% = 32 classes
of clausulae. According to our experience the 5 syllable clausula seems to be the most
convenient one. The results of applying SKK to all the 45 of Plato’s works may be
seen in [2].

Later on the same seriation technique but a slightly different phonetico-syntheti-
cal “clausula criterion” (the clausulae cosisting again of 5 syllables but this time
of the stressed and the unstressed types) have been applied to obtain the chronology
of the works (but with a known “true” order now) of a modern author. Briefly,
a sample of 16 short stories, taken at random from the total number of short stories
written by the Bulgarian novelist Y. Yovkoy, have been studied. To our great
satisfaction the order obtained happened to be the same as the true one. The results
may be seen in [3]. Here we give only the coordinates of the final configuration
(Table 1) because that has been omitted in [3].

To work in Sofia and to use a computer in Cambridge turned out to be quite
a difficult task. That is why an algorithm for “seriation at hand” when n is small

Table 1

No Final configuration Order .of Order of True order

publishing writing obtained
1 0.214 —1.606 1 1 1
2 —1.322 —0.904 2 2 2
3 —0.894 —0.542, 3 4 4
4 —0,660 1.921 4 7 -7
5 —0.061 0.714 5 8 8
6 —0.643 0.572 6 5 5
7 0.436 0.997 7 10 10
8 —0.068 0.398 8 .9 9
9 0.992 —0,681 9 12 12
10 0.905 0.232 10 11 11
11 —1.347 —0.086 11 3 3
12 2.487 —1.596 12 13/14 14
13 . 1135 0.687 13 13/14 13
14 —1.593 0.976 14 6 6
15 0.324 -0.830 15 16 16
16 0.096 —0.253 16 15 15

e ©
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enough, say n < 10, has been published [4] in the meantime. Of course the algorithm,
called LMC (local-maximum-chain), works only if the starting matrix 4 is queutrifi-
able. So, instead of rearranging the rows and columns of § we may try LMC. If
this does not work, then a Pattern R is not to be expected in S.

Table 2
No Final configuration Order of Order of Order
publishing writing obtained
1 --0.758 1.156 2 2 2
2 0.331 0.973 3 3 3
3 0.768 0.967 6 5 5
4 1.012 —~0.998 10 11 11
5 0.326 —0.352 12 14 14
6 0.641 ~0.007 9 9 9
7 ~0.121 —0.697 13 17 17
8 0.160 0.048 14 15 15
9 —0.657 —0.298 15 19 19
10 —0.413 —0.337 16 18 18
11 0.468 0.861 17 4 4
12 —1.970 —0.490 20 21/22 21
13 —0.944 0.067 21 21122, 22
14 1.320 —0.583 24 10 10
15 —0.285 0.301 25 26 26
16 —0.,040 0.187 26 25 25
17 0.711 0.191 5 7 7
18 1,472 0.527 7 6 6
19 0.057 —0.249 8 16 16
20 0.606 0.408 4 8 8
21 -—0.429 —1.473 18 12 12
22 —0.555 0.323 11 23 23
23 —0.223 0.588 1 1 1
24 0.182 —0.866 22 13 13
25 —0.050 —0.162 23 24 24
26 —0.385 —0.969 19 20 20
27 —1.073 0.482 27 27 27
28 —0.650 0.839 28 28 28

Not long ago a FORTRAN version of HORSHU was also prepared for our
computer. The first thing to do was to try to arrange a bigger sample of Yovkov’s
stories (n = 28, k = 32, and the same “clausula criterion”). Note that two of the
stories were not published at all (No 23 and No 27) but we took them just for com-
parison with their published “twins”, No 6 and No 28. The results are given in
Table 2, where the first column gives the input order, the second gives the coordinates
of the final configuration, the third gives their order of publishing, the fourth gives
the order in which, according to our philologists, they were written, the fifth gives
the order obtained. An illustration of one of the several final configurations (similar
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Fig. 1b
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to rotation) that have been obtained is shown on Fig. 1. One thing to be noticed
here is that in connecting the stories in their order of publishing the lines crossed
each other in all the resulting final configurations, while, in connecting them in their
writing order, the lines never crossed, and Figs. 1a and 1b actually reflect that result.
In fact, the “hotse-shoe” shape is a rather scrambled one. One of the reasons for
that might be the great number of zero’s among the frequencies of our distri-
butions. Anyway, we hope to be able to change this shape —unsatisfactory for a “horse-
shoe” — very soon either by diminishing the zero’s or by combining similar classes
of clausula or else by working out a new more appropriate for our case similarity
measure. Meanwhile we are trying to straighten the configuration by using CIRCLE-
UP, PTT, STT, and combinations of them. This is worth trying because Fig. 1
shows a good sense in the chronology obtained. There are five distinguishable
groups (see Fig. 1.b): (1) The stories from 2 up to 8 (including even 1, or No 23)
were written during the first world war; (2) The stories from 9 up to 13 are “peculiar”
in some way. They had been written, rewritten and seriously changed before being
published, e.g. 9, which is the “twin” of 1, or No 23, was written in 1910, rewritten
several times, but published only in 1926. Consequently, it comes immediately
after the war-period stories; (3) The intermediate period of publishing, actually
1925-1928 (the author published between 1913 and 1937) consists of the stories
from 14 to 19; (4) Next comes the 1931-1935 period, consisting of the stories from
20 to 24. The only exception here is the story 22 published first in 1925 and thenin
1927, but rewritten (according to the author himself) in such a way as to be differ-
ent in style from the former version. He claimed the same for 11, which actually
comes in the “peculiar” group; (5) Here only the works written in 1936 occur,
including the one written twice 27 and 28 but published once (the second version).

Finishing, we repeat our hopes that after some modifications we will be able
to obtain a better final configuration, because we do believe that the changes of
one’s style go “hand in hand” with the temporal changes of one’s personality and,
what is more, that they could be traced chiefly in sentence endings.
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USE OF MATRIX APPROXIMATION IN STATISTICS

L.C.A. CORSTEN

Department of Mathematics, Agricultural University, Wageningen, The Netherlands

In trying to approximate an n by p array Y of data by a matrix C of rank %, one
may want to minimize the approximation error matrix E in some sense. Minimiz-
ation of |Ex|/|x| for all x, or of |E’y|/|y} for all y suggests minimization of all eigen-
values of E’ Eor EE’ simultaneously. This minimization can be attained by the canonical
decomposition VAU’ of Y, where U'U = V'V = I,, r is the rank of ¥, and A is
the positive square root of the jth largest characteristic value of Y'Y or YY’
G=1,..,n .

The -required approximation C of Y = VAU = jzl A, juy; obtained by

suppressing the last r—k terms in this sum equals ViA,U;. In this way, Y'Y
= UA2U" will be approximated by (Up4)(Uxdy)', and any symmetric matrix .§
by U,d} Ui where Af contains k characteristic values of S in non-increasing order
of their absolute value. The approximation C of ¥ may be written as 4B’ where
A =V, = YU A;! and B = U, 4,, and the rank k approximation of Y'Y equals
BR'. When each row of Y contains a multivariate observation at a corresponding
individual and each column corresponds to a component of such a multivariate
vegtor, each column a,; of 4 may be conceived of as the set of n values of a new
characteristic (a factor), each row a;, of A as a set of factor scores for the ith in-
dividual, and each row b, of B as the set of factor loadings for the jth component
of the multivariate observations.

As the columns of 4 are orthonormal the structure of the columns of C ap-
proximating those of Y may be visualized by means of their coordinates b;, in
k-space, the inner products between those columns approximating those between
Y4y Each row a;, of factor scores may, likewise in k-space, visualize the mutual
position of the individuals, and the inner product between ay, and by, is the ap-
proximation of ¢;;.

Approximation of ¥ by a rank k matrix C plus 18{ and (or) f,1’ where 8,
is a p-vector and B, an n-vector is a useful modification of the first situation. Not
only the situation that n~*¥"Y is a covariance matrix X is covered now, but it also
leads to an exact test on the presence of a multiplicative term in a two-way analysis
of variance table in addition possibly to row effect and (or) a column effect.
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