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USE OF MATRIX APPROXIMATION IN STATISTICS

L.C.A. CORSTEN

Department of Mathematics, Agricultural University, Wageningen, The Netherlands

In trying to approximate an n by p array Y of data by a matrix C of rank %, one
may want to minimize the approximation error matrix E in some sense. Minimiz-
ation of |Ex|/|x| for all x, or of |E’y|/|y} for all y suggests minimization of all eigen-
values of E’ Eor EE’ simultaneously. This minimization can be attained by the canonical
decomposition VAU’ of Y, where U'U = V'V = I,, r is the rank of ¥, and A is
the positive square root of the jth largest characteristic value of Y'Y or YY’
G=1,..,n .

The -required approximation C of Y = VAU = jzl A, juy; obtained by

suppressing the last r—k terms in this sum equals ViA,U;. In this way, Y'Y
= UA2U" will be approximated by (Up4)(Uxdy)', and any symmetric matrix .§
by U,d} Ui where Af contains k characteristic values of S in non-increasing order
of their absolute value. The approximation C of ¥ may be written as 4B’ where
A =V, = YU A;! and B = U, 4,, and the rank k approximation of Y'Y equals
BR'. When each row of Y contains a multivariate observation at a corresponding
individual and each column corresponds to a component of such a multivariate
vegtor, each column a,; of 4 may be conceived of as the set of n values of a new
characteristic (a factor), each row a;, of A as a set of factor scores for the ith in-
dividual, and each row b, of B as the set of factor loadings for the jth component
of the multivariate observations.

As the columns of 4 are orthonormal the structure of the columns of C ap-
proximating those of Y may be visualized by means of their coordinates b;, in
k-space, the inner products between those columns approximating those between
Y4y Each row a;, of factor scores may, likewise in k-space, visualize the mutual
position of the individuals, and the inner product between ay, and by, is the ap-
proximation of ¢;;.

Approximation of ¥ by a rank k matrix C plus 18{ and (or) f,1’ where 8,
is a p-vector and B, an n-vector is a useful modification of the first situation. Not
only the situation that n~*¥"Y is a covariance matrix X is covered now, but it also
leads to an exact test on the presence of a multiplicative term in a two-way analysis
of variance table in addition possibly to row effect and (or) a column effect.

6* [83]
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Since the approximation is scale dependent, the criterion (Ex, Ex)/(x, x) may
be replaced with (Ex, Ex)/(x, S,x) where S, is a relevant positive definite matrix,
e.g. an error covariance matrix in a multivariate regression situation or a covariance
matrix to which the matrix of interest has to be compared. This modified criterion
is equivalent to z'L'E'ELz/z'z where L'L = S7* and L an upper triangular matrix.
Now the approximation C of Y will be AB’ with 4 = YL'U,A;* as before, and
B = M'U.A, where L'M = I, and M is a lower triangular matrix. Then Y'Y will
be approximated simultaneously by BB’ again.

When a relevant matrix S, is not available one may find, given the covariance
matrix £ = n~1Y'Y, a diagonal scaling matrix X such that an approximation of
KZK—1 induced by the approximation UpA}U; of KZK, namely Uy(A¢—1) Uy,
will be perfect in the diagonal elements. This idea borrowed from factor analysis
is directed towards equalizing by a suitable rescaling, the variance approxi-
mation errors, and so the rescaled specific variances are set equal to one beforehand.
Finding such a K is exactly what happens in maximum likelihood factor analysis,
where K-2 is the required matrix of specific variances.

Now with A2—7J = A% one may choose C = AB’ with 4 = n™*2YKU, ;!
and B = K*‘kal'k, where A contains factor scores in agreement with Bartlett’s
recommendation.

In the case where Y is a contingency table W, it is preferable to rescale N to
R-U2NK-1/2 where R is a diagonal matrix of row totals of N, and K similarly of

v
column totals. In the canonical decomposition p, v, u.y all 4 are at most 1,
=1

while A, equals one, 1,7, u,, representing square roots of expected frequencies
under independence. The statistic nA? may be used for testing independence, its
asymptotic null distribution being known. The rank k approximation of
N—RYy ul, KM, ie. RY?V,A, U K'? may serve the study of dependence.
The present paper has been published recently:
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ON BASIC CONCEPTS OF MATHEMATICAL STATISTICS

N.N. CENCOV
Institute of Applied Mathematics, Moscow, U.S.S.R.

The basic essential concepts and structures have been formalized rather intensively
for the last ten years. In this paper(*) the geometric approaches, which naturally
arise in the analysis of statistical concepts, are considered.

Let (2, S) be a measurable space of elementary events, let {P,} be a family
ofa probability distribution, a priori possible, over (2, S), and let (¢, B) be 2 measur-
able space of decisions.

Any of Wald’s statistical decision rules [9], both determinated and randomized,
can be written as a transition probability distribution I7(w; de) from £ onto (&, B).
Thus if we use the rule IZ, our decision will be distributed according to the law

M Q)= RIT: Qi) = | Pi@)T(@; -).

The value of the parameter § at which the observations occur is unknown to the
observer; he only knows that the observed P belongs to {Ps}. Therefore, all a priori
conclusions about the quality of the decision rule IT are based on the properties
of the families {PplI}.

It is natural to say that the families {P§P} on (2P, S®), i = 1, 2, parametrized
by the same parameter 0 € @ are equivalent in the theory of statistical inference
if, for any space of decision (&, B) and for any rule II®(w®; ds), i = 1, 2, which
leads to the family of laws P§TI® = Q, there exists a rule IIP(w"; de), j = 2,1,
which Jeads to the same family {Q}:

© PPITD = @, = PPIID, VOe6.

THEOREM 1. The families {P{"} and {P§®} are equivalent in the theory of stat-
istical ‘inference iff there exist decision rules W and MU such that

3) PO = PPIICD, PP = PPIICD, VO 0.

(*) The text following below combines two lectures of the author: “On basic concepts of
mathematical statistics” and “On testing hypotheses”.
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