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absolutely continuous probability distributions. All the remaining inequalities
of the same type either are weaker or coincide with that asymptotically; the
Cramér-Rao-Darmois-Fréchet inequality can only be made more precise by
higher order corrections.

PROBLEM 6. Find the bound for the remainder term in (23) in terms of the maximum
of invariant curvature of the family {P,}.

Note that under the chosen loss function 2I(Q: P;) for exponential families
the problem of estimating the law P, reduces (due to Theorem 6) to the problem
of estimating its parameter, i.e. the estimates of Q € {Py}-type form a complete
class.

PROBLEM 7. In what natural terms family smoothness should be described in The-
orem 8?

It is completely obscure how to replace the usual sufficient conditions of smooth-
ness in terms of majorant existence in the third derivatives since the analysis then
requires to be developed in non-linear, non-topological space.

PROBLEM 8. How does the formulation of Theorem 8 change when the smooth
Jamily {Py} has points of self-intersection?

Acknowledgement. The author considers it his pleasant duty to thank Professor
R. Bartoszynski for his attention.
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0. Introduction

This paper deals with linear models of the kind y = X0+ Ue, where ¢ is a random
k

vector composed of independent random variables, Therefore Cove = »,o? V;,

i=1
where V, = diag(0, ..., [;, ..., 0) and Z; is the unit matrix of appropriate order
(or any diagonal matrix). Much work has been done to investigate the problem
of existence of uniformly best (invariant) quadratic unbiassed estimators if ¢ is
normally or quasi-normally distributed. It is the purpose of this paper to extend
these results to the non-normal case. This extension is done in the case of best in-
variant quadratic unbiassed estimators. A complicated matrix-relation turns out to
ensure optimality. But in analogy to Hsu’s theorem ist can be shown that this rela-
tion can be replaced by requiring it only for the diagonal elements. The obtained
results still appear very complicated but it turns out that due to the diagonality
of the V, the verification of the obtained conditions is rather straightforward. This
is illustrated at two examples: the balanced one-way and the balanced two-way
clagsification model.

1. Notation, Hsu’s theorem

Let X be an nx s-matrix, let # be an sx l-vector and U an nx r-matrix. Consider
the linear model

1.1) y = X0+ Us,

where y = (¥, o, Pn)s & = (€1, ..., &)’ are random vectors. It is assumed that the
components of ¢ behave up to their moments of order 4 as independent random
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variables, i.e.,

4
I I 7
E(E?‘ 3"28"38 4) - Ee,f

1.2)
for integers 1 < iy # iy # is % iy < r and 0 . ny+ny+ny+ny < 4. Moreover,
we assume that
k
Gl
(1.3) Ee=0, Cove= Ee = ‘?__TU,ZV,,

where V; = diag(v;) is a diagonal matrix. Tn most applications ¥; will be of the
form

1.4 ¥V, = diag(0, ..., 7;, 0, ..., 0),

where 0 and 7; are zero-matrices and the unit-matrix, respectively, of appropriate
order. diag(By, ..., By) is a block-diagonal matrix with blocks By, ..., By:

1.5 diag(B,, ..., Bw) = (05;Bi; 6,i=1,2, ...
The setup for our linear model (1.1) has earlier been studied by several authors,

e.g., Kleffe and Pincus [9], [10], Kleffe [8] and C.R. Rao [15]. From our assump-
tions (1.3), (1.4) we get immediately

,m).

k
(1.6) Ey=X0, Covy= )Y oUW,
I=1
k
%) Eyy' = XO0X'+ ) oFUVU.

=1
The problem in all such situations is, of course, to estimate § and o = (o3, ..., o)’
or linear functions of these parameters. While the problem of estimating 0 linearly
in y in an uniformly good way is rather satisfactorily solved (Drygas [2], Gnot,
Klonecki, ZmySlony [5]), the solution concepts for estimating o quadratically in y
are much more complicated. We refer to papers by Seely [17], [18], [19], [20], Seely
and Zyskind [21], Zmy&lony [22], [23], Gnot, Zmyslony and Klonecki [5], [6],
Kleffe and Pincus [9], [10]. The work on MINQUE theory by Rao [13], [14], [16]
should also be mentioned in this context.

Most of the authors assume that & is quasi-normally distributed. It is the pur-
pose of this paper to abandon this assumption. Let

(1.8) E@E) = piot, Bz 1, i=1,2,..,r.
In the quasi-normal case §; = 3. Let us introduce the vector
1.9 31, = (8,~3, ..., B,—3)".
Bi—3 is called the curtosis of the random variable ;.
We denote by diag4 the diagonal matrix with the same diagonal elements

as the matrix 4 and by diago the diagonal matrix whose ith diagonal element is
equal to the ith component of the vector o.

icm
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Since we want to. consider best invariant quadratic ‘unbiassed estimators

(BIQUE) of functions f o, fe R¥, it is convenient to consuler the random matrix
(1.10) Z = MyyM, M =I-Ppg =I-XX*.
Z is a H-valued random element, where H denotes the set of all symmetric n X n-
matrices 4 meeting the condition AX = 0. In H the inner product {4, BY = tr(4B)
is used. Indeed, y'4y is an invariant estimator of f'¢ iff AX = 0 and thisis equiv-
alent to 4 = MAM. [Thus y' Ay = y MAMy = tr(AMyy' M) = tr(AZ) = tr(Z4),
which shows that y’Ay is a linear function of Z. Now

'/21
EZ =) o} MUV,U'M =: MUVU'M,

i=1

(1.11) .
where

(1.12)

while (see Kleffe and Pincus [8], p. 151) for all 4 € H:

(1.13)  Vartr(Z4) = Var(y’ MAMy) = Var(e MAMe)
= Var(¢'de) = 2tr(UVU'AUVU' A)+
+tr(UVdiag(UAU)diag(B—3 - 1,) VU'A)
= 2tr(MUVU' AUVU'MA)+
+tr(MUVdiag(U'AU)diag(8~3-1,) VU'MA)
implying
(1.14)  (CovZ)A4 = 2MUVU'AUVU' M+

+ MUVdiag(U'AU)diag(8—3 - 1,) VU'M, A € H.

From this we get immediately:

1.1. THEOREM. (a) y'dy is BIQUE of f'c iff () A e H, (i) (tr(4UVU"); i =
1,2, ..., kY =7, (iii) 2MUVU'AUVU M+ MUV diag(U’AU) diag(8—3 - 1)VU'M
espan{MUV,U'M; i=1,2,...,k} YV espan{Vy, ..., V3}.

(b) If y'Ay is already BIQUE of f'c in the quasi-normal case, i.e., if for all
Vespan{Vy, ..., Vi}

(iii") MUVU'AUVU'M espan{MUV,U'M; i=1,2, ...,
of flo iff

(i) MUV diag(U'AU)diag(B—3- 1,)VU'M e span {MUV, U'M;
v k} VPV espan{Vy, ..., Vi}-

Proof. Conditions (a) and (b) are ev1dent1y the conditions of invariance and
unbiasedness, respectively. By the projection theorem (Drygas [1], p. 375) or the
theorem of Lehmann-Scheffé, 4 € H minimizes

(1.15) Var(y'4y) = tr((CovZ)4- 4)

k}, then it is BIQUE

i=1,2,..

7 Banach
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subject to (tr(dUV;U); i=1,2, ..., k) =f if and only if A4 meets conditions
(1), (i) and

(1.16) Cov((v'4y), (7'By)) = tx((CovZ) A~ B) = 0

for all B e H satisfying 0 = tr(BUV;U") = t(MUV, U'MB), i = 1,2, ..., k. Thus
by (L16)

L.17) (Cov(2)4) L (span{MUV,U'M: i =1, ..., k)L,
implying
(1.18) (CovZ)4 espan{MUV,U'M; i=1,2, .., k}

and this should hold for all ¥ e span{Vy, ..., ¥;}. This is condition (iii). Assertion
(b) of the theorem is now evident. m

Now condition (iii”’) is rather complicated. Hsu in his pioneering paper [7]
has shown that in the case & = 1 (iii”") is met if it is already met for the diagonal
elements of the corresponding matrices, the converse being obviously also true.
Up to date proofs of Hsu’s theorem using modern tools of mathematical statistics
and linear algebra are available in Pukelsheim [12] and Drygas-Hupet [4]. Also
in the case of variance components relation (iii’) can be replaced by a condition

. which is only valid for the diagonal elements.

At first we remark that since M is positive semi-definite (iii”) is equivalent

to

(L19)  U'MUVdiag(U'AU)diag(8—3- 1,)VU'MU
espan{U'MUV,U'MU; i = 1, ..., k} YV espan{Vy, ..., Vi}.

1.2. THEOREM. Let B = U'MU, diagh = Vdiag(U'AU)diag(p—3-1,), V,de H
and let, moreover, B+ B be the Hadamard product of B and B, B* B = (bf; i, ]
=1, ..,7). Finally, let v; be such that diagv, = V; and b, = (B* B)v;,. Then
MUVdiag(U’AU)diag(f—3- 1) VU'M espan {MUV,U'M; i=1,2,...,k} if and
only if
(1.20) (B« B)bespan{by, ..., b} = span{(B* B)v;, i =1, ..., k}.

Proof. We give two proofs of the theorem according to the two approaches
available in the case k = 1. First, however, we show that condition (1.20) is nec-

essary. By (1.19) condition (iii"’) is equivalent to the existence of numbers g, ..., g«
such that

k
(1.21) U'MUdiaghU’MU = Z o(U'MUYV, U'MU
. £

or, using diago; = V), this is equivalent to

1.22) U MUdiag (b— }lc: 0m) U'MU = 0.
=

icm°
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Clearly this condition implies

k
» 7] . k
(1.23) dlag(U MUdiag(b— " o) U'MU) = diag ((B I ei'v,-)) -0
i=1 i=1
and this is just (1.20).

For the sufficiency of condition (1.20) a first proof will be given which may
be called the P-approach. P stands for Pukelsheim ([12]) or projection-method.
Let now (1.20) be met and consider C = MUdiaghU'M, L = span{MUV,U'M;
i=1,2,..,k}. Assume that by (1.20) |

k k
(1.24) (B*B)b = Z:Q,-bl = B+ Bo,.
i= i=1

k
Now our statement is that P, C = Y. o, MUV,U'M.
i=1
In order to prove this we verify, using
. tr(diag4 - B) = tr(diag4 - diagB) = tr(4 - diag B),
that :

.k . ‘ k
(125) (- oMUV, UM, MUY, UM) ={c-> e;MUV,UM, UV, Uy
i=1 i=1

k

k
= tr((C— ;Q,MUV, M) UV,U’) = tr(U’(C— MUV, U’ M) UVj)

i=1

=tr ( MU (diag (5- }i’ o/0)) UMU) diag s,.)
i=1 ‘

= Fr (diag ((U’M U) (diag (b— i gi'z;,.) UM U)) diag ‘Uj)

= tf ((diag ((.B *x B (b—— Z:EW:)) diagvj)) =0.

Since this is correct fot all j, the relation P, C = ,f:l 0; MUV, U'M is verified. Con-
sequently,
(1.26)  |IC-P.C||* = {(C-PL0), C>

= tr ((C— P, C) UdiaghU")

= tr(U'(C— P, C) Udiagd) = tr(diag (U'(C— P, C) U)diagh).

&

But as above diag(U'/(C—P.,C)U)= diag((B* B)(b— Y, ov:)) which vanishes
=y

by (1.20). Thus |JC—P.C|]* = 0 implying C = P,CeL. =

7%
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The second proof of the sufficiency of (1.20) is called the H-approach. This
may stand for Hadamard-matrices or Hupet (see [4]). A class I of symmetric
matrices is called anmulating with respect to the diagonal if Be9, diagB =0
implies B = 0. An example of such a class is the class of I of positive semi-definite
(PSD) matrices B. Drygas-Hupet proved in [4] that the class

1.27) M= {C=Ad4B: 4, B PSD, A diagonal}
is annulating with respect to the diagonal. Since U'MU is PSD, indeed

' k 1] n k [ 1]
diag((U’MU)diag(b—Zg,vi) U’MU) = diag ((U’MU » U'MU) (b— ZW;,)) =0,
i=1 {=

i.e., (1.20), implies (1.19) and this finishes the proof of the theorem. m

Since b depends on ¥, condition (1.20) has still to be verified for all
Vespan{Vi, ..., V). But since ¥ is a linear combination of the V; it is enough
to have (1.20) for all ¥;. This leads to condition which is quite analogous to Hsu’s
original result.

1.4. TruroreM (Hsw’s theorem for variance component models). Let ¢y be
a rx1 column-vector such that

diage;; = Vidiag(U'4U)diag(—3- 1,)V;
and
(1.28)

Then necessary and sufficient for y'Ay to be BIQUE of f'o, provided y' Ay is already
BIQUE of f'o in the quasi-normal case, is the existence of a kx k*-matrix P such
that

(1.29)

C= (clls €125 aeny Caks oy CpLs <ovs Ckk): D = (’vi: "'9vk)'

(U'MU x U'MU)(C~ DP) = 0.

1.5. Remark. In almost all applications ¥;¥; = ;7 and therefore ¢;; = 0
if i # j. In this case C can be replaced by (¢ ... ¢;) and P is a k x k-matrix.
Proof of Theorem 1.4. Since b is defined via

k
diagh = Vdiag(U'4U)diag(f—3- 1)V and V= z oV,

Tel
we get
L3 k
diagh = ) ofo? Vidiag(U'AV)diag(B~3- 1)V, = > of Fdiag(e,),
=1 . IVE]
. J=1
b= Z o ofey.
Lj=1

Thus (1.20) is equivalent to

(L30)  (BxB)cyespan{(BxBloy, i=1,., K}, I=1,2,., k%

e ©
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(The index (i, ) has been replaced by the index / = k(i— 1)+j.) This means that

k
(1.31) (BB =Y ou(BeBoy, I=1,2, ..,k
=
Let P=(gu; j=1,...,%; I =1,2,..,k%. Then evidently (1.31) is equivalent
to (1.29). m
1.5. THEOREM. Let the miodel y = X0+ U: be given and assume that I, e
span{UV,U’; i = 1,2, ...,k}. Suppose, moreover, that the quadratic subspace
condition for span{MUV,U'M; i= 1,2, ..., k} is satisfied and therefore a BIQUE
of f'o for any estimable [’ o exists in the quasi-normal case. Then a BIQUE for any
estimable function f'o exists in the non-normal case iff (1.29) is met for all A €
span {MUV,U'M}.
Proof. In Drygas [2] it has been shown that a BIQUE of f'o exists for all
estimable /o if and only if a Gauss-Markov estimator (GME) of EZ in the model

k
(132) EZ=) a}MUV,U'M,

=1
(CovZ)4 = 2(MUVU'AUVU' M)+ MUV diag(U'AU) diag(f—3- 1) VU M

exists. Since a GME exists if § = 31, (implying the above mentioned quadratic
subspace condition) this GME is the least squares estimator in view of I, e
span {UV,U’; i = 1,2, ..., n}. This estimator is obtained by solving the “normal

equations”
k

3 S MUV, OOV, U = w(UVUZ); i =
J=1

By Kruskal’s theorem ([11]) the least squares estimator is GME if and only if the
linear space of expectations of Z, ie., L = span{MUV;U'M; i=1,2,...,k}
is left invariant by the covariance-operator. Since the first term of the covariance-
operator leaves L invariant due to the existence of a GME in the quasi-normal
case, a GME in the non-normal case exists iff for all ¥ espan{Vy, ..., Vi}:

(1.34) MUVdiag(U'AU)diag(f—3-1,)VU'MeL V4 e L.
By Hsu’s Theorem 1.4 this is equivalent to (1.28), (1.29). =

(1.33)

2. Applications, examples

(A) Balanced one-way classification

Let yyy = p+ay+ey; j=1,2,..,n i=1,2,...,m a and g; are independent
random variables with expectation zero. u is a constant to be estimated. It is assumed
that

2.1)
(2.2)

E(af) = o};
E(e}) = o3;
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We denote by A4 o B the Kronecker product of the matrices 4 and B, A o B = (a; B).
The rule (4 o B)(C o D) = (AC < BD) will be used several times in the sequel,
Let, moreover, denote by I, the unit matrix of order ¢ and by 1, the #x l-vector
whose entries are all equal to one. With this notation

@3 Y= (V115 ooes Vims Y25 o5 Yans Yt +oes Yn) = X0+,
where

24 b=p, X=1l,0l,=1,,

@.5) U= ({Ipol, Iyeol),

(2.6) &= (Ayy ey Qs €115 ovs Eqyy voes Emts ooes Eup)'
Then U is of order mxm+nm =:mxr and ‘

@7 Vi = diag(n, Om o 1), Va= On, Lo 1),
(2.8) Uv\U' = 1I,01,1;, UV, U = L,; V\V,=

This shows that I, espan{UV,U’, UV, U’}. Let us introduce P, = n~11,1},
M, = L,—P, = L,—n"1,1, and, similatly, P, = m~*1,1,,, M, = L,~m~'1,1,.
P, and P,, are the projections onto im(1,) and im(1,), respectively. Evidently,

@9) M =1, oI,~Pyo Py, = Ly—(mn)~1,1;01,1,,
2.10) MUV, U'M = MUV, U’ = nM,, + P,,
@11 MUV, UM = M,
2. U =
2.12) UMU [M
M * M M * M, )o 1
2.13 v MU = | M * Mo m * Mo, ,
(2.13) MU U'MU [(M ST T i e ]
0i 0
2.14 U(l, o = | . A
.14 o MU [o;moM"]
2.15 U'(M,, o LMy Mol )
&1 (Mo o BT = [ n® L Mo P,

Let us now. split up f—3-1, as follows:

(216) ﬂ 3 1 "((/31 3. 1m) (/32 3 lnm))
Then for 4 = I, 0 M,

@17) =0, ¢= (0’ (n— 1)’1—1(52"‘3' lnm)l)’: A = My P,
yields, ‘

= (n(m—-Dm1(8,~3: 1,¥, 0'),
e = (0, (um)~2(m—1)(B,~3 L)'y’

2.18)

©
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and finally for 4 = M we get:

¢y = (alm—Dm™(f,—3 1), 0,

G = (OI’ (nm— 1)(nm)_1(ﬂ2_3 ’ lnm)’)’-

Since I,o M, M, My,oP,=0if nm=1, ie.,, n=m=1, nm> 1 can be as-
sumed. Similarly when considering M,, o P, and I, o M,, m > 1l and n > 1, respect—
ively, can be assumed. Now note that M, * M, = t=2((t—1)*~1)L+1"21,1;

regular if t>2. If t=1 (M, * M)B =2"21,158 = 272 (LA 1, espan{lz}
Thus we get

2.1. THEOREM. Consider the model
(2.20) Ey =pul,,, Covy = 0il,¢1,1,+02l,01,,
@) y'(InoM,) y is BIQUE of the expectation 0% m(n—1)n=*

(2.19)

iff
2.21) B2 = yolum for some y, € R

provided nm > 2. If nm = 1,2, then B, is allowed to be completely arbitrary.
(b)  There exist BIQUE of all estimable functions of o3, o3 iff

(222) Bi=yiln, P2=72lmm
for some constants y,, y, provided nm > 2 and m > 2.

If m < 2, then B, may be completely arbitrary. If nm < 2, then f, may be com-
pletely arbitrary.

Proof. (2) We split up B~3" Lum = ((B21—3" L)'s <05 (B2n— 3" L))

Then ¢; = 6,(0", (B2—3* 1,m)’) and we consider the Hsu condition

@.23) 0 = (U'MU %« U MU)(c,— 0191 — 0272)

(Mm * Mm) (MOZ (ﬁli"' 3- lm)— glnzlm_ @anm)]

(M % M) (o(B2—3 " Lum)— @1 Lom= @2 1nm)
where o (nm— 1)(nm)~! = g, (m—~1)m~1. (The case nm = 1 is trivial) If nm = 1
or 2 this expression vanishes automatically while (M » M) is regular if nm > 2.
Since then &, % 0 indeed the second line of (2.23) implies f2 = ¥o 1am, Bai = Yolm
for some y, € R. But then the first line is met automatically with ¢ = 0, 0, =
ao(Yo—3).

(b) The cases A = M, o P, and A = M parallel completely. In both cases
¢; is of the form ¢; = a;((B1—3 L), 0'), ¢; = 0z(0', (B2—3+ Lum)')'. The case
of ¢, parallels part (a) of the proof and will therefore yield the necessary and sufficient
condition B, = y; 1,y for some y, € R. For the case of ¢; we get the Hsu condition

(2.24) 0 = (U'MU » UMU) (¢, — 0191~ 0292)
I:nz Mm * Mm) (“1(/31"'3 . lm)_el 1m“ 92n~11m)]
T | M M) (22 (Bi= 3 L) —011m—031m) © 1n
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where g is a suitable multiple of g,. If m = 1,2, B, may be completely arbitrary

while (M, * M,,) is regular implying f; = y1ln. (2.24) is then met with o,

= o;(y,—3), 02 = 0. This finishes the proof of the theorem, since it is known

that the quadratic subspace condition is fulfilled for this model, Q.E.D.
Theorem 2.1 extends in some sense results obtained by Kleffe and Pincus [9].

(B) Balanced two-way classification

Let yy = ptar+by+ey; i=1,2,..,m j=1,2,...,n Here ay, ..., ay, by, ...
vy By €11, oues Emn are again independent random variables with expectation zero,
w an unknown constant. This example has also been studied in some detail by Kleffe
[8]. Letagain y = (D11, «res Pins o> Ymts wvs Yun)s X = Loy 0 = 1, & = (@, ..., @y

byyees by €11y oons Emn). Then

(2.25) \ y = X0+ Ue,

where

(2.26) U= (Iyol,: lyo @ Iyo L),

Here, again, M = I—(mm)~*1,1, 01,1, and
(227) /Vl = diag(Imy 0, 0)’ V,= dlag(O’ In: 0)’ Vs = diag(oy 0: Im ° n)-
Again M and P = I— M commutes with UV, U’, UV, U’, I,, = UV, U’ and there-

m n
fore Py = oo = n—;— Z Z yi;is BLUE of Ey. We now get that I, € span {UV;U,
=1 =1
i=1,2,3} and
MUV, UM = MUV, U = n(Mye° P,),
MUV, UM = MUV,U' = m(Py o M,), MUV:UM= MUV U’ = M.
Kleffe [8] has shown that L = span{P,, o M,, M,,  P,, M} is a quadratic subspace.
Therefore in the quasi-normal case for any 4 € L, y’4y is BIQUE of its expect-
ation. Again the question arises whether 3’4y is BIQUE of its expectation in the

non-normal case. We are going to investigate this question for 4 = M,, o P,, P, o M,,
M and M, » M,. Straightforward calculations yield

2.28)

nM, 0 Myl
(2.29) UMU=| 0 mM, 1,.M,],
M,ol, 1,oM, M

n2M,, « M, 0
230) UMUxUMU = { 0 miM, « M,
| (Mo x M) 0 1y Lo M, % M,
We now again split up f—3- 1, as follows:
@31) B=3-1, = ((Bi=3- LY, (B2=3 1Y, (Ba=3" L))"
Then we get for 4 = M, o M,, since ViV = 8,V
@31 U'AU = diag(0, 0, M, o M),

(M, % M) o 1]
Ly o My % M,
MxM |

e ©
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232) ¢ =0, ¢;=0, ¢

1

(0, 0, (= 1D)(m—D(m) ™ (B3~3 " Lym))’
110(0, 0, (Ba—Lam)')'. |

If we again split up (§3—3* 1,m)' = ((B5i—3- 1), i = 1, ..., n), then the Hsu
condition is obtained as )

(233) 0= (U'MUxUMU)(c3—0,9,—0292—0373)

I

= ([t 12 (aoi(ﬂsi- 3+ 1)~y Ln—nga 1),
i=1

[, 3,) (00 ) (B3 1) =m?es1,—mos1,)]
=1
[V M (50(Bs— 3+ )= 01 o0t L= Lun)] ) »

BY, o1 and p; have to be chosen appropriately. If nm = 1 or 2 this expression
vanishes automatically while M x M is regular if nm > 2. Since o, # 0 indeed
the third line of (2.33) implies B3 = ¥31,m, B3i = ¥3lm, B = ¥31, for some y; € R.
But then the first two relations of (2.33) are met automatically.
Let us now turn to 4 = M, o P,. Then
diag(U’AU) = diag(ndiag(M,), 0, diag(M,, o P,))
= diag(n(m—1)m=*1,, 0', (m— 1) (mm)~*1,,)".
¢ = (n(m—~Ym=*(8,~31,),0,07,
=0, ¢3= (0,0, (m-1)mm*1;,).
Similar results are obtained for 4 = P, - M,, namely
(2.36) diagU'4U = diag(V', m(r—1)m=*1;, (n— 1)(nm)~*1,)',
=0, ¢=(0,mn—-Dn1(B,—31),0Y,
e = (0,0, a—)(m)~'1,,)".
Finally 4 = M yields
¢ = (n(m—Dm*(,—3- 1), 0,07,
e = (0, mn—1n~2(8,—3- L.y, 0),
cs = (0,0, (mm—1)(nm)~*(Bs—3 " 1,m)")'-
¢; is always of the form a, (0', ', (8:— 3+ 1,,)')'. This case has already been dis-
cussed above. It remains to study the cases

e; = oo((B,—3" 1,,0,0) and
In the first case the Hsu condition is
(2.39) . 0 = (U'MU x UMU)(¢,—p101—P202— 0373)
= ([(M,,, * M) (nPoo(Br—3" 1,)—n%0; 1n— 03nlw)]’s
(M, * My)(—m?0;1,—mos 1)),

((Mm * Mm(do(ﬂl_s' ]m)_gllm—eéln—‘eélmn) ° ln))l)”

(2.34)

@33),

.37

(2.38) .

2 = ao(0, (B,—3-1,),0)".
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while in the second case we get
(2.40) 0 = (U'MU « U'MU)(e,— 0191~ @292~ @3%3)
= ([Mm * Mm("‘ 91”217"—93"1,")]',

[M, * My(o(B2—3" 1)—02n*1,—~ngs 1)

(L My Mo(00(B2—3" 1)~ 04 1a— 02 1,—051,))) -
If m < 2, in the first case (2.39) is met automatically if we let ¢ = 05 = 053 = @3 = 0
and suitable ;. If m > 2, then M,, * M,, is regular and (2.39) is satisfied iff g,
= py 1, for some y; € R, 0, = oo(y;—3), 02 = @2 = 03 = 03 = 0 being a p(.ass1ble
choice. Similarly we get the mecessary and sufficient condition f; = .1, in the
second case provided n > 2.

2.2. THEOREM. Consider the model Ey = ul,,,

Covy = 021, 0 L1+ 05 1uly o Lyt 030y o I
(@) ¥' (M, o My)y is BIQUE of its expectation o}(n—1)(m—1)(nm)~* iff
(2.41) Bs = yaly for some y; €R,
provided nm > 2. If nm < 2, B2 may be completely arbitrary.
(b) There exists a BIQUE of all estimable functions of o1, o}, o3 iff

(242) ﬂl = y11m’ ﬁz = Y2 11” ﬁa = '}’slnm
for some constants y, , ¥, ys provided nm, m and n are all greater than two. If nm < 2,
then B; may be completely arbitrary. If m < 2, then 8, may be completely arbitrary.

3. Extensions

This paper deals with best invariant quadratic unbiassed estimation in variance
component models. Kleffe and Pincus [9] and Kleffe [8] have already discussed
the problem of best quadratic unbiassed estimation in the one-way and the two-way
balanced classification model. Drygas and Srednicka [3] have extended Hsu’s result
to the case of best quadratic unbiassed estimation in the case of one variance-com-
ponent. The problem of a characterization for best quadratic unbiassed estimators
in non-normal variance component models is under investigation and will be dealt
with in a subsequent paper.
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