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Recently there have been several studies of special classes of identifiable recursive
function sets. The complexity of such classes is generally characterized in the litera-
ture in the theory of complexity classes of recursive functions. With respect to this
question the present paper uses two additional view-points:

(A) The sorting of index sets of identifiable recursive function sets in the arith-
metical hierarchy, and

(B) The sorting of the required functionals, to identify recursive function sets
of a special type, in the arithmetical hierarchy of function sets.

In this way the paper contributes to the subject of the limiting decision procedures
(cf. Gold [2], Barzdin’ [1]). :

1. Introduction

Let & be the class of all unary (total) recursive functions on the set IV of all non-nega-
tive integers. & is the class of all unary total functions. Let {M,}..~ be a computable
enumeration of Turing machines which defines a standard enumeration ¢ of all
partial recursive functions of one variable. Let (xo, .., x>, teN, be an effective
enumeration of all finite tuples of non-negative integers.

Strategies (or inductive inference machines) are arbitrary recursive functions
F, G, ...;if Fis any strategy and if g is a total function,

F(g") = o F((g(0), .-, 8(tD), tEN,
is the hypothesis given by F about g under the assumption that there is considered
', where the fixed Godel numbering @, being a semantics, always underlies these
hypotheses. A hypothesis a = F(g') is “true” iff a is a Godel number of g; therefore
g = ,. Bvery strategy F generates a limiting recursive functional F in the following
way:
Fg)=aeN iff limF(g") =a;
[2adts]
iff Ve[t > t, — F(gh) = al.
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In the case F(g) = a, we denote by a the final hypothesis given by F about g. In
this paper a functional is a unique mapping from & into N everywhere. Let 4 be

a functional;

L(d) =4 {g| g € domaind & pup = g}
denotes the set of all functions identifiable with the functional 4, where L(4) = 2.
In the sense of the definition of limiting recursive functionals, for a strategy F define

L(F) =4 L(F) = {g g€ R&IM F(g) = aeN& g, = g};

therefore L(F) is the set of all limiting identifiable functions with the strategy F.
DEFINITION 1.
GN=q{Ul Us #&3IF[FeR& U< L(F)}
is the class of all limiting identifiable recursive function sets.
ExampLE 1. Let
Vo =ar {8l 26 R & pge0y = &}
If F(g") =g g(0), Vo =L(F) is immediately clear. Via the recursion theorem, for
every go € & there exists a function g Vo such that g(t-+1) = go(t) for every
t e N. Consequently ¥V, is not a subset of some effective enumerable recursive func-
tion set, because otherwise 2 would be such a subset, i.e. # would be effective
enumerable.
DErFINITION 2. Let
NUM =4 {Ul Us #&As[se R & U = gy}
be the class of all effective, enumerable recursive function sets;
NUMS =, {U| Us #&3V[VeNUM& U < V]}
denotes the class of all subsets of sets in NUM.
According to Gold [2] we have NUM= & GN or, more exactly,

0 ' '~ NUM € L(#@) = {L(F)| Fe&};
Barzdin’ [1] proved the proper inclusion
V) NUMSE < GN

for a set of type V,. The set V, is “directly identifiable”; such sets are an example
of finite identifiable function sets, Every strategy F generales an E-functional F,
in the following way:(*)
F(g)=aeN iff lmF(g)=a&
o0
&[to = wt[F(g") = F(g'+*)] = F(g") = a];

therefore stationarity of the hypotheses is the only possible final hypothesis. If F
is a strategy, E(F) =4 L(F,) denotes the set of all finite identifiable recursive functions
with F.

(*) “E” from *‘endlich”.
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DEFINITION 3.
GN, =4 {Ul Uc #&3F[Fe & U < E(F)]}

is the class of all finite identifiable recursive function sets.

EXAMPLE 2. Let

Uo =g {1°}u {1007 1> 1},

where g = 1'0° iff g(0) = ... = g(t—1) = 1 and g(n) = 0, for every n > ¢. Obvi-
ously Uy € NUM, because 1* is an “accumulation . point™ in U,, U, ¢ GN.,. This.
topological view-point is worked out in [3] in detail. Uy— {1} is finite identifiable.

The example proves the proper inclusion .

®) GN, < GN.
Furthermore we regard the complexity of the classes GN and GN, relative to the
view-points (A) and (B) mentioned at the beginning. The definition of the hierarchies
Z,, IT, and T, IT{™ js that of [7]. References to the subject (A) are in [4], to the
subject (B) in [3]. This paper is an extract of [5].

Let 4 € N be a recursive enumerable set, let U be a set of partial recursive
functions, @4 =4 {z| D, = A}, where D, = domaing,, andlet QU =, {z| . € U}
denote the index sets of A and U. Use two well-known examples of index sets:

4 ON = {z| D, = N} = Q4 is IT,~complete,

(5) QBound = {z| InVx[p.(x) < nl} € (Z3nIT;)— (Z,VIT,).

Lewis [6] proved that:

(6) IfUc @®and U +# @, then ON <, QU;

(7)  For every effective enumerable set U ¢ NUM we have ON <, QU and QU <,
<, £ Bound.

Functionals, as subset of & x NN, are to be classified in the arithmetical hierarchy
of function sets. According to Gold [2] we have: )

(8) A functional lies in Z§{™ iff it is a limiting recursive functional.

2. Index sets

The set U; =4 {g| ge R &g =,. 0%} () is effective enumerable; consequently
U, e L(#). According to [6] we have QU, = 2Bound. With 2Bound we are
already given the upper bound for all index sets of sets in L(%).

THEOREM 1, VU[U € L(#) & U # @ — ON <, QU <, QBound].

In this way, by assertion (1) assertion (7) is an 1mmed1ate conclusion from
Theorem 1.

Proof. The lower bound @N follows directly by (6). For the proof of the upper
bound use the set
U. =o{gl geR&V1Tt[to > t & 7, (8(t0)) > 7, (g(1))] &
&I Vit >t — w2 (g(t)) = m (g}

(*) =4... means “equal almost everywhere”.
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where 7 is an effective pairing function whose inverses are denoted by n,, 7,; thus
z = 7(m;(2), 7,(2)). Use a Blum measure @. Let F be a strategy, the following
relations are recursive enumerable:
Az, t) it Vili € t4+1 = 3yD,(D) =]
it \iZoa(s
Bz, t,tg) I to= ph[t S & VX[ S x <t pil&
& F(g3) = F(pdll;

Clz,t,a) iff a=max{0}u{xl x<t+1& @l &Vj[J < %
()L &ALy S 1 & Prga(]) = Y1 &
& prn(i) = (N1}
By means of

©(a, to) if  A(z, 1) & B(z,t, to) & C(z,t,a),
divergent  otherwise,

Prn(t) = dr{

an injective recursive function f is defined. For z & QL(F) we first have ¢, € #;
consequently @y is fully defined. Furthermore, in conformity with B, for some t,
7 (P (t)) = 75 (prenr(t0) ) is always true; then F(p,) exists. Finally, according to C
7, (pren(f)) is infinitely increasing, because @i, = ¢,. Consequently () lies in
QU.. For f(z) € QU, in respect of relation 4 we must have ¢, € 4, and by relation B
F(p,) is defined. Finally, according to C, F(p,) is & G8del number of .. Altogether
z € QL(F) comes true. We have proved QL(F) <, QU;.

Now, as step 2, the relation QU, <, @Bound is to be shown. Therefore the
following recursive enumerable relations are to be defined:

Az, 1) i Abe)l;
B(z,t) iff  3tote > t & pelto)) & a1 (palte)) > mi (@o(D)];
Clz,t) i 1) &ma(poD) = w2 (@14 1)).

The injective reducing function £ is obtained by

M (pa(t))  if Az, 1) & Bz, 1) & C(z, 1),
Pro(t) = ary t if Az, t) & C(z, 1),
divergent  otherwise.

For z & QU, A and B are always true, For a certain ¢y, if ¢ < 1o, then g (¢) squals ¢
(with possible interruptions m,(¢.(1))), and if ¢ > #y, then at all times @un(t)
= 7, (9.(1)) = ma(p.(tc)). Therefore, f(z) &€ 2Bound comes true. On the other
hand, let f(z) € 2Bound; then g, cannot be divergent anywhere. Furthermore,
the case @p(t) = t is limited to a finite frequency. Consequently, if ¢ > fo, the
case @pn(t) = m2(p.(1))is the only possible one, i.e. according to 4, ¢, & & must
be true, by relation B for every ¢ & N there exists such a #, > ¢ that =, («p,(to)) >
> m, (q:,(t)) holds, and in conformity with C there exists such a #, that the identity
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70, (=(2)) = 72 (p=(#1)) holds for every ¢ > #,. Altogether z € QU. is shown. Thus
the theorem is proved. (3) :

In order to prove the acceptance of the upper bound 2Bound a set U, € NUM
was given. Function sets of the type
" MOD(n) =y {gl g€ R &ALVt = 1o — g(m o) = g(m - 1) &

& Patm.ty) = g]} m=1)
are not contained in an effective enumerable recursive function set, i.e, not in NUMS,
but of course in L(%). For these sets MOD(m), m > 1, 2 MOD(m) = QBound
also holds [5).

DERNITION 4. Let 4, B be subsets of N, define the segment from A to B as

Sgm(4 = B) =dr{d1(X)] A< Xy B}-
If % is a class of partial recursive function sets, then
Sp(W) = {dy(QU)| UeU & U + B &
‘ &VVIVex &U c V- QU <, 2V}
denotes the spectrum of %.

ExampLE 3. If Anon < B, then Sgm(A4 = B) = &. By the completeness theorem
of the arithmetical hierarchy we obtain Sgm(@™ = B™) = {d,(X)| X ¢ Z,,—II,} as
an example. We have Sp(2%) = {d,(@N)} = Sgm (ON = ON).

ConcrusioN 1, Sp(GN) < Sgm(ON = 2Bound)

This assertion is an immediate conclusion from Theorem 1. It is not known
whether the proper inclusion holds or does not hold here. For sets E(F) of the finite
identification [5] holds:
©® YUUe®BR&U #3 - ON<, QU <, 2Bound];

(10) 3IUU e E(#) & QU = QBound].
But the upper bound 2Bound will be accepted here only by “unnatural” sets, for
which in E(%) there already exist upper sets with IT,-complete index sets.

TuroreM 2. Sp(GN,) = {d,(ON)}.

Proof. To outline the general idea, first define a special kind of functionals
and show that these functionals are sufficient to generate the class GN,. Then for
a functional A of this special type we shall prove QL(A) = ONif L(4) # O.

Let F'be a strategy, and let g be a total function. Define

a if At[Fgh) = F(ght') =a & Vit
Fo(8) =« [t <t F(g") # F(g"*I],
divergent otherwise.

Such functionals F,, are called functionals of the effective finite identification or
short E,-functionals. Therefore, in the case of effective finite identification, already

(®) Of course the reduction Q2L(F) <, Bound is possible in one step, But in this case the
construction is very complicated.
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the first consecution consisting of one hypothesis is sufficient to fix that hypothesis as
final. Let F be a strategy, and let E,(F) =4 L(F,,) denote the set of all effective,
finite identifiable recursive functions by this strategy F.

LeMMA 1. For every strategy F you can construct a strategy G for which G,, is
an extension of the functional F,. .

Proof. Let F be a recursive function, and define

G(g") =a “If for some fo < ¢ and for some be N the identity Fig") =

F(g*Y) = b holds, and if f, is minimal relative to this property, then the
output is 5. Otherwise the output is £.”
The inclusion F, = G, follows immediately. By means of the same construction
you can find

LeMMA 2. For every strategy F a strategy G is constructible such that G, = F,,
holds.

Lemma ! and Lemma 2 imply
an GN, = {U| Uc #&3F[Fe #& U < E(F)]}.

LeMMA 3. For every strategy F, E,(F) # @ implies QE(F) = ON.

Proof. The connection ON <, QE,(F) holds by (6). For the proof of the re-
lation QE,(F) <, ON we define the following recursive enumerable relations:

Azt it Nie.)ls
B(z) iff 3ty [F(po)] & F(pie) = F(gl1)];
Clz,t) iff Atodalty < t & Fple) = FphotY) = a & Vi,
[ty < to = Fpi) # Flpi')] =
/Nimo #a()) = @:0)];
we obtain the injective reducing function fusing
0 if Az, t) & B(z) & C(z, 1),
1) =ar { divergent  otherwise.

(i) z € QE,(F). Because of g, € &, A(z, t) is always true. F,.(p,)} implies B(z).
The relation C describes the behaviour of F on ¢,; because of F,.(¢,) = a € N and
Pa = @z, C always holds; for ¢ < 1, the premise (separation at = in C) is not satis-
fiable, and therefore C(z, ) is true for every ¢ < f,.

(ii) f(z) e N. By A we have g, & #, According to B, for sufficiently large ¢
there exist everywhere #, and a such that the premise in C is satisfiable, Consequently
for sufficiently large ¢ the conclusion in C is true. If t, = ut [Flpl) = F(pathl,
then because of C with g = F(p?) = F,i(p,) will be given an index of ¢.. By as-
sertion (11)‘ and Lemma 3 the theorem is proved.

3, Functionals
According to Gold’s theorem (8), we immediately have

THEOREM 3, For every set U < & the Jollowing statements are equivalent:
(a) UeGN;
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(b) There exists a functional A € Z{™ such that U < L(A).

In this paper we shall prove

THEOREM 4. For every set U < R the following statements are equivalent:

(a) UeGN,;

(b) There exists a functional A & Z{™ such that U = L(d).

Observe that for sets in NUMS the following propositions are true [5]:

TrroREM 5. For every set U e GNANUMS there exists a functional A € Z§™n
AITE™ such that U s L(A). X

THEOREM 6. For every set Ue GN,ANUMS there exists a functional 4 & Z{™
such that U < L(A). .

Theorems of this type characterize the complexity of sets in GN, GN,, GNn
ANUMSE ete. () relative to the functionals required for the identification of recursive
function sets. For example, we can say that in GN, all “Z{¢™-hard” identifiable
recursive function. sets are exactly.

Proof (Theorem 4). (a) = (b). If Ue GN, ((by (11)), then there exists such
a strategy F that U < L(F,.) holds.

LEMMA 4. For every strategy F the generated Eq-functional F,, lies in 2{™.

Proof. Let F be a strategy, g € & and a & N; then we have

[¢,dl e F,, iff

J1o[F(g™) = F(g*!) = a & /\|" F(g) # F(g"*")] everywhere.
Consequently there exists a recursive relation R & & x N* such that
[g:a]EFco iff atOR(g:avto)y
therefore F,, € Z{™ is proved.

(b) = (a). We use
LeMMA 5. For every functional A€ Z{™ there exists a strategy F such that 4 = F.,
holds. :

Proof, For A let R & & x N be a recursive relation relative to which

‘ lg,aled iff 3xR(g,a,%)

always holds, Define by means of
F(g") =4 “Forsome b <  there exists an x < ¢ such that R(g"®, b, %) is true
and for this [during the computation to establish that R(g"™®, b, x) holds]
the question will be asked [“Is [/, j]€ g true or not?”] only on tuples [#, j]
with 7 < ¢. [Since A is a unique mapping, there exists at most one b of this
kind.] Then the output is b, [We have A(g) = b If such b does not exist, then
the output is ¢.”

a recursive function F. By definition, F,, = 4 is true,

() For some other classes see for instance [5).
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Now assume that for some U = # there exists a functional 4 € Z{™ with
U < L(4). By Lemma 5, for Fe & let A = F,,; therefore U < E.(F) and, together
with (11), U e GN,. Thus the theorem is proved.
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