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1. Introduction

The paper is concerned with some structural features of a fundamental cycle set
graph and mutual connections between the adjacent fundamental cycle graphs.
It seems that making use of the properties described in this paper we shall be able
to improve the methods for solving some extremal problems related to cycles of
a graph.

Before getting into the details, we shall begin with a brief summary of some
definitions and notations which will be used in this paper. Other terms not defined
here can be found in [3].

Let G = (V(G), E(®) be a simle graph, i.e., without loops and multiple edges.
In what follows, the set of all the edges and the set of all the vertices of a graph F
are denoted by E(F)and V{(F), respectively. We consider in this paper labelled graphs
only. Two graphs G, and G, satisfy the relation G; = G, if they are the isomorphic
labelled graphs. A simple path from v to w is a sequence of distinct vertices and edges
leading from v to w. A closed simple path is a cycle. With every graph G we can
associate the vector space of all cycles and unions of edge-disjoint cycles called the
cycle space of G. A cycle basis of G is defined as a basis for the cycle space of G
which consists entirely of cycles. There are special cycle bases of a graph which can
be derived from spanning trees of G (in the sequel, a spanning tree of G will
be called simply a tree of G). Let ¢ be a tree of G. Then, the set of cycles ¢(z) obtained
by inserting each of the remaining edges of G into ¢ is a fundamental cycle set of G
with respect to t. Two cycle bases ¢, and ¢, satisfy the relation ¢, = c¢; if there
exists a one-to-one correspondence @: ¢, +» ¢, betweén the cycles.of ¢; and the
cycles of ¢,, where the elements in ¢; and ¢, are considered as labelled graphs which
are cycles. Paper [9] contains some necessary and sufficient conditions for a cycle
basis to be a fundamental cycle set.

Two trees ¢, and ¢, of a graph G are said to be adjacent if there exist edges
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e et —t, and e; et,— ¢, such £, = #;~e;Ve,. The tree graph T of a connected
graph G is defined as a graph in which each vertex corresponds to a tree of G and
two vertices of T are adjacent if they correspond to adjacent trees of G.

Let ¢ be a cycle basis of a graph G. The intersection graph B(G, ¢) of ¢ over
the set of edges of G'is called a cycle graph of G with respect to ¢. If ¢ is a fundamental
cyele set, then B(G, c) is called a fundamental cycle graph. Some necessary condi-
tions for a graph to be a cycle graph or a fundamental cycle graph were presented
in [8].

The length of a cycle basis ¢ = {f;} is defined as follows

Ic!=;1f,\,

where |f;| denotes the number of edges in f;.

The problem of finding a minimum cycle basis and a minimum fundamental
cycle set of a graph bas been considered in [4], [6].

Enumeration of all the cycles of a graph using the vector space approach, finding
a minimum cycle basis and a minimum fundamental cycle set of a graph, and finding
the longest cycle of a graph are three problems related to cycle bases of a graph
which still have some open question, see [2], [7]; [4], [5], and [2], [9], respectively,

It can easily be shown that there exists a one-to-one correspondence between
cycles of a graph G and connected induced subgraphs of B(G, c), where ¢ is a cycle
basis of G, but unfortunately this correspondence is not necessarily onto. Thus the
following questions arrise

ProBLeEM 1.1. What cycle basis ¢ of a graph G be chosen so that B(G, ¢) has
a minimum number of connected induced subgraphs.

ProsLEM 1.2. Let G be a given graph. Does there exist a cycle basis ¢ of G such
that there exists a one-to-one correspondence between the family of all cycles
of G and the family of all induced subgraphs of B(G, ¢)?

Another problem related to a cycle basis of a graph appeared in [2].

ProBLEM 1.3. Let G bea given graph. It it possible to find a cycle basis of G such
that for every cycle f of G, the basic cycles that comprise f can be ordered in such
a way that all ring sums of the consecutive subsequences of the basic cycles are cycles?

The main purpose of this paper is to clarify some structural features of fundamen-
tal cycle set graphs (Section 3) and adjacent fundamental cycle graphs (Section 4).

2. Conjectures and counterexamples

One of the first questions appearing to someone who has introduced a new concept
is how this new concept is related to other notions introduced so far. Usually some
conjectures are formulated as the result of such an investigation.

In this section we present some counterexamples for the conjectures which
are concerned with the concepts defined in Section 1 and with other notions related
to trees and cycle bases.

icm

FUNDAMENTAL CYCLE SETS 147

It is easy to find a graph G such that its minimum cycle basis does not minimize
the number of the (induced) connected subgraphs in the cycle graph of G ([7], [8D.

CoNJECTURE 2.1 [7]. The cycle graph of a graph G with the minimum number
of edges has the minimum number of the induced connected subgraphs among all the
cycle graphs of G.

We can show only that in general this conjecture is not valid, i.e., if we take
into consideration %,, the class of all graphs with n vertices, then the number of
the induced connected subgraphs of a graph is not an increasing function of the
number of edges of the graph. For instance, two graphs shown in Fig. 2.1 belong to
%5, F has four edges and G has five edges but F has 15 induced connected subgraphs
and G has only 13 ones.

Fig. 2.1

It can be easily shown that graphs F and G are not the cycle graphs of the same
graph so they do not form a counterexample for conjecture 2.1.

Paper [9] contains the counterexamples for the following conjecture of Dixon
and Goodman (see [2]): for any cycle basis ¢ of a given graph G and for every cycle
f of G it is possible to order the basic cycles which comprise £ in such a way that
all ring sums of the consecutive subsequences of the basic cycles are cycles.

Papers [4], [6] which deal with the problem of finding a minimum cycle basis
contain some examples showing that the extremum trees of a graph with respect

Fig. 2.2
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to a properly defined weight function are not good approximations of the tree
which generates the minimum fundamental cycle set. It has also been shown that
a local neighbourhood search optimization algorithm fails to find an optimal sol-
ution to the minimum fundamental cycle set problem.

A central tree has been introduced by Deo [1] as the best starting tree for gen-
erating the rest of the treesin a graph A central tree is a tree £p in G such that r(to)
< r(t)) for every tree t; in G, where ¢ is the complement of ¢ (ie., Ut = @) and
r(F) is the rank function of a graph (i.e., r(F) = v(F)—p(F), where v and p denote
the number of vertices in F and the number of connected subgraphs in F, resp.).
Unfortunately, as it is illustrated in Fig, 2.2, in general a central tree does not gen-
erate a minimum fundamental cycle set. The minimum fundamental cycle set of
the graph Gis generated by non-central tree ¢, and the central tree #, of G generates the
fundamental cycle set which is not minimal.

3. Adjacency of fundamental cycle sets of a graph

A local neighbourhood search type algorithm for finding a minimum fundamental
cycle set of a graph has been presented in [4]. The algorithm starts with a fundamental
cycle set corresponding to an arbitrary tree of a graph and then at every step the
minimum fundamental cycle set among those which can be generated by the trees
adjacent to the tree generating the current fundamental cycle set is chosen as a new,
improved solution.

Itis obvious that the adjacency of trees of a graph induces somehow the adjacency
of fundamental cycle sets but we must be aware of the fact that even non-adjacent
trees can generate the same fundamental cycle set.

Figure 3.1 shows a graph F and four of its trees. Tree #, is adjacent to ¢, and
c(ty) = e(t,), ty is adjacent to #; and c(,) # c(ts), and despite #; is not adjacent to
t, we have c(t;) = c(ty).
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Let t; and 2, be two adjacent trees of a graph G, i.e., there exist two edges
e, €t;—t,and e; € 1, —1; such that 1, = ¢, —e,Ue,, and let f; denote the fundamen-
tal cycle in ¢(t,) such that ¢,, e, €1, i.e., e; belongs to the fundamental cycle of ¢,
with respect to the chord e, and e, belongs to the fundamental cutset of ¢, with
respect to the tree edge e;. Then, the fundamental cycle set c(t,) of tree ¢, is of
the form

(1) elts) = AU{fi: feclts), e S} {g = fi®fi: fiect), e efifi # fi}

where the third set on the right-hand side consists of the new fundamental cycles,
i.e., which do not belong to ¢(#,) and the second one is the subset of ¢(¢;) containing
fundamental cycles which do not contain the tree edge e;.

Let ¢; and ¢, be two cycle bases of a graph G which are not necessarily funda-
mental cycle sets. Then, ¢, and ¢, are said to be adjacent if there exist cycles fe ¢; —
and g ec,—c, such that ¢; = ¢,—fuUg. Now, we may ask which fundamental
cycle sets generated by the adjacent trees are adjacent. The following theorem gives
the answer to this question.

THEOREM 3.1. Two fundamental cycle sets ¢(t,) and c(t,) generated by the adjacent
trees t, and t, are adjacent if and only if e, belongs to exactly two fundamental cycles
of ¢(t,).

Proof, The theorem follows directly from (1). w

Figure 3.2 shows a graph and its two adjacent trees which generate the fundamen-
tal cycle sets that are not adjacent cycle bases.

Fig. 3.2

As it wasillustrated in Fig. 3.1, the same fundamental cycle set may be generated
by different and even non-adjacent trees.

Let I(c) denote the set of edges of a graph which belong to at least two cycles
of a cycle basis ¢. To find all trees of a graph which generate the same fundamental
cycle set we shall prove the following lemma.
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LemMA 3.1. For any graph G and its subset of edges E, which contains no cycle,
if there exists a fundamental cycle set ¢ such that I(c) = E\, then c is determined
uniquely.

Proof. Without loss of generality we may assume that a given graph G is bi-
connected so that every edge in G belongs to at least one cycle in G. We shall show
now that the edges of G which do not belong to E, can be uniquely partitioned into
vertex-digjoint series of edges (a series of edges is defined as an elementary path
consisting only of vertices of degree 2 except its end-vertices).

Suppose that v is a vertex of G' incident with no edge in E,. Since every edge
in G belongs to a cycle and the edges not in E, belong to exactly one cycle, v is of
even degree, therefore the fundamental cycle set ¢ induces the unique partition
of the edges incident with v into pairs. Now, spliting v into two vertices in such a way
that no pair of edges is split, we decrease the cyclomatic number of the graph despite
the set of cycles remains the same.

Thus, the vertices incident with no edge in E, can be only of degree 2 so that
the edges in G which do not belong to E; can be uniquely partitioned into vertex-
digjoint (except end-vertices) series of edges. Since c is a fundamental cycle set, i.e.,
every cycle in ¢ contains at least one edge which belongs to exactly one cycle in ¢,
there exists a one-to-one correspondence between the cycles in ¢ and the series of
edges, which together with E; generate ¢ uniquely. m

It can be easily shown that in general the lemma does not remain valid when
E is any subset of edges of a graph and/or ¢ is any cycle basis. In these cases there
may exist no one-to-one correspondence between the series consisting of edges
which do not belong to E, and the cycles in ¢.

COROLLARY 3.1. Let ¢, and c, be two fundamental cycle sets of a graph G. Then,
Ic)) = I(c,) if and only if ¢, = ¢,. m

COROLLARY 3.2. Let 1, be a tree of a graph G. Then for any other tree t of G
we have c(t,) = c(t) if and only if t 2 Ie(t)). ™

As indicated above, the set of edges of a graph which belong to at least two
cycles of a fundamental cycle set of a graph plays an important role in finding all
trees of the graph which generate the same fundamental cycle set. The next two

lemmas provide some properties of Lsets corresponding to the fundamental cycle
sets generated by the adjacent trees.

LeMMA 3.2. Let t; and t, be two adjacent trees ofagraph G, le., ty = 1, —e,Ue,.
Then I(e(t2)) = I(c(t))) if ey ¢ I(c(t;)) and e, € I(c(ts)) otherwise,

Proof. The first part follows from the fact that the fundamental cycle sets gen-
erated by trees #, and 7, = t, —e,Ue, are isomorphic if e, ¢ I(c(t,)). Otherwise, if
ey € I(c(2,)), then e, belongs to the cycle fy & e(t;)ne(t,) which contains e, and e,,

and therefore e, belongs to every cycle (atleastto one) fe c(t,), f # Ji which contains
ey, since e, ef@f;. m
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LemMa 3.3. Let t, and t, be iwo adjacent trees of a graph G, i.e., t, = t,—e,Ue,
and let fie c(t,) and ey, e; €f. Then
I(e(t)) = in[ U fro U VA AI(e(),
fieU, fievy
where Uy = {fl ec(t,): e ¢S} and Vi = {f} ec(ty): e, efh.f} # A}
Proof. The set I(c) is the union of all edges which belong to exactly two cycles
of ¢, so that

I(et)= U fof}

11, fisetty)
and applying (1) we can partition this set as follows

I(e(tz)) = f%,%euszmijUj,fLe{/’f?ﬁfof U ffﬁf,?UIig]zfmffu nyzf\ff

2, fjeV2 f3ev2

fijeva
where U, and V, denote the second and the third set on the right-hand side of (1).
Since U, = U, and V, = {fj®fi: fj€V1}, we oBtain
1 1 1
1ew) = U stefjv U finfjef

2 JTEUL
e fiev,

v U (flefinfiefyv U infiv U finfi@f

fhrievy fleu, Slev,

3 “10,F 1 1 1~Fl ) fp
=(fiufdn U finyjufin ,LJ fiofivfin ‘U finfjufin
£l fiet, fieU, fllEUl

fievs Fievy

n U finflufin U Fiafiofin U fluin U f}
£i, fievs ' ft fhev, teUs fiev,
fi finf} to U fiu
= infiv Uflnflu U finfju Uflu J
fln[ﬁ fLJJ‘eU.f‘ Vi f}eUxi ! £ fievs sieth fjen
' fievy
T 1 1
oinl U sinfiv U finffo U finfi].
1t fleuy fiely fi, fievy
fievy

Applying the absorption law x Uxy = x to th'e first term and adding the empty set
finl U finf*] to the second one, we obtain finally

fleUyuV,y 3 _

I(e(t) = fin| U fitu U PlufinI (). =
flety fievy

As shown' above, a fundamental cycle set of a grap'h may b.e.generated 1;y
more than one tree of a graph. This fact leads to the following definition of the ad-
j undamental cycle sets of a graph. )
Jacerﬁz i;'ltl’nzamentaI cyzlc sets ¢, and ¢, of a graph G are said to be tree-adjacent
if there exist two adjacent trees ¢, and #, of G such that ¢; = ¢(%;) and ¢, = c(tz?.
Thus, we can define a fundamental cycle set graph F of a graph G as a graph in
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which each vertex corresponds to a fundamental cycle set of G and each edge corres-
ponds to a pair of tree-adjacent fundamental cycle sets of G. The rest of this section is
intended to clarify some structural features of the fundamental cycle set graph and
some relations between the tree graph T and the fundamental cycle set graph F of
a graph G.

Let {e;, €5, ..., &} be a subset of edges of a graph G. Then, following the idea
of Kishi and Kajltam [5] we can define a subset of trees of G

T[eh €3y ey e,,]’
X1y X2y eer X
where x; =0 or 1 (i =1,2,...,n) as the collection of the trees which contain ¢,

if x; = 1 but do not if x; = 0. Let 7 & T then all vertices of the tree graph which
correspond to trees in

" 1))

are condensed into one vertex in the fundamental cycle set graph, since all trees
which contain edges I(c(z)) generate the same fundamental cycle set.

Let F, denote the local subgraph of F with respect to a fundamental cycle set ¢
which is the subgraph defined by the collection of all the fundamental cycle sets
whose distance from c is 1. Note that a subset of trees of the form (2) may contain
also trees which do not belong to T, the local subgraph of the tree graph 7" with
respect to .

In order to describe the structure of local subgraphs of F we procede similarly
as it has been done in the case of local subgraphs of T, see [5]. First, we define 7- and
y-sets,

Let ¢, be a fundamental cycle set of a graph G and x; be an edge which does
not belong to I(co). Then, the subset of fundamental cycle sets v, (x;) is defined
ag the collection of all the fundamental cycle sets of G whose I-sets contain x; and
whose distance from ¢, is 1. Similarly, the subset of fundamental cycle sets y.,(a;)
for a; € I(c,) is defined as the collection of all the fundamental cycle sets whose
I-sets do not contain g; and whose distance from ¢, is 1.

It is easily shown that any v~ or y-set of a fundamental cycle set ¢, forms the
complete subgraph of the local subgraph F, of F with respect to ¢;. Moreover,
applying Lemma 3.2, it can be shown that

e(ty),

T, ()Y, (@) = o
whether the fundamental cutset of a tree which contains I(e,) with respect to
contains x; or not, where #; can be obtained from a tree t, which generates ¢, by
remowing 4; and adding x;.

Let us consider a graph G shownin Fig. 3.3 and itstree t = {ay, 4y, 03, da, X1,

%3, X}. In this case we have I(c(2)) = {a;, a,, as, a,} and notice that y.q(az)
= Ve (@3)s Teen(¥1) = Tey(%2) = Ty (Xs), Tory(¥5) = Tony(X6)-
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The following theorem is a counterpart of Theorem 4 in [5] dealing with the
decomposition of a local subgraph.

THEOREM 3.2. Let ¢ be a fundamental cycle set of G, let I(c) = {ay, a,, ..., a,}
denote the set of edges of G which belong to at least two fundamental cycles of ¢, and
let {xy, %3, ..., x,} be the set of edges of G which do not belong to I(c). Then the

sets of all the vertices and the edges of the local subgraph F, can be partitioned as
Sfollows:

VF.) = ,EJI Vlz.(x)] =ng1 VIve(apl,

E(F) = Ul olo U B,
where
VInGln Vi) = 8 or  Vr(el = Ve (i # b),
Elr.(x)INE[r(x)] = & or E[v.(x)] = Elr(xg] (i # k),
whether x; and x,, are contained in the same fundamental cycle set or not,
Viy@a)nViy.(a)l = @ or  Viyfa)] = Viy.(al (i # k),
Ely.(adlnEly(a)l = @ or  Ely(a)l = Ely(a)]l (@ +#K),
whether a; and ay, belong to the same subset of fundamental cycles of ¢ or not, and

E[Tc(xt)]nE[yc(aJ)] =0 . =
The proof of the theorem can be easily derived from the preceding consideration.
so it is omitted.
It is well known that a tree graph contains a hamiltonjan cycle. First, the
existence has been proved by induction and then the investigation of some topolo-
gical features of a tree graph led to two procedures for generating a hamiltonian

cycle in a tree graph, see [5]. We conjecture that a fundamental cycle set graph is.
also hamiltonian.
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In fact, the existence of 2 hamiltonian cycle in a fundamental cycle set
graph is of a little use to our problems presented in Scction 1, since we are more
interested in finding a special cycle basis or a special fundamental cycle set of a graph
than in enumerating all cycle bases or fundamental cycle sets of a graph.

ExampLe 3.1. Consider the graph G shown in Fig. 3.4 (a) (see also [5]). The
tree graph of G has 12 vertices and the fundamental cycle set graph F of G has only
4 ones. Figure 3.4 (b) shows one of the hamiltonian cycles of the tree graph of G
obtained by the procedure presented by Kishi and Kajitani, (Different figures in
vertices correspond to different fundamental cycle scts of G generated by trees asso-
ciated with vertices.) Figure 3.4 (c) is self-explained.

ced ofd
I
G
bed C cbd b d
a
bar P
¢
beal bda w
I(Cc)”‘t('] ’(C'm)"‘l,/'f
beax cda
ace Keg)e=|bef len)=|ad]
la
bla acf (C)
H
(b
Fig. 3.4

4. Adjacency of fundamental cycle graphs

"This section is concerned with the mutual connections between two adjacent funda-
mental cycle graphs of a graph, i.e., between two cycle graphs which correspond to
the tree-adjacent fundamental cycle sets, Section 2 contains the counterexample for
the conjecture that in the class of all graphs with the same number of vertices the
aumber of the connected subgraphs of a graph is a non-decreasing function of the
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number of edges of the graph. Despite this fact we hope that this conjecture is valid
in the class of all fundamental cycle graphs of a graph.

Let ¢, and t, be two adjacent trees of a graph G, i.e., there exist e Et—1,
and e, €1, —1, such that 7, = t,—e,Ue,. Suppose that e, , e, &f;, where f, € ¢(t,),
¢(t,) then

c(ts) = fiv{g = [i®fi: frecelty), e, efi}u
U{fi: frect), finf, = B}u {fﬂ freelt), iy # B, e, ¢ 1}
= filuN;UN,UN;.

One can easily show that we must take into consideration the labelled fundamen-
tal cycle graph B(G, ¢(t,)) to be able to transform it into a fundamental cycle
graph of G with respect to the tree-adjacent fundamental cycle set c(z,). Let r; and
sy; denote the labels of vertices and edges of B(G, ¢), resp., defined as follows r;
= r(f;) = {/i} for the vertex corresponding to eycle f; and 5;; = s((f;, £))) = {finf;}
for the edge corresponding to a non-empty intersection of two cycles (though labels
s;; are redundant, since they can be easily derived from the vertex labels, we intro-
duced them for the sake of simplicity).

In the rest of this section we describe B(@, c(1,)) in terms of the labelled funda-
mental cycle graph B(G, ¢(1,)), where ¢, and ¢, are two adjacent trees of G.

Let us notice that ¢(2,)—c(#,) = N, so that only those vertices of B(G, c(t,))
change their labels and neighbours.

The following steps constitute an algorithm for transforming B(G, c(t,)) into
B(G, c(tz)), ri, 8;; denote the labels of vertices and edges of the latter graph.

Step 1. Labeling of vertices. ‘

ri={a}= {£®f} = fivfi=finfy = rur—sy = rusi
for every vertex corresponding to the fundamental cycle in Ny (see Step 2 (a)), and
r; =1y
otherwise.

Step 2. Labeling of edges.

(a) Labeling of the edges incident with f;. Since ginf; # @ (g: € Ny) and other
fundamental cycles of B(G, c(tz)) remain the same, f; does not change its neigh-
bours, We must modify only the labels of edges connecting f; with Ny .

su = gnfi = fi—=(finf) = ri—su.

(b) Bdges connecting vertices in Ny . Let us consider two fundamental cycles g;

and g; (g1, gy € N1). We have

ging, = [i®finf,®fi = (infiufinf)n(finfiufinf)
= [finfy=filulfi— (o))

Notice that f;non S fiu f}, since cycle basis ¢(t;) is a fundamental cycle set, i..,
every cycle in ¢(t;) contains an edge which does not belong to other cycles in e(?,)
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(see [9]). Therefore ging; # @, i.e., there exists the edge in B(G, ¢(t,)) between g;
and g; and it has the following label
S5ty = Sy—rur—(rry) = s0r—(spVsy).
(c) Edges between N, and N, . If g € Ny and fj € N,, then
siy = &nfy = L@finf) = finfinfyafinfinss,
and since finf; = @ for f; € N, we obtain
sty = findy = 8.
(d) Edges between N, and V3. Let g, € Ny and f; € N;. In this case we have
sty = &infy = [i®hnSy = infy=Hufinfi=fi,
and we shall prove that s;; = @ if ad only if inf; = fir/fi. Suppose that 5;; = @,
ie, finfi—fi=finfi~fi = ©. Hence f; 2 finf; and f; 2 finfi, and therefore
Ainfi 2 finf; and finf; 2 finfi. Thus, finfj = fjnfi. On the other hand, if finf;
= finfi, then finfi—f =finfi—fi=@ and finf;—fi = firfi~fi= @ so that
S; = a. "
Let us suppose that finf; = @; then s = finfinfi = finfi = sy # &, so
that a new edge between g; and f; appears in B(G, c(t,)).
In the opposite case, i.e., if finf; # @ we have: if s;; = 5y, then si; = & and
siy = H@®Ainy = [(uf) = nlnf, = (fufdni— (if)
= [nfjofinfy— (Ainh) = syosy—sy # 9
ifsu # Sy W
The procedure presented above describes the elementary transformation of
a fundamental cycle graph into a cycle graph corresponding to a tree-adjacent funda-
mental cycle set. We hope that the method can be generalized to produce a fundamen-
tal cycle graph which corresponds to a fundamental cycle set having special properties
required by an extremal problem considered related to a cycle basis of a graph.

Added in proof. The conjecture, that every fundamental cycle set graph is hamiltonian has
been settled by the author in affirmative (see M. M. Sy sto, On same problems related to funda-
mental cycle sets of a graph, in: G, Chartrand, ¥. Alavi, D. Goldsmith, L. Les-
niak-Foster, D.R. Lick (eds.), The Theory and Applications of Graphs, J. Wiley, 1981).

An efficient algorithm for enumerating all cycles of a planar graph based on the cycle vector
space approach has been presented in M. M. Systo, An efficient cycle vector space algorithm
Jor listing all cycles of planar graph, STAM J, Computing 10 (1981).
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