

DISCRETE MATHEMATICS BANACH CENTER PUBLICATIONS, VOLUME 7 PWN—POLISH SCIENTIFIC PUBLISHERS WARSAW 1982

ON HYPERGRAPHS OF MAXIMAL SIMPLE PATHS OF A CLASS OF HAMILTONIAN GRAPHS

L. SZAMKOŁOWICZ

Institute of Computer Sciences, University of Wroclaw, Wroclaw, Poland

Let $G = \langle V, X, \varphi \rangle$ be an arbitrary simple graph. A hypergraph of maximal simple paths of G is a hypergraph $H = \langle X, \mathscr{E} \rangle$, where $\mathscr{E} = \{E_i\}_{i\in I}$, $E_i = E_j \Leftrightarrow i = j$ is a family of subsets of X corresponding to subsets of edges of an arbitrary maximal path of G. In [1] some fundamental problems in structural hypergraph theory have been formulated. Some solutions to these problems related to hypergraphs of maximal simple paths of a graph are given in [2]. In this paper necessary and sufficient conditions for a hypergraph H to be a hypergraph of maximal simple paths of H in certain subclass H of Hamiltonian graphs are established. Also, the unicity of reconstruction of H based on corresponding hypergraph H will be proved. The class H contains, as a proper subclass, all Hamiltonian graphs for which H is H class H contains, as a proper subclass, all Hamiltonian graphs for which H is H to H and H is H in the class H contains, as a proper subclass, all Hamiltonian graphs for which H is H in the class H contains, as a proper subclass, all Hamiltonian graphs for which H is H in the class H is H in the class H in the class H is H in the class H in the class H is H in the class H in the class H is H in the class H in the class H in the class H in the class H is H in the class H is the class H in the class H i

A graph $G \in \mathcal{G}$ iff there exists a Hamiltonian cycle C of G such that if a vertex $v \in C$ is not incident with any chord of cycle C, then there is a chord d linking both neighbours of v in C. The class of hypergraphs of maximal paths of elements in \mathcal{G} is denoted by \mathcal{H} . The following properties of a hypergraph $H = \langle X, \mathcal{E} \rangle \in \mathcal{H}$ are evident:

- (1) $E_i \in \mathcal{E}$, $A \subset E_i$, $A \neq E_i \Rightarrow A \notin \mathcal{E}$.
- (2) There exists a set $C \subset X$ such that $A \subset C$, $|A| = |C| 1 \Rightarrow A \in \mathcal{E}$.

The set C called a Hamiltonian cycle of hypergraph H. The set $X \setminus C$ will be called a set of chords of cycle C and its elements—chords of cycle C.

Let d be an arbitrary chord of a Hamiltonian cycle of G. There exist in $D = C \cup \{d\}$ exactly two maximal paths of G with the length |D|-2 containing edge d. Hence, hypergraph H has to satisfy:

(3) $d \in X \setminus C \Rightarrow$ there exist exactly two sets E_i , $E_j \in \mathcal{E}$; E_i , $E_j \subset C \cup \{d\}, d \in E_i$, $d \in E_j$, $|E_i| = |E_j| = |C \cup \{d\}| - 2$.

Let E_l and E_j be maximal paths in G determined by chord d in condition (3). Then, it is easy to notice that

(4) For every $x \in C \setminus E_t$ there exists exactly one $y \in C \setminus E_j$ such that $\{x, y, d\}$ $\notin E_k$ for every $E_k \in \mathscr{E}$.

Let us denote $\{x_1, x_2\} = C \setminus E_i$ and $\{y_1, y_2\} = C \setminus E_j$. By condition (4) it follows that for a fixed chord d three cases are possible:

- (a) $\{x_1, y_1, d\}$ and $\{x_2, y_2, d\}$ are not contained in any set $E_k \in \mathcal{E}$; for the remaining two sets: $\{x_1, y_2, d\} \in E_p$, $\{x_2, y_1, d\} \in E_q$; $p, q \in I$,
 - (b) only $\{x_2, y_1, d\}$ is contained in $E_k, k \in I$,
 - (c) none of the sets $\{x_i, y_i, d\}$ is contained in $E_k \in \mathscr{E}$.

Let us form a family of subsets of X denoted by \mathscr{F} . Let d be an arbitrary chord of cycle C. In case (a) we include sets $\{x_1, y_1, d\}$ and $\{x_2, y_2, d\}$ into family \mathscr{F} , in case (b) the sets $\{x_1, y_1, d\}$, $\{x_2, y_2, d\}$ and $\{x_1, y_2\}$, and in case (c): $\{x_1, y_1, d\}$, $\{x_2, y_2, d\}$, $\{x_1, y_2\}$, $\{x_2, y_1, d\}$, $\{x_2, y_1, d\}$, $\{x_2, y_1, d\}$, $\{x_1, y_1\}$, $\{x_2, y_2\}$.

Now, let \mathscr{F} be an arbitrary family of subsets of X and C an arbitrary non-empty subset of the set. Let us denote by $\mathscr{F}^{(2)}$ the least family of a subset in X such that

- (i) $\mathscr{F} \subset \mathscr{F}^{(2)}$,
- (ii) $F_i, F_i \in \mathcal{F}^{(2)}, |F_i \cap F_i| \geqslant 2 \Rightarrow F_i \cup F_i \in \mathcal{F}^{(2)}.$

Let us denote by $\mathscr{F}_{\max}^{(2)}$ the subfamily of all maximal sets of family $\mathscr{F}^{(2)}$. We say that family \mathscr{F} determines a Hamiltonian structure in X with respect to a set C if the following conditions are satisfied:

- (iii) $F_i \in \mathscr{F}_{\max}^{(2)} \Rightarrow |F_i \cap C| = 2$,
- (iv) $x \in X \Rightarrow$ there exist exactly two sets F_i , $F_i \in \mathcal{F}_{max}^{(2)}$ such that $x \in F_i$, $x \in F_i$,
- (v) $x \in X$; F_i , $F_i \in \mathcal{F}^{(2)}_{max}$, $F_i \neq F_i \Rightarrow (y \in X, y \neq x, y \in F_i \Rightarrow y \notin F_i)$.

Let \mathscr{F} determine in X a Hamiltonian structure with respect to C. A subset S of X is called *elementary* if for every $F_i \in \mathscr{F}_{max}^{(2)}$ we have $|F_i \cap S| \leq 2$. In particular, C is an elementary set n(s) denotes the number of those $F_i \in \mathscr{F}_{max}^{(2)}$ for which $|F_i \cap S| = 1$. The number n(s) is an index of an elementary set S. \mathscr{S} denotes a family of subsets of X, all elementary maximal sets of a given Hamiltonian structure with index 2.

It is easy to see that if \mathscr{F} is a family of subsets of X determined by conditions (a), (b), (c), then for a hypergraph H of maximal paths of a Hamiltonian graph G the following condition should be satisfied:

(5) the family \mathscr{F} determines a Hamiltonian structure in X with respect to cycle C and $E_i \in \mathscr{E}$ iff $E_i \in \mathscr{S}$.

Now, we shall prove the following

THEOREM. Hypergraph $H \in \langle X, \mathcal{E} \rangle$ is a hypergraph of maximal simple paths for a graph $G = \langle V, X, \varphi \rangle \in \mathcal{G}$ iff for H conditions (1)–(5) are satisfied. There is a one-to-one correspondence (to isomorphism) between $H \in \mathcal{H}$ and $G \in \mathcal{G}$.

Proof. The necessity of conditions (1)–(5) is evident.

Let $H = \langle X, \mathscr{E} \rangle$ be a hypergraph satisfying (1)-(5) and C its Hamiltonian cycle. We form graph G in the following way: let $G = \langle V, X, \varphi \rangle$ where $V = \mathscr{F}_{\max}^{(2)}$ function $\varphi \colon X \to V^2$ is defined according to condition (iv): $x \in F_i$, $x \in F_j \Leftrightarrow \varphi(x) = (F_i, F_j)$.

By condition (5), and taking into account (iii), (iv), and (v), we obtain the fact that G is a simple graph and for every vertex $F_J \in \mathscr{F}^{(2)}_{max}$ (iii) it follows that there exist exactly two edges $x \in C$ of the graph which are incident with F_J and hence C is a Hamiltonian cycle of G. By conditions (2)–(4) the unicity of construction for family \mathscr{F} follows, and so it follows consequently for $\mathscr{F}^{(2)}_{max}$. Further, by condition (5) and (iv) the unicity of construction for G is obtained. Only in case (c) a fictious ambiguity occurs for family \mathscr{F} when for a chord d none of the sets $\{x_1, x_j, d\}$ is contained in $E_k \in \mathscr{E}$. By conditions (i)–(iv) it follows that if G has a chord with this property, then its Hamiltonian cycle contains exactly four edges and one or two diagonals. Here, the unicity (to isomorphism) of G is evident. The vertices of G, as it follows by construction of \mathscr{F} , are determined either by a chord incident with a vertex or by a pair of edges belonging to a Hamiltonian cycle and incident with the same chord G. Hence, it follows that $G \in \mathscr{F}$.

By the construction of sets in family $\mathscr S$ it follows that each $S \in \mathscr S$ is a set of edges of G belonging to an arbitrary maximal path of G. A set of edges of G belonging to an arbitrary maximal simple path of the graph is an elementary set with index 2 and it belongs to $\mathscr S$. Hence, according to condition (5) hypergraph $H = \langle X, \mathscr E \rangle$ is a hypergraph of maximal simple paths of G.

The set of conditions (1)-(5) allows to formulate a simple algorithm for verification whether $H \in \mathcal{H}$. It seems that analysis of independence and reduction of the set of conditions should be interesting.

References

- [1] L. Szamkołowicz, On problems of the elementary theory of graphical matroids, in: Recent advances in graph theory. Praha 1975, 501-505.
- [2] —, On reproducity of a hypergraph of maximal paths in a graph, in: Graphs, hypergraphs and block systems, Zielona Góra 1976, 297-303.

Presented to the Semester Discrete Mathematics (February 15-June 16, 1977)