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The purpose of this paper is to study language families which are obtained by apply-
ing arbitrary or bounded or A-free homomorphisms to languages accepted by
rational stochastic antomata.

1. Definitions and preliminary results

In what follows, every alphabet X will be a finite subset of a fixed infinite set of
abstract symbols. For any word P in X*, |P| means the length of P, |P|, is the number
of occurrences of the letter  in P, and mi P denotes the mirrorimage (or the reversal)
of P. For the empty word we shall use the symbol 4.

The notions of a pre-AFL, an AFL and a principal AFL are defined as in Gins-
burg (1975). The families of linear context-free, context-free, quasi-realtime (Book
and Greibach, 1970), deterministic Iba and recursively enumerable languages are
denoted by Ly iws Lery Larts Locs and Fre, respectively.

A stochastic automaton is a quintuple 4 = (X, S, M, =, f) where X is an alpha-
bet, S is a finite set of states, M is a mapping from X into the set of stochastic | S| x| S|
matrices, @ is a stochastic 1% |S| vector, and f is a [S] x 1 vector consisting of 0’s
and Is only. If, in addition, all entries in & and f and in the matrices M(a), a in X,
are rational numbers, A is called a rational stochastic automaton.

Define M(A) = E(|S| x|$]| identity matrix) and M(Qa) = MM () if Q is
in X* and @ is in X, Then A generates a stochastic word-function p, defined by
pa(P) = aM(P)f for all P in X*, Languages of the form

m L(A4,n) = {P eX*| aM(P)f > 1},

where the cut-point 5 is a real number, are called stochastic languages. If A is a
rational stochastic automation and 7 is a rational number, L(4, 7) is called a rational
stochastic language. The family of all rational stochastic languages will be denoted
by ¢.2. If the sign > in (1) is replaced by the sign = or #, the corresponding
language families for rational stochastic automata and rational cut-points are
denoted by 8.2 and 9.2, respectively. Exactly the same three families are obtained
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32 P. TURAKAINEN

by using rational pseudostochastic automata in which the elements in 7 and f and
in the matrices M(q), @ in X, are allowed to be arbitrary rational numbers (Tura-
kainen 1968, 1969a, 1975b). This is a very useful tool when one wants to study
whether a given language is in &%, 9% or 4%. In questions like this we very
often also use the fact that the set of all rational pseudostochastic word-functions
is closed under sum, difference, Hadamard product and multiplication by rational
numbers. .
As an entertaining example, consider the language

L= {akzrb"al-u| P> 0}

where ko = 0, ky = 1, kyyy = ky+ky—y (n > 0) is the Fibonacci sequence. For
any letter x, there is a rational pseudostochastic automaton which can count the
number of x’s in any word. This implies that for some 4, p,(a"h") = n®—mn—m?
for all m and n. Hence L; = {P| p4(P) = 1}na*b* isin £& . But by the properties
of the Fibonacci sequence we know that L = L, . Therefore, L is in % .

It is known that ¥ <« 4% and 2% < 4L <= Ppcs Where all inclusions
are proper. 2% is an intersection-closed AFL, and &% is a pre-AFL which is
closed under mirror image, sum and intersection, but is not closed under complemen-
tation, (A-free) homomorphism, catenation and catenation closure (Turakainen
1968, 1970, 1971). The family #% has rather weak closure properties. It is closed
unfier mirror image, inverse homomorphism, complementation (Turakainen, 1969b),
union with regular sets and intersection with regular sets. But it is not closed under
union or intersection (Laping, 1974; Soittola, 1976). Lapin§ presented the following

counterexample. Let », v and w be any integers such that 0 < u < v < w. Then
the languages

Ly = {a"b*| m" > k* > 0}c*, L, = a*{bkc"| k* > n* > 0}

are in. 4%, but LV L, and L, AL, are not stochastic.
) Finally, 4% is not closed under (A-free) homomorphism, catenation and caten-
ation closure (Turakainen, 1970, 1971). Namely, the languages L, = LE) a*b(a*b)*a*

and Lob are in £2. Since £ is a pre-AFL, we know that the marked catenation
Loc(aub)* is in &2 . Hence these languages are in 4.2 . But (L, b)* and Lo b(aw b)*
are not stochastic. Note that this proves also the abave-mentioned result that 8%
is not closed under A-free homomorphism, catenation and catenation closure.
‘{xfter tl}ese negative results the following questions arise: How large are the
fannhes‘whlch are obtained by -free or arbitrary homomorphisms from rational
gochastw languages? What are their closure properties? For these questions we
introduce the following. notations. For any language families & and &, define

LAZL, = {LoLy| Lin & and L, in 2,},
H#) = {h(L)| L in £, h a homomorphism on L},
H(#) = {KD)| L in &, h a ifree homomorphism on L}.
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If &, denotes the family of all stochastic languages, H*(#,) contains all langn-
ages, and H(Z,) contains all languages over one letter (Soittola, 1976)! For rational
stochastic languages the situation is entirely different. We know that H(6.%) =
= H($2) € Locs and H (EY) = HNGL) = Lpe (Turakainen, 1976). More-
over, H(@.%) is an AFL closed under mirror image, intersection, A-free substi-
tution and A-limited homomorphism as well as A-limited (nondeterministic) gsm
mappings (defined below). These closure properties will very often be used in the
following considerations.

It is possible to characterize the families H(4.%) and H*(9%) by means of
the so-called rational multistochastic automata (Turakainen, 1973, 1975a) for which
instead of just one mapping M we have a finite set of mappings M;. In the definition
of L(4,m), aM(a,)...M(a)f is replaced by the least upper bound of all numbers
My, (a) My, (a2) ... Mi(adf, as in XU {A} (see the last section of this paper).
The families H(#.%) and H*(%.%) are also obtained as the output languages of
rational stochastic sequential machines (Turakainen, 1975a).

A homomorphism  is A-Iimited on a language L if there there exists a constant k
such that PQR eL and A(Q) = A always imply that |Q] < k. In an analogous
manner, we can define A-limited gsm mappings. )

Let f be a function from N into N where N={0,1,2,..}.A homomorphism
h is f-bounded on L is there exists k > 0 such that |P| < kA(P)) for all Pin L. Xf fis
the identity function and 4 is fbounded on L, we say that h is a linear erasing (or
k-linear erasing) on L.

We conclude this introductory section by listing some open problems:

1. Do the families H(Z,) and H*(Z,) coincide?

2. Is H(% %) a proper subfamily of Zpes?

3. Are all contexi-free languages in H(9.%)?

4, Is H(#%) a principal AFL?

5. Is H(%%) closed under linear erasing?

6. Is H(%%) closed under complementation?

Some results related to these questions will be presented inthe following sec-
tions.

2. Context-free languages and the family H(%%)

A language is called deterministic linear (Nasu and Honda, 1969) if it is generated
by a linear context-free grammar G = Yy, Vr, Xo, F) such that all productions in F
are of the two forms X — a¥P, X~ a, ain ¥y, Y in Vy, P in V¥, and for any X
in Vy and a in Vr there is at most one production of type X - aQ, Q € (Va9 V¥,
in F.

TuroreM 1. All deterministic linear languages are in ££. Hence they are rational
stochastic. There exists a nonstochastic linear language. All linear languages dre in
H(9%). ‘
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Proof. (The original proof of the first assertion is due to Nasu and Honda,
1969.) Let G = ({Xy, ..., X,}, V1, X;, F) be any deterministic linear grammar.
We may denote the letters in V¢ by 1,2, ..., m—1. We may assume that, for each
pair X in Vy, ain Vy, F contains a production of type X — aQ, because otherwise
we can take a new nonterminal X,,, and additional productions X — aX, ., and
Xyr1 = bX,yq for all b in V.

There exists a two-state rational stochastic automaton (Vr, Sy, M;, (1, 0),
(0, 1)7) generating the word-function p for which p(4) = 0 and

plasas ... a) = Oy .oa;  forall aya, ... a e Vi
where the right side is an m-adic expansion. For each g in V., define
41 .. Ay By
M(@) = Az .. Ay B,
0 .. 0 E
where E is the 2 x2 identity matrix and
4 {Ml(miP) if X; — aX; P is in F for some P,
Y7o otherwise,
{E ifX;—aisinF,
710 otherwise.
Let = (1,0, ...,0) and f = (0, ..., 0, I). Clearly cach M(c) is a rational sto-
chastic matrix. It is now easy to see that if X, =a Y P s=a .. a Y, P
o Pr=ay..aa6.,.,P .. P, then aM(asa,...aq)f=O0.P,P,_, .. P, for any
k > r. Otherwise we have xM(P)f = 0.
There exists a 3-state rational stochastic automaton (Vr, 82, M5, (1,0,0),
(0, 0, 1)T) generating the word-function ¢ for which q(4) = 0 and ¢(P) = 0.P for
all Pin V%, For each a in V., define

|b1 0 ... 0
[a“]I......
M'(a) = o ib,, 0 ... 0
R
0 | M)
where
a _{1 if X, » aX,P is in F for some P,
4 0 otherwise,

b—{l ifX;~»aisinF,
710 otherwise.

Each M(a) is a rational stochastic matrix. Let 7’ = (1,0 0) and f* = (O
ERE IREENY - IR

s 0, )T, These definitions imply that if X, 2 ..aY,P=a .. 6a.,, P;

e ©
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then we have a’M'(a;s ... 4, aryy ... @)f' = 0.8p45 ... & for any k > r (for k =
= r41 the value is 0). Otherwise this probability is 0. Now it follows that

L(G) = {PeV§| aM (P)f = a’M'(P)f}n{P eV} «’M'(P)f > 0}u
w{P € V}| G generates P by right-linear productions}.

The first language in the intersection is in &%. Two other languages are regular.
Hence L(G) is in £.Z.

The second assertion follows from the fact that the mirror image of the language
Lob(au b)* (see Section 1) is not stochastic, but it is generated by a linear grammar
whose productions are X — aX, X — bX, X > bY, Y—aYa, Y- b, Y > bZ,
Z->aZ,Z—bZ,Z—b.

Finally, let L be any A-free linear language < VF. We may assume that L
= L(G) where the productions of G are of the forms X; — aXj, X; > Xja, X; — a
where « is in Vy. Since H(Z.¥) is closed under A-free homomorphism, we may
assume that the set of the right-linear productions is deterministic linear. For each

pair X;, X; such that X; 2 X; P for some P in V§, let a;; and b;; be new letters. We

construct a deterministic linear grammar G’ from G by omitting all productions
of type X — Ya and taking new productions X; — 4;;X;b;;. Then we have

L(G) = s(h(L(GN(VruCV)¥))

where V7 consists of ¥ and of the letters b;;, and C consists of the letters a;;; /1(ay;)
= A, h(x) = x for all x in ¥, and s is the A-free regular substitution

s(b) = {PeVil X, 2 X,P},
s(a) = {a}

Since & is A-limited on the above intersection, we conclude that L(G) is in H(%9.%).
Hence the same holds for LU {1}. Another proof for this is obtained from AFL-the-
ory, for %y is a principal semi-AFL generated by the mirror image language which
ising%,

COROLLARY 1. REVBD(Lin) © H(%%) where REVBD(Lin) is the family of
all languages accepted by multipushdown automuta which operate in such a way that
in every computation each pushdown store makes at most a bounded number of reversals
and which run in linear time.

Proof. Every language in REVBD(Lin) is of the form A(L;nL;NL3) where A
is A-free and L;’s are linear (Book, Nivat and Paterson, 1974).

COROLLARY 2. Zps < H(4L) where Py is the fomily of all derivation-bounded
languages.

Proof. $pp is the smallest AFL containing all linear languages and closed
under A-free substitution (see Ginsburg, 1975).

Let D, and D, be the Dyck languages over X; = {a,b} and X, = {a, b,
a,, by}, respectively.

for each a in Vr.
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TaEOREM 2. The language XY —Dy is in H($%). If D, € H(4%), then X¥—D,
is in H(4%). Hence if Dy is not in H(3%) or if D, is not in H(9.%), then H(%.%)
is not closed under compl tation. Consequently, if H(92) is closed under comp-
lementation, then Lop € Lopr € H(9Y) = Prpos.

Proof. The last assertion follows from the fact that % ¢ is the principal AFL
generated by D, and every quasi-realtime language is obtained by a A-free homo-
morphism from an intersection of three context-free languages (Book and Greibach,
1970).

Let

Ly = {PeX¥| |P|, = |P},

L, = {PeX}| 1Ql. > 0]y for every prefix Q of P}.
Clearly, D, = LynL, so that X¥—D, = (X¥—L,)U(X}~L,). Here L, is in £
and hence XYL, is in 9. The language Ly = {PeX}| |P|, < |Ply} is in 92
and XT—L, = L X} so that X¥—L, is in H(%.%). Consequently, X*—D, is in
HE2).

The assertion concerning X3 — D, follows from the following identity (Greibach,
1975):

X3-D; = h_l(X?*Dl)UXg(% h"l(Di)bzuazh"l(DﬂbOXg
where h(a) = a and h(b;) = b, { = 1, 2. Thus, the proof is complete.

An interesting open problem related to the complementation problem is whether
the following languages are in H(%4.%) or in ZLarrt

K; = {a?| pis a prime number},
Ky = {PicPyc... Poc| 7 > 0, P € (aUb)X, i # j implies P, # Pj}.
The complements of these languages are in H(%%), because
a*t—K; = h({a"b*c*"V) n > 1,k > o},
X*~K, =X*c*{PcQPc| PeX*, Qe (X*kc)*}Y*oy*x

where h(a) = h(b) = h(c) = a, X = {a, b} and ¥ = {a, b, c}. It is also known
that the language

K5 = {PcQPR| P, Q and R in x*}

i;1 ?;'lg)tochastic and belongs to H(4.%), but we do not know if its complement is in

3. Polynomial-bounded homomorphisms

For any function £ and any language family 2, let Hy(Z) denote the image of &
under f-bounded homomorphisms, We know that H (H(92)) = H/(82)
= H,(g.‘?). This implies that if f is superadditive and semihomogeneous, then
H,(.g.?) is an AFL which is closed under linear erasing (Book, Greibach and Weg-
breit, 1970; Book and Wegbreit, 1971). Hence, by choosing f(n) = n or f(n) = n?,
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we conclude that H,(¢4%) and H,.(4%) are AFL’s which are closed under linear
erasing. We have now the following inclusions:

H(9%) € H(%%) = ¥pcs,

H,(9%) < H.(9%) < NP.
Here NP means the family of langnages accepted by nondeterministic Turing ma-
chines operating in polynomial time, The last inclusion follows from the facts that
%% < NP (Phan Dinh Diéu, 1971) and that NP is closed under polynomial-bounded

homomorphism (Book, 1972). Next we shall show that & cy is a subfamily of H,.(6%).
‘We prove first the following theorem:

THEOREM 3. If L is any context-free language and c is a new letter, then
{e!P*P] Pin L} isin H(4%)
and
{(Pc)*!| Pin L} isin H($%).

Proof. 1t suffices to consider the case where A is not in L. Hence L = L(G)

where G = (Vy, V¢, Xo, F) is in Greibach normal form. Define
Ly = {PcQc| PeV*VyV*, P =0}
where ¢ is not in ¥ = Vyu ¥y, Now L, is in H(9%), because it is of the form
GSM(L}) where GSM is a A-free nondeterministic gsm and Lj = {PcPc| P in
V*VyV*} which is in £, Clearly
Li(AuV+anV+eLi(AuV+nX,e(Vie)* Vic
= {XocPyc... Pl k>0, Pyin Vi, Xo =Py = ...
Denote this language by L,. Hence L, is in H(%.%). By using a gsm A-limited on L,
we see that the language )
L = {d®lc...d"-11cP) k>0, Pyin V§, Xo =Py = ... =P}
isin H(9.%) (d is a new letter), Here |Py| < [Py4y| and |Pyf = k. By the A-free sub-
stitution s(d) = ¥# (P is a renaming of Vy), s(x) = x for all x in VU {c}, we
form the language s(L). It is in H(%.2). It can be verified that the language
Ly = {(@cy@l n>0,Qin Vi}

where 0 & 7% is the renaming of Q, is in H($.%). This implies that
®» s(La)nLy = {(Pc)F'=*Pp| Pin L}
is in H(%.%) whence the last assertion of our theorem follows. Moreover, (1) in;plics
that H(#.%) contains the language consisting of the words P, PinL, k= |PP~-1.
This yields the first assertion.

COROLLARY 1. Logy is a subfamily of H.(8Z).

Proof. Bach quasi-realtime language L is of the form M(LinLynLy) where

L/ s are context-free and / is length-preserving (Book and Greibach, 1970). Since
H(%2) is closed under intersection and A-free homomorphism, Theorem 3 shows

=>P,,}.
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that {¢*P| Pin L, k = [P*} is in H(9%). Thus L is in H,.(H(¢%)) which is
equal to H,.(£.%).

COROLLARY 2. HH8Z) = &yu. (See also Theorems 7 and 8.)

Proof. By Theorem 3, {c*P| Pin L,nL,, k = |P|*} is in H(9%) for any
context-free languages L, and L,. Hence, A(L L) is in H*(H(9.%)) = H 9.2)
= HY#%) for any homomorphism 4. On. the other hand, Zpy = H*(ZcrA Lep).

' THEOREM 4. Let f: N— N be any polynomial. If L is in H($%) and b is an
Jf-bounded homomorphism on L, then

{cf¥*DP| Pinh(L)} isin H(9%).

Proof. Thus we assume that L < X™*is in H(4%) and h: X* - Y*is f-bounded
on L. Define &, (x) = h(x)if h(x) # A, and 2 (x) = fif h(x) = 1, where § is a new
letter. Then 4, (L) < (YU {f})* is in H(9.%), and k(L) = g(hy(L)) where g(f) = 4
and g(y) = y if y is in Y. Let d be a new letter, Now we find that

h(L)AY*n {g"*(P)dP| P in Y*} = {Pdg(P)| P in hy(L)}.
Both languages in the intersection are in H(%.%). Hence the language L, on the
right-hand side is in H(%%). Since 4 is fbounded on L, it easily follows that there
is a constant & such that |P| < &f{(|g(P)|) for all P in #;(L). Hence one can construct
a'GSM J-limited on L, such that
GSM (Lo) = {c'("PdP| P in h(L)}

where ¢ is a new letter and ¢ is a function of |P| such that ¢(|P[) < f(|P]) for all P
in A(L). Now we have

*GSM (Lo)n {c/*DdP| P in ¥*} = {c/4*™NdP| P in r(L)}.

Therefore, the proof is complete if we can show that the latter language in the inter-
section is in H(4.2). It is of the form s(K) where K = {¢/™da"| nin N} and s(a)
=Y, s(c) = {c}, s(d) = {d}. Hence it is in H(42L), for K is in £Z.
_ CoroLLaRY. If L is in H(4%) and h is a linear erasing on L, then {PdP| P
in h(L)} is in H($ZL). (Thus H(S.Z) is closed under linear erasing iff it is closed
under 2-linear erasing.)

Proof. Now f(n) = n so that L, = {c*ldP| P in h(L)} is in H(ZZ). If 5 is
the A-free finite substitution s(c) = ¥, s(») = y, y in YU {d}, we have

$(L)N{PAP| Pin Y*} = {PdP| Pin h(L)}.

4. Polynomial languages

For any polynomial p: N— N with degree > 1, the language {&*™| nin N} is
nonstochastic (Soittola, 1976), but the language {a"b*®| nin N} is rational sto-
chastic. More generally, we have

. THEOREM 5. Let r >.0 and k > 0 be any integers and Dyy ooy Pr any polynomials
inny, ..., m with integer coefficients. Then the language
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{ats ... gm0 pE UL | piny L) > 0}

isin 8% (ay, ..., a4, by, ..., b, are distinct letters).
Proof. Consider words of the form

P = al ... afkby+ ... bjr.

Since the set of word-functions generated by rational pseudostochastic automata
is closed under sum, Hadamard product and multiplication by rational numbers,
it can be verified that there exists a rational pseudostochastic automaton 4 such
that

pa(P) = Z (Pi("l: cey ”k)"m:)z-
T

Consequently,
L= (0] p(@) = 0}na ...afb ... b}
which is in £%.
LevMA. Let ky, ..., k, (r > 0) be any nonnegative integers. Then

{arag® .. a® ninN} isin H(9Z).

Proof. We consider the nontrivial case that &, > 0 for some s. Let p,(n)
= n*—n and py(n) = n* if { # 5. By the same reasons as in the previous proof we
can conclude that

{ah:® ... aBs™praliy ., afr™| nin N} isiné2,

whence the lemma follows by a length-preserving homomorphism.
COROLLARY. Let p,(n), ..., p.(n) be any polynomials with integer coefficients.
Then the language
L= {a'\{ﬂ")a?(") .o al"™| p(n) > 0}

isin H(9%).

Proof. If the leading coefficient of some p; is negative, L is finite. Therefor?,
assume that the leading coefficients are all nonnegative. Let m = n—no. If o is
large enough, then p,(n) can be written as a polynomial ¢,(m) with nonnegative
coefficients (i = 1, ..., ). Hence, for some finite language Ly,

L = Lu{ag® ... a%™| min N}.
Here the polynomial language is of the form h(Ly) where A is length-preserving and
L, is of the form considered in the previous Lemma.
THEOREM 6. Let pi(ty, vy i)y i =1, o, r (r> 0,k >0) be any polynomials
with positive integer coefficients. Then the language

{a'jt‘"w s MO gRa(ne e ", qfr wemd | plsin N}

isin H(4%).
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Proof. Since H(%.%) is closed under union, it suffices to show that
L(ps o p) = {@fp oo gl | s > 0}
is in H(%%).

Denote A = {ay, ..., 4} and B = {by, ..., b,}. As in the proof of Theorem 5,
it can be verified that the language

Ly = {Pe(AUB)* |Ply, = pi(IPlb,, .., [Ply), |Ply, > 0}

isin 2. Since the coefficients of the polynomials p; are positive and every r; occurs
in some term of the sum 3, p;(ny, ..., n), it follows that

|1 7Ke +nk< kZPJ(nh "-:"k)

whenever all n,’s are greater than 0. Hence every word P in L, satisfies the condition

k
3 1Pl < ki [P,
i=1

=1
Conéequently, for any choice of values n; > 0, ..., n, > 0, the language
Ly = Lin(BAUB*4U ... UBEA*A*N(B*a,)*(B*a,)* ... (B*a,)*

contains a word P such that |P|,, = n, for all i, Hence, if #(a;) = a, and h(b) = 4
for every {and j, then A(P) is the word of L(p,, ..., p,) corresponding to the values
Ay, ..., e Consequently, L(p,, ..., p,) = h(L,). This completes the proof, because
his A-limited on L,.

Remark. Theorem 6 does not hold for all polynomials, because every recursively
enumerable language L < a* is of the form

L= {ar® 2| p(ng, ...,m) > 0}
(Matijasevié, 1970),

5. Recursively enumerable languages

We saw in Corollary 2 to Theorem 3 that the families H*(#.%); HN9%L) and Ly
are equal. By Theorem 1 we know that H*(Fym A Ly is 8 subfamily of H*(#.%).
We show now that they are equal.

THEOREM 7. Ppg = Hl(guul\ ngN)'

Proof. (The original proof is due to Baker and Book (1974), and it simulates
the action of a Turing machine. A sharper version of Theorem 7 with a more compli-
cated proof is presented in Turakainen (1977).) Let L be in Lgg. Hence, L = L(G)
where G = (Vy, Vi, Zo, F) is a formal grammar. For each a in ¥y, let @ be a new
letter. For each P in (VyuU Vy)*, let P be obtained from P by replacing every a & V.
by @. Letters in ¥y remain unchanged. Consider a linear grammar G, with two
nonterminals X, (the initial letter) and ¥, and with the following productions:
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Xo — aXod
Y, = dYea,
Y, = QYomiP

Y, = ¢Yoc,

forallaeVy, X,~ cYye,

Yo - xYox forallae Vi, x eV,
forallP— QinF,
Yo =d
Thus the terminal alphabet of G, is the union of Vy, Vi, ¥y and {c, d}.
We continue by constructing another linear grammar G, with three nonterminals
X,, X, and X, and with productions

(c and d are new letters).

Xo— Xy, X;—aX, forallaeV,, X,—cX,,
X, = dX,d, X,—-xX,x forallae Ve, xeVy,
X, BX,miQ forallP-QinF,

X, »ceXze, X,—-dZjec.

Any terminal derivation in the original grammar G is of the form

* * * * ]
Zy=> Py => Py = ...=> Py, = Py, €V}

where, for every i, P; generates Py, in zero or one step. Clearly the corresponding:
word

(0] Porst PpesC ... PrdZoemiPyemiPac ... cmiPy,

is in L(G)NL(G,). Conversely, every word in L(G)NL(G,) is of the form (1)
where Z, = Py 3. Py = Pyy,q € VE. Hence we can conclude that L(G)
= h(L(G,)nL(G,)) where h(a) = a for every a in ¥y and A(x) = 1, otherwise.

COROLLARY. Every L in %xg is of the form (LynL,)/Lg where L and L, are
linear languages and Ly is a regular language.

Proof. Use the above theorem for the language LS where § is a new letter. Ther
L = (L(GINL(Gy) )/p4*.

Remark. Bvery L in gy is of the form L = h(L,) where L, is in £Z and,
for each letter a, either 4(a) = a or h(a) = A (Turakainen, 1976). By the technique
used in the proof of Theorem 4, it can be verified that L, = {h(P)dP| P in L)
is in 2. Hence, every L &€ gy is of the form L = Lo/Lg where L, is in §% and
Ly is regular. ) '

As we mentioned above, every L in Zyg is obtained from a language in 8%
by erasing all occurrences of certain letters. The following theorem shows that the
erasing of one or two letters is enough.

TuroreM 8, (i) The family &% contains a language Lo = {a, b}* such that
every recursively enumerable language L < a* is of the form L = h(Lso (LonLr))}
where Ly is a finite language, Ly, is regular, and h(d) = a, h(b) = A

(ii) For any alphabet X, &% contains a language Ly S (XU {a, b})* such that
every recursively enumerable language L over X is of the form L = h(L, NLg) where
Ly 13 regular and h(a) = h(b) = A, h(x) = x for all x in X. .
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Proof. Matijasevié (1970) has shown that there exists a universal polynomial
U(x, Xy, ..s X, p) with integer coefficients having the following property. For any
recursively enumerable L < a*, there exists a number m,, in N such that

L= {a"| Ulmyg, ky, ..., ky,n) = 0 for some ks in N}.

Define
Lo = {a'bb™ab¥: ... abk| U(m, ky, ..., Ly, n) = 0}.

Tt can be verified that Lo is in &.%. Let m’ be the value of the indicator m for the
language L/a". Then we have

a'(Lja"y = h(Lona*bb™a(awb)¥)

where (d) = a and h(b) = A, This proves (i).
Let X = {@.1(, ..., @5} De any alphabet. Let « and b be new letters. Define
a mapping g: X* — N as follows:

g =r,

glayay, ... ay) = iyiy .. B ((r+s+1)-ary expansion).

There exists a rational pseudostochastic automaton 4 such that p,(P) = g(P) for
all Pin X*, This implies that the language
K = {PQ| PinX* Qin (aub)* 0|, = g(P)}

isin 6%2.

Let L = X* be any language in Zp. Consider the language L, = {a?®| P
in L}. Cleatly, L, is a subset of a"a* so that a"(L,/a") = L,. By the proof of (i)
we conclude that L, = h(L,nLg) where h(a) = a and h(b) = A and Ly is regular.
This implies that

L = hy(X*(LonLe)NK)

where h; (@) = hy(b) = 1, and h(x) = x for all x in X. Since now X*(LonLg)NK
= (X*LynK)NX*Ly, the proof of (ii) is complete, because X*L, is in 4.2

Remark. It is not known if every L in Pyy is obtained from some L, in .2
{or in 4.%) by erasing the occurrences of at most one letter. It is known. thatany
language is obtained with this kind of erasing from a stochastic language (Soittola,
1976).

In the rest part of these notes we deal with rational multistochastic automata
§=(X,8,{My, ..., M}, m, f) in which each M; is a mapping from XU {1} into
the set of rational stochastic |S| x |§| matrices. Thus it is possible that, for some
values of i, M;(4) s E. Let p, be the word-function generated by 4 (for formal
definition, we refer to Turakainen, 1973, 1975a). It is known that HA(4.%) (that is,
Zre) is the family of all languages of the form

L4, n) = {P| p(P) > n}
where 7 is a rational number, If for all §, M (1) = E, we obtain. the family H(%.%).
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THEOREM 9. There exists a rational multistochastic automaton A and a rational
cut-point 7 such that the following two conditions hold:

(i) The language {P| p4(P) < n} is not in HNY.Z);

(ii) Either {P| p4(P) = n} is not in H9L) and no infinite subset of it is in
HY%2), 0r {P| pa(P) < n}isnotin H(9.L) and no infinite subset of it isin H\(4.2).

Proof. Let L < a* be a simple set, i.e. L is in Prg, a*-L is infinite, and KnL
is nonempty whenever K < a* is an infinite recursively enumerable language. (For
the existence of L, see for instance Rogers, 1967.) Since Prg = HY(%Z), there
exists a rational multistochastic automaton 4 and a rational cut-point % such that
L = L(4,n). Since g*— L is not in Zry, the first assertion holds.

Finally, (ii) is true, because either {P| p4 = 5} isinfinite or else {P| p(P) < 9}
is infinite.

Remark. It is not known if Theorem 9 holds for H(4.%) and for rational multi-
stochastic automata such that M;(4) = E for every i.

Note added in proof. Some problems studied in this paper have recently been solved in Tura-
kainen (1981a), (1981b).
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GENERALIZED IDENTIFICATION EXPERIMENTS
FOR FINITE DETERMINISTIC AUTOMATA

HANS-DIETER BURKHARD
Department of Mathematics, Humboldt University, GDR

In the theory of state identification experiments different kinds of experiments can
be considered: diagnosing experiments for the determination of initial states, homing
experiments for the determination of states at the end of the experiments, and, for
instance, control experiments for bringing the automaton in a certain state. In this
paper there are introduced generalized identification experiments which can solve
all these tasks as special cases, and which can also solve additional tasks that come
by connections of diagnose, homing and control. Using the method described in
[2] an algorithm is given for the solution of the existence and construction problem.

In [1] were introduced relations of indistinguishability for output words such
that the experimentalist can identify only by output words which are distinguishable.
Here we consider generalized identification experiments with such indistinguishab-
ility relations and solve the existence and construction problem for regular re-
lations.

Let¥ = [X, Y, Z, 4, A, Z,] bea finite deterministic synchronous automaton
with input set X, output set Y, state set Z, next state function §: ZxX — Z, output
function A: Z xX — Y and the set of initial states Z, < Z.

(1) DEFINITION. An input word p € X* is a generalized identification experiment
(gi.e) for W= [X, ¥, Z, 8, A, Z,] and a given set .4 < 27 x2* iff there is an
identification function ¢ from A(Zo,p) in # such that for all ze Z, we have z
€ 91(Mz,p)) and 8(z,p) € @2(Az,p)) (@1, 2 2re the components of g, ¢(q)
= [p1(a), P2(@)])-

(2) COROLLARY. An input word p is a gi.e. for % and M iff for all g € M(Z,,p)
exists [M, N)e # with

M, 5 {z] z€ZoAAz,p)=4q} S M,
3(M,,p) S N.

A gi.e. petforms only diagnose in the usual sense if A4 = |z}l ze Zo) x{Z},
it performs homing if .# = {Z,}x|{z}| zeZ} and control re§pectively if M
= {Z,} x {{z}} for the wanted control state z. Additionally a gi.e. can perform

[45]
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