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FOR FINITE DETERMINISTIC AUTOMATA
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In the theory of state identification experiments different kinds of experiments can
be considered: diagnosing experiments for the determination of initial states, homing
experiments for the determination of states at the end of the experiments, and, for
instance, control experiments for bringing the automaton in a certain state. In this
paper there are introduced generalized identification experiments which can solve
all these tasks as special cases, and which can also solve additional tasks that come
by connections of diagnose, homing and control. Using the method described in
[2] an algorithm is given for the solution of the existence and construction problem.

In [1] were introduced relations of indistinguishability for output words such
that the experimentalist can identify only by output words which are distinguishable.
Here we consider generalized identification experiments with such indistinguishab-
ility relations and solve the existence and construction problem for regular re-
lations.

Let¥ = [X, Y, Z, 4, A, Z,] bea finite deterministic synchronous automaton
with input set X, output set Y, state set Z, next state function §: ZxX — Z, output
function A: Z xX — Y and the set of initial states Z, < Z.

(1) DEFINITION. An input word p € X* is a generalized identification experiment
(gi.e) for W= [X, ¥, Z, 8, A, Z,] and a given set .4 < 27 x2* iff there is an
identification function ¢ from A(Zo,p) in # such that for all ze Z, we have z
€ 91(Mz,p)) and 8(z,p) € @2(Az,p)) (@1, 2 2re the components of g, ¢(q)
= [p1(a), P2(@)])-

(2) COROLLARY. An input word p is a gi.e. for % and M iff for all g € M(Z,,p)
exists [M, N)e # with

M, 5 {z] z€ZoAAz,p)=4q} S M,
3(M,,p) S N.

A gi.e. petforms only diagnose in the usual sense if A4 = |z}l ze Zo) x{Z},
it performs homing if .# = {Z,}x|{z}| zeZ} and control re§pectively if M
= {Z,} x {{z}} for the wanted control state z. Additionally a gi.e. can perform

[45]
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tasks as “if the initial state is z,, then after the experiment the automaton is to be
in state z;, but if the initial state is z,, then after the experiment the automaton
may be in state z; or z3, and we want to know, which state we have arrived”. This
could be realized by a g.i.e. for

o = ([{es), (20, Ues), (m3M L), 2.

So we can describe tasks of connecting diagnose, homing and control. We can also
describe such tasks for sets of states if we need not know the state exactly but only
"a set which it belongs to.

Let

My 5 AM| AN(N € ZA[M,N] e )},
My = (Nl 3M(M s ZA [M,N]eu)},

be such that . x {Z} and {Z,}x#, describes the “diagnosing part” and the
“homing/control part” of J, respectively. If J# = .4 1 X, (both parts “indepen-
dent” from each other), we have

Lo, st = Ly, at g2y O Lazo xttns
where Ly, 4 denotes the set of all g.i.e. for % and .. But, in general, we have only

Lu,.v Lw../t.x(z)f'\Lm.(z}x,f/,-
For proving this we can define the identification functions

0@ 5 60, 2] for  w,x{Z}
and

") = [Zo, L@ for  {Zo}x A,

if 8(g) = [£4(4), £2(9)] is an identification function for .4 for any gi.e. p€ Lo, .

M = M xM,, wecan also define an identification Function £@) 5, [Ei(e),
£3(@)] for # using the identification functions
§" A(Zo, p) ~ My x {Z}
and

£ A(Zo,p) > {Zo} XMy,

Obviously we can add (or omit) arbitrary states z € Z\ Z, to the sets M of 4 i
without changing the set Ly,.4. We also can go from 9 = [X,¥,2,6, 2,2
and a set W = M, x {(Z} (M, 2% 4 describing a “generalized diagnosing
task”) to W' = [X, Y, 2,6, 2] and 4 = My % A{Z} with M| = (MO (Z\Zo)
M e H,} and thereby we have o

Ly, = Luv, 4.
Thus we need not have the specification of Z,
diagnosing, Note that a similar result does n
not for homing and generalized identificati

for describing such tasks of generalized
ot hold in the case of control, and also
on. To give a very simple example let

e ©
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Z, = {z}, # = |12, {z}]} for an arbitrary z € Z. Then we have the empty word e
in La,.«, but not the words p & X* with 6(z, p) # z. But in the case of Z, = Z,
for each control task given by some ' from e € Ly, ., it follows that [Z, Z] e 4"
and then Ly, o = X*. :

Now for the solution of the existence and construction problem we define for
a given automaton N = [X, Y, Z, 8, A, Z,] a function F from the set X* into the
finite (1) set

W {pl| @1 Zo = Z} x {u| o equivalence relation over Z,}
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by
F) = (g0, @),
9o = (2, D),
2105272 Az, p) = A(z2,0) (2,2,2, €Z,pEX?).
Defining the function f: W xX — Wby
fe, e, %) 5 [¢', o],
¢'(2) 5 8(p(), %),

23075 g 21022 A Mp(z1), %) = A(p(22), %)

we can show:
(3) LEMMA. F(px) = f(F(p), x) forallpe X*, x e X.
Proof. For F(px) = [@ps, otps] we have by definition g,.(z) = d(z,px) =
8(8(z, p), x) = 0(g,(x), z) and
2y 0peZy < A(2y, px) = A(z,, PX)
< A(z1,p) = Az2, IA A(8(z1, D), X) = A(8(z2, D), %)
< Z 0pZa A Z(‘Pn(zl)s JC) = 2(‘]911(22)’ x)‘

Thus, F(px =[ ) & ]zf([(/” :m]ax)zf(F(P),x) is true . . .
At l(ait)we d(};‘lgnc ;;r the gizen pset M < 2% x2% (describing the identification
task) the set W, = W by

Wo = {lp, all YM'(M' €Zofa~ 3[M,NI(IM, N] € # A |
AM' € Ma{p@] zeM'} = N))).
From Corollary (2) follows
(4) LemMA. An input word p € X* is a gi.e. for W and A iff F(p) € Wo.
Because of (3) and (4),
A.CC(QI, A)ﬁ} [Xa st’ F(G), WD]

(with input set X, state set W, next state function f: WxX — W as defined above,
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initial state F(e) and accepting state set W5) is a finite acceptor for the set Ly, 4 of
all g.i.e. for A and # . Now we can decide with help of Acc(, 4) whether a g.i.e.
for % and 4 exists, and we can construct one, if exists. We also can use the follow-
ing algorithm: .

(5) ALGORITHM.

Step 0: Py 1= APg := {e} (e = empty word)
Stepi(i=1,2,.)
APi 1= .
For all px € AP;_., ' X do successively:
If F(px) ¢ {F(p)| 0 € Pioyw AP;}
then 4P, := APV {px}.
If after that AP, = @ stop,
else P; := P,_,uUAP; and goto step i+1.

Obviously, this algorithm stops after no more than [W] steps. When it stops
in a step i, we have constructed a set P;.., with

{FO) p' e Py} = {F(p)| peX*}.
“To have a simple proof of this fact we assume that the algorithm goes by using lexi-
-cographical ordering (for the successive tests of the words px € AP, - X). If pe X*
exists with F(p) ¢ {F(p")| p’ € P, }, let p be the first in the lexicographical order.
‘Then there must be py,p, € X*, x€X with p = pyxps, py € Py, P1¥ ¢ Ppjsrs
Because of pyx ¢ P, .y, & word r must exist with F(p,x) = F(+) and r coming
“before p; x in our ordering. From Lemma (3) it follows that F(p, xp,) = F(rp,) and
‘therefore we have a contradiction: p = p, xp, is not the first in the lexicographical
-order with F(p) not in {F(p)| p’' € P;_,}.
Hence, when the algorithm stops in step 7 we have

Lyu =B <P NnLyy=9,
i.e. if a g.i.e. exists, we find one in the set P;_,. We have proved

(6) THEOREM. The existence of g.i.e. is decidable for finite W = (X, ¥, Z, 8, A, Z,)
and # < 2% x2%. In case of existence, a g.i.e. can be constructed with length smaller
than |Z)\%4 -1 Z, (1, '

Since we have constructed the acceptor Ace(, ), the sets Ly,.« are regular.
‘On the other hand, if Acc = [X, Z, 8, z,, Z/] is an acceptor for a regular language L
(ie. L= {p| 8(z0,p) € Z}), then for A= [X,Y,2,08,12 {z)] and 4=
{ [{zo}, Z;1} we have L = Ly, 4. Hence the family of all sets Ly, .« is the set
-of the regular languages.

If we consider only (generalized) diagnosing experiments (# of the form
M= M x{Z}, M, =27, then we have Ly, .« = Ly, 4+ X* (because if p e X* is
a generalized diagnosing experiment, then for every r € X* the word pris a generalized
diagnosing experiment, too). On the other hand, if Acc = [X, Z, 8, z,, Z,] is an
-acceptor for a regular language with L = L - X*, then we can construct
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QIST [X: {0’ 1}: Zx {Oa 1}, a,: la {[ZO: 0]’ [201 1]}]
with
5 (1211, %) 5 180z, ), 1,

1, if

i=1Ad(z,%)€Z,,
ﬂ([z,i],x)]; {0, i z r

otherwise,

forzeZ,xeX,ic {0,1}. Again we have L = Ly, .« if we define A = {420, 01},
{[2o, 1]}} % {Z}. Thus we have characterized the family of all sets of generalized
diagnosing experiments for finite deterministic automata to be the family of all
regular languages L with L = L+ X*,

Now let U  (YxY)* be a distinguishability relation as introduced in [2].
The experimentalist is able to distinguish only between some. output words g
= y; ...y, and ¢’ = ¥} ... ¥, if <g,¢> = U (that means [y, yi] ... [ya, yil € U).
We assume that for all ¢, ¢’ € Y* we have (g, q)> ¢ U and {q,¢> ¢ U—><{d, > ¢U
(i.e. ﬁﬁ“} (Y x Y)*\U, the indistinguishability relation, is a compatibility relation).
Since we are interested only in synchronous automata, we need not consider (g, ¢>
for |q| # |q'|. Then we have

(7) DermuITION. An input word p € X* is a g.d.e. for N=[X,Y,2Z, 06,21 2Z)],
M = 22x2% and U < (¥ x Y)* iff there is an identification function {: A(Z,, p) =
— M with .

VqVz(q € A(Zo, PIAZ € ZoA{q, Mz, ) # U — 2 €£4(9) A 6(2, 1) € £2(0))

(thereby, as in Definition (1), {(g) = [£1(a), £2(@)D.-
(8) COROLLARY. An input word p is a g.i.e. for W, A and U iff for all z€ Z,
there exists [M, N] e .# with

M. = {z'| 2" € ZoAlA(z, P), M2, P> ¢ U} s M,
(M., p) =N.
(Or iff for all g € MZ,, p) there exists [M, N] € # with
M";r {z'| 2 € Zon<q, A (2", P ¢ ule M,
(M, D EN)

The experimentalist recognizing the output cannot distinguish all output words.
So he takes one word g € A(Z,, p) with <{g, A(z, p)> € U when i(z, p) was the real
output after start in z. Then by {(g) he determines a pair [M, Nle # withzeM,
8(z, p) e N. The specification of .# guarantees this identification to be exact as
needed. .

We have to remark that the experimentalist is allowed only to take a worg
g € M(Z,, p) (therefore he must know the set 4(Zo, p) for his recognition). Since U
need not be transitive, it could even happen that for a g.i.e. p there is a word ¢ ¢

4 Banach Center t. VIX
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¢ A(Zy, p) with {A(z,p),q> ¢ U for all z & Z,. Recognizing such g, the exper-
imentalist could make no difference between the states of Z,.

For the solution of the existence and construction problem in case of regular
distinguishability relations we can take the same method as above.

Let % = [YxY,T,g,t,I;] be an acceptor for U (with input set ¥Yx Y,
state set T, next state function g: T'x (¥Y'xY) — T, initial state #, and sct T;cT
of accepting states, such that U = {{g, ¢"| g(t0.<{q,9) € T;}). Then we define

W s {o! @: Zo— ZYx {| pi ZoxZo > T},
F(p) o {90 wal
with
Ps(2) = 8(z,p),
Po(21s 22) = g(to, (Alz1, )y (22, D))
(peX* z,21,2,€ 2),
fp, vl %) = (o' vl
with
) 5 8 (p(), %),
' (21, 22) 5 g(’V)(zn 7,), [A (‘P(Zl): x), Z(‘P (z2), x)])

(lp,yleW, xeX,z2,2,2,€2Z),

Wy 5 {lp, ¥l [, vleW AVzo(z0 € Zo — 3 [M, NI ([M, N € A4 A

Azl z€Zony(z,20) ¢ Ty} € MA
o)) ze Zoap(z, zo) ¢ Tr} = N)}.
Then from ¢,.(2) = 8(@,(2), x) and
Yoxl21, 25) = g(to, {Az1, PX), A(22, PX)))
= g(g(to, {A(z1, D), A(z25 D)), [4(8(21,0)5 X), A(8 (22, 1), x)])
= (w21, 22), [A(@(22), %), Apo(z2), %))

we can follow (cf. Lemma (3)):

(9) Lemma. F(px) = f(F(p), x) for all pe X* x&X.

By Corollary (8) we have (cf. Lemma (4)):

(10) LemMA. p is a gice. for U, M, U iff F(p) € W,.

Thus, Acc(¥, 4, U) 5 [X, W,f, F@e), Wo] is a finite acceptor for the set

Ly, 4,U of all g.iie, for A, A, U. We can decide “Lg, «,u = D7 with help of al-
gorlthm. (5). The proof is exactly the same as for g.i.e. for % and .

Using the same method we have proved the simiilar result:

(11) TuEOREM. The existence of g.i.e. is decidable for finite % = [X, ¥, Z, 8, A,
Zy). M <= 2* x2* and regular distinguishability relations U < (¥ x Y)*.
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In case of existence a g.i.e. can be constructed with length smaller than |Z|\% x
x | T|\%* where |T| denotes the cardinality of the state set T of an acceptor for U.

In [3} it was shown that the family of all sets of diagnosing experiments in case
of regular distinguishability relations is the set of all regular languages. On the
other hand, by our construction of the acceptor Acc(¥, .#, U), the set Ly,.4, v
must be regular if U is regular. Thus, the family of all sets Ly, .4, v for regular distin-
guishability relations U is the set of the regular languages (even in case of only
diagnosing tasks). Also in [3] it was shown that for non-regular distinguishability
relations the sets of diagnosing (or homing) experiments need not be regular and the
existence problem in general is not decidable, even in the case of only context free
relations.
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