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1. Introduction

1.1, In this paper we determine explicitly the Sz.-Nagy-Foias characteristic
function of a Toeplitz operator of the form T,,, where ¢ and y are finite Blaschke
products, ¢ having one zero. We use this to prove a similarity theorem (Theorem
2, below) for T,,. The reason for considering Toeplitz operators of this special
form is to compare Theorem 2 with a similarity theorem from [1], restated here as
Theorem 1. These two theorems occupied my two lectures to the Spectral Semester
at the Stefan Banach Center. '

In Section 1.2, we introduce Toeplitz operators and the similarity problem
and in Section 1.3, we discuss the Sz.-Nagy-Foias charactefistic function.

1.2. Let L denote the L? space of Lebesgue measure on [0, 27] and H? the
L? closure of the polynomials in e*. For a bounded measurable function F on
[0, 2%], the Toeplitz operator Ty is deﬁncd on H? by

Tyx = PFx
where P is the projection of L? on H?Z

If F is reasonably smooth (for example rational), the spectral theory of T,
is well known [3]. The essential spectrum of T is the curve I': ¢ — F(e") and for
2 ¢ 7T, the index of T% is minus the winding number of I' around 1. Either the
kernel or the cokernel of Ty— Al is always 0, so that the index describes completely
the multiplicity of A as an eigenvalue. Moreover, T has no eigenvalues in the
essential spectrum [1}. ‘ '

In [1], the following similarity theorem was proved for Tg. )

THEOREM 1. Suppose that F(z) is a rational function with no poles on |z} =
Suppose that the curve I' is a simple closed curve of winding number n about its in-
terior points and suppose that F(z) is n-to-1 in some annulus r < |z| < 1! Then Tg
is similar to T,.n, where T is the Riemann mapping function ﬁam the wunit dtsk to
the interior of the curve I.
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222 D. N. CLARK

The point of Theorem 1 is that T}, is multiplication by v(z") on H' 2, 7 being
analytic, so Ty is a much simpler operator than T.

In this paper we consider Ty where F is of the form F = @/, where ¢ and p
are finite Blaschke products, y having only one factor:

z—a z-b
1 = e R = — al, |b] < 1.
O] v =115 v@ =5 lab b

Thus if n = 1, the spectrum of T} is the curve I and if n > 1, the spectrum is the
disk and every 4 of modulus less than 1 is an eigenvalue of T} of multiplicity n—1.
In case F'(z) # O for |z| = 1, Theorem 1 applies and proves that T is similar to
Ten-1. Our methods allow us to examine exactly what happens if F'(z) vanishes
on the unmit circle. We return to this matter in Part 3.

1.3. The Sz.-Nagy-Foias operator theory [4] associates with a contraction
operator T the operator-valued analytic function @, given by

01(3) = — T+ ADn(I—AT*'D,

where Dr = (I—T*T)'?, Dy = (I—-TT*)*? and where the values of Or are
operators from 2y, the closure of the range of Dy, to D14, the closure of the
range of Dr.. 8z.-Nagy and Foiay use @, to construct a model for T in case Tis
completely nonunitary ; that, is, they construct, from @y, in a canonical way, an
operator unitarily equivalent to T, and using this representation, many properties
of T can be studied. We mention here just one theorem of Sz-.Nagy and Foiag,
which we shall use in this paper: if @ has a (bounded, analytic) left inverse in
|A] <1, then T is similar to an isometry ([5], Theorem 1.4).

In [2], Goor proved that a Toeplitz operator which is a contraction is com-
pletely nonunitary. Our approach to T}, where F = @/y and (1) holds, is to com-
pute &y explicitly and prove similarity to an isometry using the above theorem of
8z.-Nagy and Foias. Along the way, it is interesting to have the characteristic
function @y for a naturally occurring operator, given explicitly.

2. Sz.-Nagy-Foiag theory

In this part, we compute the Sz.-Nagy-Foiag characteristic function @ for T

= Ty, where F = gy, given by (1). The computation is done in four steps in the
next four sections, as follows.

2.1. Computation of D, and Dy,

2.2. Computation of (I-AT*)~19,,
2.3. Computation of Dy and Doy,

2.4. Completion of computation of 0.

2.1. First we state without proof the simple
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LemMA 1. If g(2) € H?, { is a complex number with |f| < 1,.and P is the pro-
Jjection of L* on H?, then 4
Pg(e")(1-Ce)t = B(0)(1 -y,
Pg(eM) (=) = [g(e)—g(D (e -
We can now compute Ty T%; first on ¢H?, then on (pH?)*. Let x € H?,
Ty Tepx = Tpex = px.
Since (pH?*)L is the one-dimensional span of (1=32)"1, we need only compute
TETe(1-bz)"! = TFPp(e"—b)™ = T¥[p(e") —p(b)](e* ~b)!
= Pp/p) [p(e") = p(bl] (e ~b)*
= P[1—p(b)(e"] (1 ~be)~*
= (1-be"y* (1-Ip(B)2).
The conclusion is o
Dr = {(1-be")1},
Dr(1-Be) = |p(b)] (1~ Be) ™.
2.2. We begin this computation with another lemma.
LeMMA 2. For each 2, |3 <1, the equation
2 (@) (1—b2)—(z—B) = 0
has a unique solution z = d(%) in |z] < 1.
The proof of the lemma could be based on Lemma 2.1 of [1], but we g.lve
a self-contained proof of existence; uniqueness will follow from the computation
of (I-AT*~1.
Proof. Let E = {z: |z—bl|/|l1—az| < ||}, and let h(z) denote the inve.rse of
the function A~1(z—b)/(1—bz) on E. We have that & maps U = {|z| < 1} into E
and so 4(@(z) ) maps U into E; in particular 2(¢(Z)) maps U into U. By the Brouwer
Fixed Point Theorem, there is a solution d(4) to
h(¢ (J(z))) = d(%)
from which (2) follows. . B
To compute (I—AT§) 9y (ie. to compute (I—ATE)'(1—bz)"t) we first
compute (I—AT3)(1—d()z)~*, where d(2) comes from Lemma 2:
I-2TH)(1—de"y™ = (I—-2T,,) (1 ~de")™!
= (1—de"y~1— APg(e") (e —~b) (1 ~be'ty 1 (1 —de") 2.
The last term is computed by expanding (z—5)(1—bz)~1(1~dz)~! in partial frac-
tions and applying Lemma 1. We get
Py(e—b)(1—bey- (1 —de't)*
= (b—d)Pp[(1—[b]>) (1 —be"y* — (1—bd) (1 ~de')™"]
= (b—d)*[(1~|b|%)@(b) (1 —be")* — (1 - bd)g (D) (1 —de") ']
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and, by Lemma 2, this is

= (b—d)[(1= b F®B) (1 —bey "t — =1 (d—B) (1 — deity1]

= (1=b|%)@(5) (b—d)~*(1~bey~t — A~ (1 —deV)~1.
This gives

(= ATH (L —de?y ™t = — AL —1b|2)F(b) (b —b)1(1 —be*)~1
and we get for our result
- ATH 1 (1—be*y ™t = A~ 1(d—b) (1~ [b|2)~1H(b) (1 ~de')-1,
2.3. In analogy with Dy, we start the computation of Dy by computing
TpTE on ¢x, x e H?:
Ty TEgx = Teyx = px.

Thus @y. = (pH?)!. In addition, the kernel ker T* of T* is contained in (pH?Z).
and, by Section 1.2, dimker(T*) = n—1. Thus T Ty must be a one-dimensional
operator on the (n-dimensional) space (pH?)L. We claim the range of Ty Ty is the
one-dimensional span of the vector g, = [p(z)—@(b)]/(z—b). We compute

Tr T¢qs = TrPy[l—p(b)g(e)]/(e" —b)
T P[1—p(b)F(e")]/(1—be")
Tr(1—be")~* — p(b) Ty Pi(e™)/(1—be")
(1—1g(B)I?) Te(1 —Bet)~*
by Lemma 1. Furthermore, this is

= (1=lp(b)*)Pp/(e"~b)

= (1=1p(B)*)gs

i

]

1

again by Lemma 1.
Summarizing the result of this section, we have

@T' = ((IJHZ)-L
and, for x € Dy,
b)x if x =g,
=Ty T 2% = {W( )] . s
if  x 1 g
24. From 2.2-2.3, we see that we shall need Q(1—de")~*, where Q is the
projection on the one-dimensional span of g,. That is, we need

O(l—de)! = ((I—de")“l, 25) 0/ l1al1? = G as/llas) .
Now

llgsll* = [1[L—(e") p(b)/(1 —e~"b)| 12
= 1 =@(B) p(e")/(1 —be")||* = [1~|g(b)*]/(1—[b]),

since the vector in the last norm is the reproducing kernel in (pH?)L. Thus
Q1 —de"y~* = y(d)(1— [bI*) [1- (b)|] g5

SZ.-NAGY-FOIAS THEORY AND SIMILARITY 225

The projection of (1—dz)~! on (pH?L is [I—?ﬁ(i)¢(z)]/('1 ~dz), and so
(I=Te T (1-d2)" = I-Q) [1-5(d) p(2))/(1 —d2) +|p(B) Q(1 —dz)~*
= L~ e@N/(1—d2)+(Ip(b)| —1)Q(1 ~dz) "
= [1—§d p(2)]/(1~dz)—Go(d) (1 — BI?) [1 + |p(B)] g -
Putting all these computations together, we get for @r:
Or(D(1=be")™ = — T(1—be")™* + ADp(I— ATF) | (b)| (1 —be")y-t
~ 85+ @B F(b) " (d—b)(1- [b|?)~*Dpa(1~de™)- .
~ay+le(®)FB) 1 (d—Db)(1- b)) [1 —H(d) p(e)] /(1 — de“)—
—lp®)F(B) 1 (d~B)g(@) [ + p(b)|]gs
lpBIF(B)1(d—Db) (1 —[b]>)~* [1—p(d) (e")] /(1 —de™)—
—(1+Ip(d)] f?(b)“(d -bh)[1+ IqJ(b)I]""[q_J(J)-E(b)]/(d —7?)) o
= 5 [(Itp(b)l e Ul L

(w(b)+«p(d) lp(b)] ) i ]
T+le®) |

it

]

(recall that d is a function of A, as given in Lemma 2).

3. Similarity

3.1. Our computation of @y, along with a theorem of Sz. -Nagy and Foxas,
permit us to prove T is similar to an isometry. Indeed, according ‘to [5], Theorem
1.4, it suffices to show that @ has a (boundeéd, analytic) left inverse in |A] < 1. To
construct such an inverse, let Q denote the projection onto the span of g, = [p(z)—
- o) /(——b) We compute Q0,(1—be")~ = (Or(1—be'y?, %)‘h/“‘h“z

1-g@ e _ §(b)+5(d) |p(b)] )
o) 12O TH B 9
= (1=161)~"[lp®) (d—B)g:(@d — (F(B)+ (@) lp(®)]) (1~1p(®))]
since, as in Section 2.3, [|g,/1* = (1—|p(b)*)/(1—[b*). So

= (1= b)) [(d) [p(B)*—F(b)]).

Thus C
QO(A)(1-be")~t = F(b)*(1—|bI>)~ (b) [F(d) p(b)~ 114/l Ig5] 12
= (1= B33 (1 |e®)2) 2 [(d)e(b)— 11as/!1qs||

and
QO(D(1—{b|)2(1—be")"t = (1—|p(b)*) Y [(d) (b)~11s/!lgs]-
If ¥ is the isometry that sends gy/}|gs]| to (1—|BJ?)/2(1—8e")~1, then }
(1~ lp®)2) " [p@) p(b)— 111 VQ

15 Banach Center t. VIII
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is a left inverse for @5, We conclude that T is similar to an isometry U whose
structure we investigate in what follows,

3.2. The shift part in the Wold decomposition of U is obviously a unilateral
shift of multiplicity n—1. The unitary part of U is the same as the residual part
of the minimal unitary dilation of T% ([4], p. 344, Theorem 1.2) which is absolutely
continuous and has spectral multiplicity at most 1 ([4], p. 274, Theorem 6.3). We
will therefore know the unitary part of U if we can determine its spectrum.

We have U = ST, S~1, for some bounded, invertible §. Thus U* = §~1*T7S$*,
and we conclude that 4 = S~'*K where A is the span of the eigenvectors for U*
and K is the span of the eigenvectors for Ty:

A= \/ ker(U*—zI), K= \/ ker(Ty—zI).
jz|<1 |z]<1

It follows that S maps the orthogonal complement of K to the orthogonal com-

plement of 4 and implements a similarity between the unitary part of U and the
operator

Tp = Tglgl.

In the remainder of this section, we derive a criterion for the invertibility of

—aL

LemMA. 3. Let A be a complex number and k e H?, then k € R(Tp— M) (the
range of Te— Al if and only if there is a constant ¢ such that

©) [(z—b) k(z)— ]/ [p(2) — Mp(2)] € H™.
Proof. We have k € R(Tz— A if and only if there is x € H? such that
k= (Te—ADx = P(gp—N)x = (pp—A)x+y
for some y i H?. But for this y
py = pk—(p—Ay)x € H?,
and we have yy e (WH?L = H*QyH?, and so py = ¢/(1 —bz). Thus
vk = (p—Ap)x+c/(1—b2),
(z—b)k = (p— M) (1 ~bzZ)x+c
which is obviously equivalent to (3).

COROLLARY 1. An H? function k belongs to K- if and only if for every |A] <1,
there is a c such that (3) holds.

Proof. We have
= W ker(T¥— 2D+ = 0, R(T= 0.
aj<1 <

COROLLARY 2. For any complex A, To— Al has a bounded inverse if and only
if for every ke K., there is a c such that (3) holds.

icm
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Proof. If Ty— AI is invertible, then

Kl = R(Tz—AD < R(Ts—
and Lemma 3 implies the “only if” half of the corollary.
Conversely, it suffices to consider only A of modulus 1 since otherwise, Ty
being similar to a unitary operator, Tz— I is automatically invertible. We claim
that (1—bz)~* times the left-hand member of (3) belongs to KL, This will prove

Tp—AI maps KL onto KL and, since Ty~ I is one-to-one ([1], Lemma 2.2) will
show Ty~— Al is invertible.

By Corollary 1, the claim is equivalent to the existence of ¢, for every |u| <'1,
such that

(C)) {—B)(1—b2)* [(z—b)k(z)—c]/[p— My] — .}/ {p—uy} e B~
Since k € K+ there is, by Corollary 1, a c;, such that
[(z—b)k(2)~-c})/[p—uy] € H.
Setting ¢, = (c—c,)/(A—p), we see that for every z such that (@) — puyp(2) = 0, we
have .
[(z—b)k(2)—c)/[p(2) fp(2)— 4] =
and (4) follows.

Remark. An alternative approach to Corollary 1 is to note that for 4| < 1,
the eigenvectors of (TF AD* take the form

= (-D(1-T) - (F-B)(1 ~E2)
where £, & are complex numbers in Jz| < 1 satisfying F({) = F(&) =

[eu—cl/(z—2)

3.3. We are ready, in this section, to complete the determination of the spectrum
of Ty and hence also the description of the isometry U.

As t increases from O to 2=, the argument of F(e™) = p(e”)/p(e") increases
by 2n(n—1).

DEFINITION. F(2) backs up at'z = €, if there is a closed interval [f,,6,],

6, <0,, containing & and such that the argument of F(e") is decreasing for 6,
<t<f,.

LemMA 4. Let X' be the set where F backs up. Then F(X) is the spectrum of Ty.

Proof. et 4 be a point of modulus 1 not belonging to F(ZX), and suppose
also that F'(2) # 0, for all z of modulus 1 such that F(z) = 1. We claim first that
for every z, of modulus 1 such that F(z,) = 4, and for every k € KL, k can be
analytically continued across z,.

For the proof, we first note that, since F(z) assumes the value }. exactly n—1
times on |z| = 1, there must exist z, in |z| < 1 such that F(z,) = A. We can choose
neighborhoods D, of z, and D, of z, such that F is single valued in D, and D,

and F(Do) = F(D,). Thus there is a function »(z) from D, to D, such that
F(»(2)) = F(z)

for z € Dg.

15*
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Further, since F'(z) # 0 in Dy, »(2) is analytic in D,. Now let k'€ KL. By Cor-
ollary 1 of Section 3.2, k(¥(2)) = k(2) in Dy~ {jz| < 1}. But »(z) is analytic in D,
and k is analytic in D, (we may assume, of course, D; < {lzl < 1}), and hence
k(»(2)) extends to be analytic in D,, and this provides a continuation of k across z,.
Now we can show that T;— Al is invertible. Indeed, let k € KL, and let M be
the set of z in |z]'< 1 where F(z) = A. The function k is analytic at each z € M
by the claim just proved, and the values of k(z) agree at each point in M; indeed
Corollary 1 of Section 3.2 proves this if 1 is replaced by a sequence 1,, with |4,|
< 1 which may be taken to approach 1 as n — 0. Thus taking ¢ to be the common
value of k(z) for z € M, we see by Corollary 2 of Section 3.2, that (Tg— AI)~! exists,

icm

From the above we conclude that the spectrum of Ty is contained in F(Z)u '

U{li, ...y 4.} where 4y, ..., 4, are points where F(4;) = F(z;) for some z; such
that F'(z)) = 0. But the operator Ty being similar to a unitary operator with ab-
solutely continuous spectrum, there can be no isolated points in the spectrum of
Ty and we have proved that the latter spectrum is contained in F(Z).

It remains only to prove Tp— A7 is net invertible if A € F(Z). Let I" be an arc
in F(X). F(z) assumes every value 1€l exactly n+1 times on |z| = 1 (at least
n+1 times since F(e™*) has winding number n—1 and backs up at 1; at most n+1
times since the equation F(z) = A is equivalent to a polynomial of degree n+1).
Thus F(z) omits I"in [z| < 1. Pick two points z,, z; where F backs up and where
A = F(z;) e I. The function

G(2) = [(F(2)~ 1)/ (F(2)— 1,)]
is analytic in [z < 1 and omits a ray from 0 to co. We may therefore set
G(z)*—G(b)®

z—b
for suitable £ > 0. Since F(z)— 1, can have only simple zeros on |z| = 1, G.(2)
eH?if e < 1/2, and if 2| < 1, '
(z—b)Gy(2)— G(Ay +G(by
vanishes wherever.gp— Ay = 0, so by Corollary 1 of Section 3. 2 G,(2) e Kl But
G, ¢ R(T5— A, I). Indeed, ¢—2;v has a simple zero at z = z,, but
(z—b)G, ()~ G(by

while vanishing at z = z, is only O(z—z,)", so

[(z—B) Gy(2)— G b)Y/ (p— 1 )

cannot belong to H?, and by Corollary 2 of Section 3.2, T~
This proves the lemma.

To summarize Part 2, we state

THEOREM 2. Let F(z) = p(2)/y(z) where ¢ and v are finite Blaschke products
withn > 1 and 1 zeros, respectively. Then Ty is similar to- Tyn—1@®V, where V is

multiplication by ¢" on L*(F(Z)), X the set where F backs up. If n = 1, Tg is similar
to V.

Gi(z) =

~ Ay I'is not invertible.
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COROLLARY. The minimal isometric dilation of Ty is unitarily equivalent to
Ta®V.

‘While I believe that, with appropriate modifications for multiplicity, Theorem 2
should generalize to the case where y is an arbitrary finite Blaschke product. I doubt
that the characteristic function of T should admit such a simple description as
given in Part 1 if y has more than, say, two zeros.

Finally, it is worth noting that the computations of Part 2 and Section 3.1
remain valid for Ty, if ¢ is an arbitrary inner function and y is a Blaschke product
with one zero. We have not, however, determined the structure of the 1sometry to
which T, is similar, in this case.
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