236 13, G. DALES

References

n

[1]W.G. Badé and P.C. Curtis, Jr., H yphisms of utative h algebras,
Amer. J. Math. 82 (1960), 589—-608 :

21 H.G. Dales, A di i phism from C(X), ibid, 101 (1979), 647-734.

[31 —, Discontinuous h -phisms from topological algebras, ibid. 101 (1979), 635-646.

[4] —, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129183,

[51H G. Dales and J. Esterle, Di i h phisms from C(X), Bull. Amer.
Math. Soc. 83 (1977), 257-259. :

6] J. Bsterle, Discontinuous homomorphisms from % (K), this volume, 251-262.

[T B.E. Johnson, Ce ity of h phisms of algebras of operators, J. London Math,
Soc. 42 (1967), 537-541.

181 —, Norming C(S2) and related algebras, Trans Amer. Math. Soc. 220 (1976), 37-58.

91 A.M. Sinclair, Automatic continuity of linear operators, London Math. Soc. Lecture
Note Series 21, Cambridge 1976.

Presented to the semester
Spectral Theory
September 23-December 16, 1977

icm°®

SPECTRAL THEORY
BANACH CENTER PUBLICATIONS, VOLUME §
PWN-POLISH SCIENTIFIC PUBLISHERS,
WARSAW 1982

ON RESONANCES IN MATHEMATICAL SCATTERING THEORY

MICHAEL DEMUTH

Akademie der Wi&senschqfren der DDR, Ze fi
Berlin, DDR

Jiir' Mathematik und Mechanik

1. Resonance problem in mathematical scattering theory

Let H, and H be self-adjoint operators given in the separable Hilbert space $. Let
P,.(H,) be the orthoprojection onto the absolutely continuous subspace of H,. The
following strong limits are called wave operators, if they exist,

Wi (Hs Ho) = ls‘lim etfe- "H"Pnc(HO)’
'~ 00

implying the definition of the scattering operator
S(H, Ho) = W¥(H, Ho) W_(H, Hy)

and the scattering amplitude operator

T=S-1.

Using the dlrect integral decomposition of P,.(H,) 9,
PuHa$ = § @Hu(hdi
oac(Ho)
where H, is represented by multiplication with 4 in the separable Hilbert space
$Ho(4) and using the commutity of § with H,, § can be represented in $Ho(2) by
the scattering matrix S(4). The same holds for T represented by the scattering
amplitude T(4). Poles of T'(4) meromorphically continued are called resonances.
On the other side, let H and H, be connected by

H=Hy+V
where V is also self-adjoint and bounded. Furthermore, let ¥ be factorized by.
‘ V= B*4
with bounded 4 and B. In perturbation theory (see e.g. [1]) poles of the factorized
resolvent,

A(z—H)™'B*,

defined for Imz > 0, meromorphically continued into the lower half plane are
called virtual poles.
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The resonance problem. [6] consists in finding relations between resonances
and virtual poles. For certain local scattering systems this problem is solved in [2]:

TreoreM 1. (i) The real virtual poles form locally the eigenvalue spectrum of H.

(i) ‘The scattering amplitude T(2) is locally meromorphically continuable.

(ili) The nonreal virtual poles are locally identical with the resonances.

For proving Theorem 1 the following simplified assumptions are sufficient:

(1) The ranges of 4* and B* are to be identical. The range of ¥ is to be dense
in $.

(2) The spectral discrete part of H, in a certain open interval 4 is to have
finite multiplicity. The multiplicity of the absolutely continuous spectrum of H,
with respect to 4 is to be constant and finite.

(3) Let APo(A)Py(Ho) (z— Ho) ™ P,o(Hp) Po(4) B¥, Py(-) spectral measure of
H,, be holomorphically continuable across 4 into G, = C, UG, where C, is the
upper half plane and G a certain region symmetric to the real line containing 4.

(4) Let (1~ AP,.(Ho)(z— Ho) " P,.(Hs)B*)™! be bounded holomorphically in
G,

(5) The representer of P,.(Ho)B*fin L*(d, $o, dA) is called (P,.(Ho) B*f)(4).
Let (P.c.(Ho)B*f)(4) be holomorphically continuable into G for such a set {f}
for which (P..(Ho)B*f)(4) is fundamental for $,.

These properties are e.g. satisfied for Holder continuous potential functions
exponentially decreasing to infinity [5].

2. Resonance model for many particle systems

In many particle systems the scattering events are multiplied. To list them channel
Hamiltonians 4, are introduced corresponding roughly spoken to the free evol-
ution of certain cluster decompositions of the many particle system. The channel
wave operators are defined as usual by

W.(H, A) = s-lime"Te~"4P,(4,)
1400

where P,.(4,) are called channel projections. The partial scattering operator be-
tween two channels is

Sp = WEH, A) W_(H, 4,)

mapping Poo(4,) § into P,o(4,) H. Let the direct integral decomposition of the
absolutely continuous subspaces be given as above

.

Pnc(H)g = S @50(1)(”.
Oac(H)
and

Pnc(Aq)5 = S @ﬁg(l)d}[.

Gao(A 0)
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In correspondence to the channel wave operators W,(H, 4,) the channel wave
matrices Wi (4) are defined in [3] mapping $,(4) into $(A). The poles of the partial
scattering matrix S,,(4) mapping $,(4) into $,(%) locally meromorphically continued
are called resonances.
It is considered the following N-particle system. Let
N

i=1

be given in § = L*(R%Y), 4,— Laplacian, m;—mass. Let V(x) € L},.(R3"), bounded
and a sum of two-body-potentials

Vi) = D Ville—x))
i<j
where each V;; is to have a maximum for certain particle distances. Then there

- exists a region Do € R® on which ¥(x) > M = min (max V;(x)). Cutting V(x)
4,j “xeR3N

on D, we obtain a new Hamiltonian
N
4,
Hy = —Z,Z—,m +VE) (1= 100+ M1z, 0

where yp (x) is the characteristic function of Ds.

Letting the projection P = yp () and P = 1— P some powers of the resolvent
of Hy, tends to a pseudoresolvent Ry(z), z € C—(0, co) in trace norm as M — o
such that R,(z)/P$ is a resolvent of a self-adjoint operator H, defined on P$H
[4]. Using Feynman-Kac-formula and the invariance principle of wave operators
the following one-channel scattering operator exists

So = S(H,H,) = WiH, H,) W(H, Hy)
with the corresponding one-channel scattering matrix Se(4).

THEOREM 2. The multi-channel partial scattering matrix Sy.(2) can be factorized
and expressed by means of the one-channel scattering matrix Sw(A):

Sea(B) = Wt oo(A)*8a(B) WZeo(R)

A€ 0,0(A)NTuc(A,), where W, o(3) and W5 ,(3) are the channel wave matrices
corresponding to W.(Hy, Ay) and W_(Hw, A,), respectively.
In proving the existence of resonances this theorem can be helpful for reducing

the multi-channel problem to a one-channel consideration.
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All rings (in particular all algebras) in this paper are assumed commutative. An
ideal Iin a ring A is called modular if A/I has a unit. For a Banach algebra B, M
denotes its Gelfand space, the space of non-trivial complex homomorphisms of
B. b(x) is the map of b € B by the homomorphism x & M. Thus x — b(x), x € N,
is the Gelfand transform of b. The hull h(I) of an ideal I = B is the set of all x IR
for which the kernel, i.e. the corresponding modular maximalideal, contains I The
ideal I < B is called primary at x € MM if Iis modular and A(I) = {x}, and primary
at oo if h(l) = .

The paper contains three independent results on the structure of ‘the set of
modular ideals in a Banach algebra. The first is a general result. It is rather a collec-
tion of observations, described in Theorems 1 and 2 and in the corollary to Theorem
2. For an arbitrary ideal 4 in a Banach algebra B, the theorems establish strong
connections between the set of modular 4-ideals and the set of modular B-ideals.
Theorem 2 and its corollary give in addition results on the closely related question
on the possibilities of representing an ideal in B as intersection of two ideals with
disjoint hulls. Theorems 3 and 4 deal with closed primary ideals in a Banach algebra
B with unit. In Theorem 3 it is assumed that the elements which are rational func-
tions of a fixed set of elements ay, a, ..., @, form a dense subspace. Identifying
the Gelfand space with the joint spectrum of these elements, a complete descrip=
tion is given of the closed primary ideals at interior points. In Theorem 4 we special-
ize in a different way. Here we assume that & € B has the property that the closure
1, of the ideal generated by a" has co-dimension n, n > 1. Under a supplementary
condition on the norm, it is shown that all remaining closed primary ideals in Iy

are contained in (") J,. Theorem 4 extends Theorem 1 in [3], and the basic idea of
n»1
the proof is the same.

Elementary Banach algebra theory which can be found in [7] or [8] will be
used freely without specific references.

16 Banach Center t. VIIL [241]
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