BANACH CENTER PUBLICATIONS, VOLUME 8 PWN-POLISH SCIENTIFIC PUBLISHERS.

SPECTRAL THEORY WARSAW 1982

References

- [1] W. G. Badé and P. C. Curtis, Jr., Homomorphisms of commutative Banach algebras. Amer. J. Math. 82 (1960), 589-608.
- [2] H. G. Dales, A discontinuous homomorphism from C(X), ibid. 101 (1979), 647-734.
- [3] -, Discontinuous homomorphisms from topological algebras, ibid. 101 (1979), 635-646.
- [4] -, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183.
- [5] H. G. Dales and J. Esterle. Discontinuous homomorphisms from C(X), Bull. Amer. Math. Soc. 83 (1977), 257-259.
- [6] J. Esterle, Discontinuous homomorphisms from & (K), this volume, 251-262.
- [7] B. E. Johnson, Continuity of homomorphisms of algebras of operators. J. London Math. Soc. 42 (1967), 537-541.
- [8] —, Norming $C(\Omega)$ and related algebras, Trans. Amer. Math. Soc. 220 (1976). 37-58.
- [9] A. M. Sinclair, Automatic continuity of linear operators, London Math. Soc. Lecture Note Series 21, Cambridge 1976.

Presented to the semester Spectral Theory September 23-December 16, 1977

ON RESONANCES IN MATHEMATICAL SCATTERING THEORY

MICHAEL DEMUTH

Akademie der Wissenschaften der DDR, Zentralinstitut für Mathematik und Mechanik. Berlin, DDR

1. Resonance problem in mathematical scattering theory

Let H_0 and H be self-adjoint operators given in the separable Hilbert space \mathfrak{H} , Let $P_{\rm ac}(H_0)$ be the orthoprojection onto the absolutely continuous subspace of H_0 . The following strong limits are called wave operators, if they exist,

$$W_{\pm}(H, H_0) = \text{s-lim}_{t \to +\infty} e^{itH} e^{-itH_0} P_{ac}(H_0),$$

implying the definition of the scattering operator

$$S(H, H_0) = W_+^*(H, H_0) W_-(H, H_0)$$

and the scattering amplitude operator

$$T=S-1$$
.

Using the direct integral decomposition of $P_{ac}(H_0)$ 5,

$$P_{ac}(H_0)\mathfrak{H} = \int_{\sigma_{ac}(H_0)} \oplus \mathfrak{H}_0(\lambda) d\lambda$$

where H_0 is represented by multiplication with λ in the separable Hilbert space $\mathfrak{H}_0(\lambda)$ and using the commutaty of S with H_0 , S can be represented in $\mathfrak{H}_0(\lambda)$ by the scattering matrix $S(\lambda)$. The same holds for T represented by the scattering amplitude $T(\lambda)$. Poles of $T(\lambda)$ meromorphically continued are called resonances.

On the other side, let H and H_0 be connected by

$$H = H_0 + V$$

where V is also self-adjoint and bounded. Furthermore, let V be factorized by

$$V = B*A$$

with bounded A and B. In perturbation theory (see e.g. [1]) poles of the factorized resolvent.

$$A(z-H)^{-1}B^*$$
,

defined for Im z > 0, meromorphically continued into the lower half plane are called virtual poles.

[237]

The resonance problem [6] consists in finding relations between resonances and virtual poles. For certain local scattering systems this problem is solved in [2]:

THEOREM 1. (i) The real virtual poles form locally the eigenvalue spectrum of H.

- (ii) The scattering amplitude $T(\lambda)$ is locally meromorphically continuable.
- (iii) The nonreal virtual poles are locally identical with the resonances.

For proving Theorem 1 the following simplified assumptions are sufficient:

- (1) The ranges of A^* and B^* are to be identical. The range of V is to be dense in \mathfrak{H} .
- (2) The spectral discrete part of H_0 in a certain open interval Δ is to have finite multiplicity. The multiplicity of the absolutely continuous spectrum of H_0 with respect to Δ is to be constant and finite.
- (3) Let $AP_0(\Delta)P_{ac}(H_0)(z-H_0)^{-1}P_{ac}(H_0)P_0(\Delta)B^*$, $P_0(\cdot)$ spectral measure of H_0 , be holomorphically continuable across Δ into $G_+ = C_+ \cup G$, where C_+ is the upper half plane and G a certain region symmetric to the real line containing Δ .
- (4) Let $(1-AP_{ac}(H_0)(z-H_0)^{-1}P_{ac}(H_0)B^*)^{-1}$ be bounded holomorphically in G_+ .
- (5) The representer of $P_{ac}(H_0)B^*f$ in $L^2(\Delta, \mathfrak{H}_0, d\lambda)$ is called $(P_{ac}(H_0)B^*f)(\lambda)$. Let $(P_{ac}(H_0)B^*f)(\lambda)$ be holomorphically continuable into G for such a set $\{f\}$ for which $(P_{ac}(H_0)B^*f)(\lambda)$ is fundamental for \mathfrak{H}_0 .

These properties are e.g. satisfied for Hölder continuous potential functions exponentially decreasing to infinity [5].

2. Resonance model for many particle systems

In many particle systems the scattering events are multiplied. To list them channel Hamiltonians A_{ϱ} are introduced corresponding roughly spoken to the free evolution of certain cluster decompositions of the many particle system. The channel wave operators are defined as usual by

$$W_{\pm}(H, A_{\varrho}) = \operatorname{s-lim}_{t \to +\infty} e^{itH} e^{-itA_{\varrho}} P_{ac}(A_{\varrho})$$

where $P_{ac}(A_{\varrho})$ are called channel projections. The partial scattering operator between two channels is

$$S_{\varrho\sigma} = W_+^*(H, A_{\varrho}) W_-(H, A_{\sigma})$$

mapping $P_{ac}(A_a)$ 5 into $P_{ac}(A_e)$ 5. Let the direct integral decomposition of the absolutely continuous subspaces be given as above

$$P_{\rm nc}(H)\mathfrak{H} = \int_{\sigma_{\rm nc}(H)} \oplus \mathfrak{H}_{\sigma}(\lambda) d\lambda$$

and

$$P_{\mathrm{ac}}(A_{\varrho})\mathfrak{H}=\int\limits_{\sigma_{\mathrm{ac}}(A_{\varrho})}\oplus\mathfrak{H}_{\varrho}(\lambda)d\lambda.$$

In correspondence to the channel wave operators $W_{\pm}(H, A_{\varrho})$ the channel wave matrices $W_{\varrho}^{\pm}(\lambda)$ are defined in [3] mapping $\mathfrak{H}_{\varrho}(\lambda)$ into $\mathfrak{H}(\lambda)$. The poles of the partial scattering matrix $S_{\varrho\sigma}(\lambda)$ mapping $\mathfrak{H}_{\sigma}(\lambda)$ into $\mathfrak{H}_{\varrho}(\lambda)$ locally meromorphically continued are called *resonances*.

It is considered the following N-particle system. Let

$$H = -\sum_{i=1}^{3N} \frac{\Delta_i}{2m_i} + V(x)$$

be given in $\mathfrak{H} = L^2(\mathbb{R}^{3N})$, A_i —Laplacian, m_i —mass. Let $V(x) \in L^1_{loc}(\mathbb{R}^{3N})$, bounded and a sum of two-body-potentials

$$V(x) = \sum_{i < j} V_{ij}(|x_i - x_j|)$$

where each V_{ij} is to have a maximum for certain particle distances. Then there exists a region $D_0 \in \mathbb{R}^{3N}$ on which $V(x) \ge M = \min_{i,j} (\max_{x \in \mathbb{R}^{3N}} V_{ij}(x))$. Cutting V(x)

on Do we obtain a new Hamiltonian

$$H_{M} = -\sum_{i=1}^{3N} \frac{\Delta_{i}}{2m_{i}} + V(x) (1 - \chi_{D_{0}}(x)) + M \chi_{D_{0}}(x)$$

where $\chi_{D_0}(x)$ is the characteristic function of D_0 .

Letting the projection $P=\chi_{D_0}(\cdot)$ and $\overline{P}=1-P$ some powers of the resolvent of H_M tends to a pseudoresolvent $R_\infty(z)$, $z\in C-(0,\infty)$ in trace norm as $M\to\infty$ such that $R_\infty(z)/\overline{P}\mathfrak{H}$ is a resolvent of a self-adjoint operator H_∞ defined on $\overline{P}\mathfrak{H}$. [4]. Using Feynman–Kac-formula and the invariance principle of wave operators the following one-channel scattering operator exists

$$S_{\infty} = S(H, H_{\infty}) = W_{+}^{*}(H, H_{\infty}) W_{-}(H, H_{\infty})$$

with the corresponding one-channel scattering matrix $S_{\infty}(\lambda)$.

Theorem 2. The multi-channel partial scattering matrix $S_{e\sigma}(\lambda)$ can be factorized and expressed by means of the one-channel scattering matrix $S_{\infty}(\lambda)$:

$$S_{\varrho\sigma}(\lambda) = W_{\varrho,\infty}^+(\lambda)^* S_{\infty}(\lambda) W_{\sigma,\infty}^-(\lambda),$$

 $\lambda \in \sigma_{ac}(A_\varrho) \cap \sigma_{ac}(A_\sigma)$, where $W^+_{\varrho,\infty}(\lambda)$ and $W^-_{\sigma,\infty}(\lambda)$ are the channel wave matrices corresponding to $W_+(H_\infty,A_\varrho)$ and $W_-(H_\infty,A_\sigma)$, respectively.

In proving the existence of resonances this theorem can be helpful for reducing the multi-channel problem to a one-channel consideration.

References

- [1] H. Baumgärtel and M. Demuth, Perturbation of unstable eigenvalues of finite multiplicity, Journ. Funct. Anal. 22 (1976), 187-203.
- [2] H. Baumgärtel, M. Demuth and M. Wollenberg, On the equality of resonances and virtual poles, Math. Nachr. 86 (1978), 167-174.

M. DEMUTH

240

- [3] H. Baumgärtel, On resonances in multi-channel scattering theory, ZIMM Preprint, April
- [4] H. Baumgärtel und M. Demuth, Decoupling by a projection, Rep. on Math. Phys. 15 (1979), 173-186.
- [5] C. L. Dolph, J. B. Mc Leod and D. Thoe, The analytic continuation of the resolvent kernel and scattering operator associated with Schrödinger operator, J. Math. Anal. Appl. 16 (1966), 311-332.
- [6] L. P. Horwitz and J. P. Marchand, The Decay scattering system, Rocky Montain Journal of Mathematics 1 (1971), 225-253.

Presented to the semester
Spectral Theory
September 23-December 16, 1977

SPECTRAL THEORY
BANACH CENTER PUBLICATIONS, VOLUME 8
PWN-POLISH SCIENTIFIC PUBLISHERS

WARSAW 1982

ON THE IDEAL STRUCTURE OF COMMUTATIVE BANACH ALGEBRAS

YNGVE DOMAR

Department of Mathematics, Uppsala University, Uppsala, Sweden

O

All rings (in particular all algebras) in this paper are assumed commutative. An ideal I in a ring A is called *modular* if A/I has a unit. For a Banach algebra B, \mathfrak{M} denotes its Gelfand space, the space of non-trivial complex homomorphisms of B, b(x) is the map of $b \in B$ by the homomorphism $x \in \mathfrak{M}$. Thus $x \mapsto b(x)$, $x \in \mathfrak{M}$, is the Gelfand transform of b. The hull h(I) of an ideal $I \subseteq B$ is the set of all $x \in \mathfrak{M}$ for which the kernel, i.e. the corresponding modular maximal ideal, contains I. The ideal $I \subseteq B$ is called primary at $x \in \mathfrak{M}$ if $x \in$

The paper contains three independent results on the structure of the set of modular ideals in a Banach algebra. The first is a general result. It is rather a collection of observations, described in Theorems 1 and 2 and in the corollary to Theorem 2. For an arbitrary ideal A in a Banach algebra B, the theorems establish strong connections between the set of modular A-ideals and the set of modular B-ideals. Theorem 2 and its corollary give in addition results on the closely related question on the possibilities of representing an ideal in B as intersection of two ideals with disjoint hulls. Theorems 3 and 4 deal with closed primary ideals in a Banach algebra B with unit. In Theorem 3 it is assumed that the elements which are rational functions of a fixed set of elements a_1, a_2, \ldots, a_n form a dense subspace. Identifying the Gelfand space with the joint spectrum of these elements, a complete description is given of the closed primary ideals at interior points. In Theorem 4 we specialize in a different way. Here we assume that $a \in B$ has the property that the closure I_n of the ideal generated by a^n has co-dimension $n, n \ge 1$. Under a supplementary condition on the norm, it is shown that all remaining closed primary ideals in I_1 are contained in $\bigcap I_n$. Theorem 4 extends Theorem 1 in [3], and the basic idea of the proof is the same.

Elementary Banach algebra theory which can be found in [7] or [8] will be used freely without specific references.

[241]