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All rings (in particular all algebras) in this paper are assumed commutative. An
ideal Iin a ring A is called modular if A/I has a unit. For a Banach algebra B, M
denotes its Gelfand space, the space of non-trivial complex homomorphisms of
B. b(x) is the map of b € B by the homomorphism x & M. Thus x — b(x), x € N,
is the Gelfand transform of b. The hull h(I) of an ideal I = B is the set of all x IR
for which the kernel, i.e. the corresponding modular maximalideal, contains I The
ideal I < B is called primary at x € MM if Iis modular and A(I) = {x}, and primary
at oo if h(l) = .

The paper contains three independent results on the structure of ‘the set of
modular ideals in a Banach algebra. The first is a general result. It is rather a collec-
tion of observations, described in Theorems 1 and 2 and in the corollary to Theorem
2. For an arbitrary ideal 4 in a Banach algebra B, the theorems establish strong
connections between the set of modular 4-ideals and the set of modular B-ideals.
Theorem 2 and its corollary give in addition results on the closely related question
on the possibilities of representing an ideal in B as intersection of two ideals with
disjoint hulls. Theorems 3 and 4 deal with closed primary ideals in a Banach algebra
B with unit. In Theorem 3 it is assumed that the elements which are rational func-
tions of a fixed set of elements ay, a, ..., @, form a dense subspace. Identifying
the Gelfand space with the joint spectrum of these elements, a complete descrip=
tion is given of the closed primary ideals at interior points. In Theorem 4 we special-
ize in a different way. Here we assume that & € B has the property that the closure
1, of the ideal generated by a" has co-dimension n, n > 1. Under a supplementary
condition on the norm, it is shown that all remaining closed primary ideals in Iy

are contained in (") J,. Theorem 4 extends Theorem 1 in [3], and the basic idea of
n»1
the proof is the same.

Elementary Banach algebra theory which can be found in [7] or [8] will be
used freely without specific references.

16 Banach Center t. VIIL [241]
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The following algebraic lemma is probably known. But the author has been unable
to find a reference, and for that reason a proof is given.

LemMA 1. Let A be an ideal in a commutative ring B. Then I+ In A defines
a bijection from the set of modular B-ideals I, satisfying I+ A = B, onto the set of
modular A-ideals. The inverse mapping is given by Jv {b€ B: bA < J}. For every
I in the family above, the mapping a+Iw> a+InA, a€ A4, is an isomorphism of
B[I onto AJ/InA.

Proof. Let I be a modular B-ideal, satisfying I+ A4 = B. InA is a B-ideal,
hence an A-ideal. A unit modulo 7 in B can be represented as i+a, where iel,
a € A. Then ais a unit modulo In 4 in A, proving that In 4 is a modular 4-ideal.

Then let J be a modular A-ideal. Let e € 4 be a unit modulo J. We shall first
prove that J is a B-ideal. For this it suffices to show that je J, b € B imply that
jbeJ. Obviously jb e A, and hence jb—jbe ¢ J. Thus it remains to prove that
Jjbe € J, but this is obvious since be € 4. Since J has been proved to be a B-ideal,
we know that w(J) = {b € B: bA < J} defines a B-ideal. We have to show that
it is modular, and that p(J)+4 = B. But (b—be)a = (a—ae)b e J, since J is a
B-ideal, and hence
@ b—be e p(J).

Thus e is a unit in B modulo ¢(J). Since be € 4, (1) shows moreover that w(J)+
+A4 = B.

We know now that each of the mappings ¢: I— I nA and y has its image
in the set of definition of the other mapping. To show that ¢ is a bijection with
inverse y it remains to show that p o @ and g oy are identity mappings, i.c. that
@ {beB: bA cInA} =1,
3) » {bed:bAcT}=1J,
if I'and J are as above. To prove (2), we use our knowledge that I 4 is modular
in 4, and let e€ 4 be a unit modulo In 4. The left. member of (2) equals

{beB:besT} = {bel+4: becl}=I+{bed: becl} =1,
which proves (2). To prove (3) we let e € 4 be a unit in 4 modulo J and find that
the left member of (3) equals
{bed:bect}=J,

which proves (3). Thus the bijectivity is proved.

The last assertion of the lemma is an immediate consequence of the fact that

B[In4 is the direct sum of A/InA and I/InA.
We are now prepared to prove our first theorem.
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TeEOREM. 1. Let A be an ideal in a Banach algebra B. Then I+ In A defines
a bijection from the set of modular B-ideals I, satisfying h(I)nh(4) = @, onto the
set of modular A-ideals. The inverse mapping is given by J+> {be B: b4 < J}. For
every 1 in the family above, the mapping a+I+ a+In A, a € A, is an algebra iso-
morphism of BJI onto A/IN A.

If A is closed.and I is as above, then I and In A4 are closed simultaneously.

Proof. I modular implies that 7+ 4 is modular. The condition A(X)nA(4) =
is equivalent to A(J/+A) = @. But since I+ 4 is modular, the last condition is
equivalent to I+ A4 = B. Hence the assumption that A(2)nh(4) = & is equivalent
to I+ 4 = B, and from this we see that the first part of the theorem is nothing
but a special case of Lemma 1. The second part follows from the definition of the
mapping and the obtained explicit formula for its inverse.

For the next theorem we need Silov’s idempotent theorem. By taking quotients
with respect to the ideal J, we find that Silov’s theorem can be formulated in the
following way.

LeMMA 2. Let B be a Banach algebra and J a closed ideal with h(J) = KU,
where K is compact, F is closed, and KnF = @. Then B contains an idempotent
eo modulo J, with ey(x) =1, x €K, ey(x) =0, x e F.

THEOREM 2. (a) Let B be a Banach algebra, and let K and F be disjoint subsets
of M with K compact and F closed. Then every ideal J in B with h(J) = KUF, has
at most one. representation J = In A, where I and A are ideals with h(I) = K,
h(A) = F, and where I is modular. If J moreover is closéd, there exists a unique
representation. I and A are then closed, and the mapping a+I+—> a+J, be A, is
a Banach algebra isomorphism of BJI onto A[J.

() If I and A are closed, the isomorphism in Thearem 1 is as well a Banach
algebra isomorphism.

Proof. Part (a). Let J be an 4-ideal with two representatlons InA4 and
I'n4'. Since (AN A’) = F, In(An4’) is another representation.- Both I+ 4 and
I+(4n A" are modular ideals with empty hull. Thus I+ 4 = I+(4nA4") = B.
Taking quotients with respect to In4 = In(4AnA4’) we obtain

IINnA+A/InA = I[InA+AnA'fINA,
where both members are direct sums. Hence 4 = AN A" Permutating 4 and A,
we obtain 4’ = A'N A, thus 4 = A’. Then I = I' follows from the mjectmty of
the mapping in Theorem 1. Thus the muqucness is proved.

If J is closed ‘the existence of a representation with I and A closed follows
directly from the lemma with Al = (eo+)BJ, 1] = (e— eo+J) B, which ' gives
B|J = A/J®I/J in Banach algebra sense. This representation a,lso gives the Banach
algebra isomorphism.

Part (b) follows directly from the last assertions of Part (a).

CoROLLARIES. (2) A closed ideal J with compact hull has a unigue representa-
tion J = In A, where I is a closed modular ideal, and A is a closed primary ideal
at co. .

16*
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o™ (b) A closed ideal is modular if and only if it has compact hull and is not included
in any proper closed ideal at co. .

(©) A closed ideal with finite hull is the interséction of a finite set of closed
primary ideals. ,

The proofs of the corollaries are easy and are omitted here. Corollary (b)
implies thit our definition of closed primary ideal agrees-with the definition used
by V.P. Gurarii [6].

Remark. L. Waelbroeck has communicated to the author that the assertion of
Lemma 2 can be proved even if J is not closed. This interesting extension of Silov’s
theorem has the consequence that the existence of a unique representation in
Theorem 2 holds even without the closedness assumption on J. And all three corol-
laries are true with the prefix “closed” deleted at all places.

. 2

In this section we assume that the Banach algebra B has unit ¢ and contains elements
dy, @, ..., a, such that the rational elements of a = (a,, a,, ..., a,) form a dense
subalgebra. With a rational element is then meant an element P(a) - Q(2)~*, where
2 and Q are polynomials, and Q(a) is invertible. It is then known that U can be
identified with a compact subset of C” (the joint spectrum of @y, a,, ..., a,) in such
a way that the Gelfand transform of @, is the ith coordinate projection z = (z,, z,, ...
wos Z) >z on . The rational elements P(a)- Q(a)~* have Gelfand transforms
2> P(z) G(z)7", and a general element b € B has a Gelfand transform z — b(2),
which is continuous on M, and analytic in .

Let O, be the ring of all power series Y. ¢,z* with complex coefficients and
positive radius of convergence. Here o = (ay, a5, ..., ,), where oy are non-nega-
tive integers. We define X as the family of allideals in O, which contain every mono-
mial 2% if Jo] is large enough. ‘Every such ideal has finite co-dimension, and it can
be described ‘as the subset of 0, of all 3 ¢,2%, satisfying a finite number of specified

relations
@ Ddie, =0,

where d,, are fixed complex numbers, vanishing for large |a.

Now let z° = (2§, 23, ..., z%) be a given point in M°. For every ideal J in O,
we denote by B(J) the ideal in B of all b € B for which the power series expansion
fn 2 of b(z°+2) belongs to J. If J ¢ K, B(J) is primary at 2°, since (a;—z{ &) & B(J)
1f N is large enough. Since the coefficients in the power series expansion are bounded
linear functionals on B, the relations (4) show that J e K implies as well that B(J)

is closed and of finite co-dimension. Thus we have proved the sufficiency part and
the second assertion of the following theorem.

THEOREM. 3.. In order that I is a closed primary ideal of B at z° € M® it is necess-

ary and sufficient that I = B(J) where J belongs to the family K of ideals in O,.
All these ideals I have Sinite co-dimension.
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Proof. In proving the remaining necessity part we can, without loss of general-
ity, assume z° = 0. First we observe that B/I has Gelfand space hy(I) = {0},
with Gelfand transforms (b+I)(0) = b(0), b € B. By the spectral radius formula,
D.e B/I and D(0) = 0 imply ||D"|*/" - 0, as n - co. In particular, this holds for
the elements 4; = a;+ 1. Thus if Z ¢, z* is an element in O,, Z ¢, A% represents an
element in B/Iif A = (4;, A, ..., A,). The mapping 3, ¢, 2%+ 3. ¢, 4* is a ring
homomorphism from O, to B/I. Defining J as its kernel, we have thus that J is an
ideal in O,. The necessity part is proved if we can show that T = B(J), and that
JeK. ‘ ‘

To prove that I = B(J), it suffices to show that if be B, and b, 2 is the
expansion of b(z) = 0, then

®) Dbt = b+l ,
For then, for every b € B, the relation b eI is equivalent to ZbaA“ = I, which

in its turn is equivalent to 3. b,z* € J. The proof of (5) is as follows. If b =
P(a)- Q(a)~*, where P and Q are polynomials and Q(a) is invertible,

0 D bed* = [01) D bur],_, = [PWles = P(A) = P@)+I
= Q(a)b+I = (Q(a)+1)(b+1) = Q(A)(b+I),

and from this (5) follows directly. To prove (5) in the ge‘neralysituatiou, we take
a sequence (b™)7 of rational elements, converging to b. Then the analytic functions
z+— b"(2) in M converge uniformly to z— b(z). The analyticity at O implies the
existence of a positive constant C such that the coefficients b in the expansion
of b™(z) satisfy

bz} < Ce+t,

for every m and «. Thus we can pass to the limit in the relation

D bpdt = b+,
obtaining (5) in the general case.

Finally we shall prove that J € K, Since ¥ = B(J), J contains all power series
which are expansions of Gelfand transforms of elements in I These power series
converge in a common neighborhood of 0 & C", but since I is primary, 0 is their
only common zero in this neighborhood. By [5], Theorem II.D.2, the ideal J (which
is finitely generated, since O, is Noetherian) has O as its locus ([5], Definition IL.
E.8). By Hilbert’s Nullstellensats ([5], ILE.20 and IILA.7) this implies that 2z € J,
if the integer N is large enough. Thus Je K. :

Remarks. In addition to the closed primary ideals of Theorem 3, there exist
in general non-closed primary ideals at points in °, even if n = 1. This is shown
by the following example. Let (w,)@ be a sequence of real numbers- > 1, satisfying
Winsn < WuW,, m2= 0, n> 0, and wi/" > 1, as n — co. Then the Banach space
1,, of sequences b = (b,)¥ with ||b]| = S |BalW, < 00, is a convolution Banach algebra,
and I, is generated by the element a = (0,1, 0,0,...). Correspondingly, the Gel-
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fand transform is zi— 3 by2" -defined on the Gelfand space {zeC: |z < 1}.
If sup WalWas1 = 00, the ideal: generateéd by a is primary at 0, but not closed.

Another circumstance, worth pomtmg out is that Theorem 3 implies that every
closed primary ideal at z° € IN° contains the radical of B. This is in general not
true if 2° ¢ MO, not even if z° belongs to the closure of IR°. This is seen by the fol-
lowing example. Let A(D) be the disc algebra, i.e. the Banach algebra of complex-
valued functions on the unit disc D in C, continuous on D and analytic im D°,
under the uniform norm. Then we consider the algebra of pairs (f; «), fe A(D),
« € C, with component-wise addition and with

(frs an)* (for #a) = (fifar cn oD+ “zfl(l))

We obtain a commutative Banach algebra with the norm
1O 0l = 1Al aemy+ 1ot

If f, is the function z — z in A(D), it is-easy to-see that polynomials in a = (f;, 1)
are dense in B. The corresponding Gelfand space is D and the Gelfand transform
of an arbitrary element (f, &) is z f(z). The subspace of all elements of the form
(f, 0), where f(1) = 0, is a-closed prlmary ideal at 1, but it is not included in the
radical of B.

Moreover, it should be observed that the definition of M° depends on (a,, a,,
..., a,). Thus the theorem can be applied to those points in I which are interior
for some admissible’ choice of these elements.

A final remark is that Theorem 3 follows, in the case n = 1, from Theorem
4.12 in [4]. The methods in that paper do however not generalize to n > 1.

3
In this section, the Banach algebra B is assumed to have a unit e. Then a closed
ideal m is maximal if and only if it has co-dimension 1. If m is maximal, we call an
ideal in B primary at m if it is primary at the point x & 0% for which the correspond-

ing kernel is m. We call an element @ € B primary at m if (a), the principal ideal
generated by a, is primary at m.

THEOREM 4. Suppose that a € B has the property that I, = (a") has co-dimen-
sion n, for every n > 1. Then I, are the only closed ideals of finite co-dimension which
are primary at I,. Suppose that there exists a sequence (C,){ of positive constants
such that
© Culia™dl| lla"ell,
for every b,ce B, n> 1. Then every closed ideal of infinite co-dimension, which is
primary at I, is contained in M I.

To prove the theorem we need two lemmas.

lla"bell <

LevMa 3. Let de B Be primary _at the maximal ideal m, and ‘assume that the
cIosed ideal I is primary at m and satisfies 0 < Dim(d)/ < co. Then I < dm.
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Proof. Let J denote the ideal of all b & B such that db < I. Since (d) # 1, J is
proper and hence it is included in 2 maximal ideal m,. It is well known and easy
to prove that if Z is a dense subspace of a Banach space X, and if ¥ is a closed sub-
space of X of finite co-dimension, then ZNY is dense in Y. Since {db: b B} is
dense in (d), and I has finite co-dimension in (@), {db: be J} is dense in I. For
that reason I < dmg. In particular, this implies I < m,. But I was primary at m,
hence m = my, giving I < dm.

LemMA 4. Suppose that d € B is primary at the maximal ideal m, and that

™ lldbel| < ||dbl| - [1dell,

for b, ¢ € B. Let the ideal 1 be primary at m and satisfy I < (d). Then either I < dm,
ord*el

Proof. Put (@)= K. In a unique way we can define a composition * on (d)
by the definition db * dc = dbc, b, ¢ € B. Using (7), it is casy to see that the compo-

sition can be extended to K, making it to a Banach algebra <X, *)», with unit 4.
Again using (7), we find easily that

¥

for b € B, ¢ € K. By (8), an ideal in (KX, %) is as well an ideal in B.

I generates an ideal J in (K, *). Let us first assume that J is proper. Then it is
contained in a maximal ideal M of (K, *). But M is then a closed ideal in B, such
that K/M has dimension 1, and it is primary at m since M 2 I. Thus Lemma 3
is applicable, giving I < dm. Let us then assume that J = K. Then d e J, that is
we have a representation d = Z a;*by, a;€l, b;e K, 1 <i<n. By (8) we obtain

#=d2xd=) (@xa)sb = Y daywb = Y abel.

Thus the lemma is proved.

(db) x ¢ = bc,

Proof of Theorem 4. I, is a maximal ideal, and we denote by x, the correspond-
ing point in 9. Since I; is generated by a, the Gelfand transform of a has x, as
its only zero. The same holds for all ", n > 2, and subsequently all I,, n > 1, are
primary at I,. Let I be a closed ideal, primary at I, strictly contained in I,, for
fixed n > 1, and of finite co-dimension. Then Lemma 3 can be applied with d = ",
and this gives J < &'I, = I,.,. By induction we obtain I = I,, where p is the
co-dimension of I. Thus the first part of the theorem is proved.

To prove the second part, let I be a closed ideal, primary at I,. It suffices to
show that, for fixed n >1, the relation 7 < I, implies I < I,,.,. Put d = C,a".
(6) shows that (7) is fulfilled, and dis primary at 7,. Hence the conditions of Lemma
4 are fulfilled, and we can conclude that I < dI, = I,,,, or d*e I. In the second
case we have therefore I,, < I, showing that I is of finite co-dimension. But then
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we can apply Lemma 3, which gives 7 < Lny,. Thus I < I, 1 holds in either case,
and this proves the second part of the theorem.

Remarks. It would be of interest to find examples which show that Theorem
4 is no longer true if the condition (6) is removed. Applications of Theorem 3 to
particular Banach algebras can be found in [2] and [3]. Here is another application,
which extends results in [1] and complements investigations of V. P. Gurarif in [6],

Let w be a positive, Borel measurable, locally bounded, and submultiplicative
function on the additive semigroup R*u {0}. M,, is the Banach space of regular
Borel measures g on R*u {0} with |[u]l = S w(t)du(t) < co. Then M, is a com-
mutative Banach algebra with convolution as operation. L,, is the closed ideal
of all absolutely continuous measures in M,,, and L, is the closed ideal of all meas-
ures in M,,, absolutely continuous except possibly at 0. We assume that ¢+ ¢~ x
% logw(#) is bounded below on R*. Then the Gelfand space M of L,, is non-empty,
and can be identified with a closed half-plane in C, with the Gelfand transform of
an element g given by z — § e®du(z). Since L, is a closed ideal in M, B is an
open subset of the Gelfand space of M,,. And the Gelfand space of L, is, of
course, the one-point compactification of m.

As for closed primary ideals at points in I, we have by the results in Section
1 the same structure in the three algebras. Thus we can restrict our attention to
L,. If « is real and large enough, this space contains an element @ with Gelfand
transform z — z(z—ix)~*, and it is easy to see that polynomials in & are dense in
L. The corresponding identification of the Gelfand space, in the sense of Section
2, gives a Mbius map of the compactified half plane to a circular disc in C. Hence
the results in Section 2 give a complete knowledge of the closed primary ideals
at interior points of M.

Let us consider a point at the boundary of I} By an easy transformation
we are free to assume that the point is 0, which means that w has a positive lower
bound. If we assume a little more, namely that w(f)t~" — oo, as || - oo, for every
n, then the subspaces I, of all u e L,, for which

St"'d,u =0,

are ilosed primary ideals at 0, of co-dimension n, and it is easy to see that I,
= (a"). Using arguments that are completely analogous to the discussion. on pp.
363-365 in [2], it is possible to show that (6) holds for certain constants C,, if

(&)

m=20,1,...,n—1,

v W)+

0gr/x<g!

+G+y- t))“w(x)dt)

0 (t—y)/xg1

is bounded, for every integer g > 0, independently of x and y. Thus we can apply
Theorem 4 in this case.

Similar results can be obtained for weighted convolution algebras on R.
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