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1. Introduction
We shall outline here a proof of the following results.

TueoreM 1. Let K be an infinite compact space and let B be a commutative
radical Banach algebra having bounded approximate identities. If the continuum
hypothesis (2% = W) is assumed, there exist a discontinuous homomorphism from
%(K), the algebra of all continuous complex valued functions over K, into #®Ce.

COROLLARY. If the continuum hypothesis is assumed, there exists an incom-

plete algebra norm over 4(K).

Similar results were obtained independently by Dales [4], by a very different
way. A very short summary of both construction can be found in [7], and some
detailed comments are given in Dales’s survey article about automatic continuity
[6). On the other hand, R. Solovay has constructed models of set theory including
the axiom of choice in which every homomorphism from ¢(X) is continuous.

2. Properties of algebra semi-norms defined over % (K) [9]

Bad¢ and Curtis [3] showed in 1960 that for every algebra homomorphism ¢ from
%(K) into a Banach algebra there exists a dense subalgebra 9, of ¥(K) (the sub-
algebra depending of the homomorphism) such that @|@, is continuous. More
precisely, 9, must contain all the function which are constant in some neighbour-

hood of a finite family T, of elements of K.

"The results of Badé and Curtis were strengthened by the author in [9]. (Many
results of [9] were obtained before by Allan Sinclair in [23] in a different way.)
The methods of [9] are based upon a generalization of the theory of “elements

of finite closed descent in Banach algebras” due to G. R. Allan [1], [2].

THEOREM 2.1 ([9]). Let of be a metrizable complete commutative algebra
and let (a,) be a sequence of elements of . If [#a,)~ = o (ne N), there exists for
any linear semi-norm p on 54 a positive integer my, such that the p-closure of Aa, ... a,

equals the p-closure of Aa, ... ay, for every n. = my.

[251]


GUEST


252 J. ESTERLE
COROLLARY 2.2 [9]. Let (f,) be aAsequence of elements of €(K). If f;71({0})
= f7({0}) for every ne N, then for every linear norm p over €(K) there exists
a positive integer m, such that the p-closure of fi ... fy @ (K) equals the p-closure
of f1 - fnp 0 €(K) for every nzm

Applying Corollary 2.2 we can obtain more precise results for algebra semi-
norms.

LemMa 2.3 ([9]). Let f be an element of €(K) taking real non negative values,
Then for every positive real r the p-closure of "+ €(K) equals the p-closure of - €(K).

This lemma implies that for every algebra norm g over ¥(K) all non invertible
elements of #(K) are of closed descent one in Allan’s sense ([2]).

CORrOLLARY 2.4 ([9]). Let g be any algebra semi-norm over €(K). Every -
closed ideal of 4(K) equals the intersection of the primes containing it.

Using Corollary 2.4 and the classical methods of Badé and Curtis we can prove
much more.

THEOREM 2.5 ([9]). Let q be any algebra semi-norm over €(K), and let I be
a proper ideal of €(K). The g-closure of I equals the intersection of all g-closed primes
containing I. .

Using again Badé and Curtis’s results, we obtain:

) THEOREM 2.6 ([9]). Let q be any algebra seminorm over 4(K), let &, be the
set of all nonmaximal g-closed primes of €(K) and let J, be the intersection of all el-
ements of &, (we put J, = 4(K) if F, is empty).

(a) The semi-norm q is continvous if and only if F, is empty.

(b) qlJ, is continuous, and J, contains every ideal I of €(K) such that q|I is
continuous.

(c) The set of maximal ideals of €(K) containing some elements of %, is finite.

CoroLLARY 2.7 ([9]). There exists a discontinuous homomorphism from €(K)
into a Banach algebra if and only if there exists a nonmaximal prime I of €(K) such
that the quotient algebra 4(K)/I is normable with an algebra norm.

Let ¢ be any algebra semi-norm of #(K). Every g-closed prime contains a mini-
mal g-closed prime and the set of all primes containing a given prime is fully order-
ed by inclusion ([15]). So the set &, is a union of chains of primes. For some
compact spaces it is possible to prove that #, must be a union of a finite number
of chains of primes ([9], Theorem 5.1). This is true ini particular when X is the Alex-
androff compactification of the set of integers. It is not known, as far as the author
is aware, whether this result is true in general (see [9], § 5).

Using classical order properties of ¥z (K)/I (where T is a prime ideal of @x(K),

the algebra of continuous real-valued functions over K) we obtain another result
about chains of primes,

TreoREM 2.8 ([9]). Let p be any linear semi-norm over (K). Every chain of
p-closed primes is well ordered by inclusion.
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3. Discontinaous homomorphisms from ¥ (K) and an algebra
of power series [10]

The problem of constructing a discontinnous homomorphism of #(K) is equiv-
alent to the problem of norming a complicated integral domain: the quotient al-
gebra ¥(K)/I for some nonmaximal prime I. This is not possible for some non-
maximal primes of #(K) for some complicated compact spaces K ([9], Theorem
7.1) but we shall see that it is possible for every nonmaximal prime I in the case
of separable compact spaces.

In the real case the quotient algebra @x(X)/I, which is fully ordered under
a patural order, has very special order properties ([15], Chapter XIII). For example
if Iis a minimal non trivial prime of /g, the algebra of all real-valued bounded
sequences, the field of fractions L of Ig'/I is a “real closed #,-field” and I /I is the
ring of valuation of L for the “valuation of order”. (The notion of #,-fully order-
ed sets” was introduced by Hausdorff in [17]. See [15], Chapter XIII for a defi-
nition and properties of ,-sets and real closed fields.) We outline here some results
obtained by the author in [10] where an algebra of formal power series B, is intro-
duced. This algebra has the following property: If the continuum hypothesis is
assumed, there exists a discontinuous homomorphism of #(K) if and only if B,,
is normable with a real algebra norm (B. E. Johnson had pointed out in [19] the
relation between Kaplansky’s problem and the problem of norming the algebra
of infinitesimals of some ;-real-closed fields without introducing algebras of
formal power series). We denote by w, the first uncountable ordinal and we denote
by S,, the set of all (0,1) valued sequences ¢ = (f)s<,, Such that the set 4,
= {& <wy: ty = 1} has a greatest member. 'We equip S,,, with the lexicographic
order.

Now we denote by b the real linear space of all real valued functions over
S, which vanish outside some countable well-ordered subset of S,,, the subset
depending of the function. We say that a nonzero element f of %Y is positive
if and only if it takes a positive value on the smallest element of the set {t &S, :.
() # 0}. Equipped with this order, ¥¢» is a fully ordered real linear space.

Now denote by FL (resp. #L) the set of all real valued (resp. complex
valued) functions over ¢! which vanish outside some countable well-ordered
subset of ¥V, the subset depcndmg of the function. We define as above a structure
of fully ordered real linear space over FE (resp. a structure of complex linear
space over (). Now for every pair g, g, of elements of FGV (resp. #)) denote
by g:£, the real valued ‘(resp. complex valued) function deﬁned over 4§ by the
formula:

Y a(®n@) @)

S0 md

(8182)(d) =

It is easy to see and well known ([16]) that the nonzero terms in the sum of th‘e
above formula are finite and that g, g, belongs to &S (resp. (). Under this
multiplication #§ becomes a fully ordered field (and S becomes a field), see
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[16] for the original proof of Hahn (some simpler proofs can be found in [14],
[181, [22]). .

TesoreM 3.1 ([10]). (2) FL is a 1,-real closed field, and H#)) is an algebraic-
ally closed field.

(b) Card (#) = Card(FP) = Card(¥5)) = Card(S,,) = 2%.

(c) There exists an increasing family (Gg)g<w, of linear subspaces of 95 such
that 9 = EU G; and such that for every £ < w, each subset of G¢ has a countable

<wy

cofinal and coinitial sequence.

(d) For every & < wy, the set Fy (resp. Hy) of all elements of F2 (resp. #5Y)
vanishing outside Gy is a real-closed subfield of FC (resp. an algebraically closed
subfield of #5Y).

() FL = UF, #L =£U H; and for every & < w,, each subset of Fg

<ay <w, .
has a countable cofinal and coiniti(;I sequence.
" For every nonzero element x of #¢" denote by V(x) the smallest element
of the set {d e g5D: x(d) # 0}. The map x — V(x) defines a valuation over #%5)
(we put as usual by convention V(x) = + ).

Put: B, ={xeFL: V(x) 20}, B, ={xeF: V(x) >0}, C,, = {xe#i:
V(x) > 0}, C,, = {x e #D: V(x) > 0}.

B,, and C,, are rings of valuation, and B, and Ccf“ are respectively the
unique maximal ideals of B,, and C,,. In fact B, is the set of “finite elements”
of FL (B, = {x e FPY: |x] < n-1} for some n.e N) and B, is the set of “infi-
nitesimals” of #L (B, = {xe FV: |x| < 1/n} for every neN).

Note also that as a field (D (and also H; for every & < w,) is isomorphic
with the field of complex numbers. This follows easily from Steinitz theory.

Using methods of ordered fields theory, we obtain the following result:

TueoreMm 3.2 ([10]). (a) Let F be a real closed v,-field, equipped with a real
algebra structure compatible with its order. There exists an order preserving algebra
homomorphism from F into F. Moreover, if Card(F) = 2% and if the con-
tinuum hypothesis is assumed there exists an order preserving algebra isomorphism
from FLO onto F.

(b) Let F be a fully ordered field having a real algebra structure compatible
with its order such that Card(F) = 2%. If the continuum hypothesis is assumed there
exists an order preserving algebra homomorphism from F into' F5°.

Some other purely algebraic results are obtained in [10]. In particular, it is
proved that if the continuum hypothesis is assumed to be false there exists non
isomorphic #,-real-closed fields of cardinality 2%, which solves a problem raised
by Erdss, Gillman and Henriksen in [8].

We now turn to the construction of discontinuous homomorphisms from
%(K). Using Theorem 3.2 and order properties of the quotient algebra @x(K)/I,
where I is a nonmaximal prime of ¥x(K), we obtain:

1
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TueoreM 3.3 [10]. Let K be any infinite compact space.

(2) For any nonmaximal prime I of €r(K) there exists a faithful algebra homo-
morphism from B, into the quotient algebra €x(K)/I.

(b) If the continuum hypothesis is assumed there exists for every nonmaximal
prime I of €x(K) such that Card(%x(K)/I) = 2% a faithful algebra homomorphism
from €x(K)/I into B, .

Of course similar results are true in the complex case if we put C, in place
of B,,. So we obtain:

CoROLLARY 3.4 [10). If the continuum hypothesis is assumed the existence
of an algebra norm over C,, implies the existence of a discontinuous homomorphism
from %(K) for every infinite compact space K.

Note that Theorem 3.3 and Corollary 2.7 show that the existence of a discon-
tinuous homomorphism from #(K) for some compact space K imply the existence
of an algebra norm over C,, , and this result does not involve the continuum hypo-
thesis. So in some sense embedding C,,, into a Banach algebra is necessary to con-
struct discontinuous homomorphisms from #(X).

4. Embedding C,, into a Banach algebra [11], [12]
Denote by C[[X]] the algebra of all formal power series in one variable (C[x7) is
o0

roughly the set of formal sums Z a,X", where the sequence (a,) runs over all

n=
complex sequences); C[[X]] is a ring of valuation of the field of all Laurent series,
and the semi-group of values of C[[X]] for this valuation is the additive semi-group
of all nonnegative integers. In fact the relation between Z and C[[X]] is similar
with the relation between ¥ and C,,,.

G. R. Allan has constructed in [I] an embedding from C[[X]] into #@Ce,
where # is any commutative radical Banach algebra having bounded approximate
identities. His proof is divided in two steps:

(1) Let # be a commutative radical Banach algebra. If there exists x e &
such that the sequence [x"¢8]~ is ultimately constant, there exists a faithful algebra
homomorphism from C[[X]] into £@Ce such that x is the image of X.

(2) For every non unital commutative separable Banach algebra # having
bounded approximate identities there exists x € # such that [xB]- = A.

In other terms, for every commutative radical Banach algebra # having a b.a.i.
there exists a map ¢: N— % such that pn+n") = o) - (), [pm)#]~
= [p(n)4#]~ for every n,n’ €N, and this implies the existence of a faithful algebra
homomorphism @ from C[[X]] into Z#®Ce such that y(X") = @(n) for every
neN.

Our strategy for the construction of an embedding from C,, into a Banach
algebra is similar, but the proofs of the analogous two steps are of course much
more complicated.
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We denote respectively by T, and T, the set of all nonnegative elements
and the set of all strictly positive elements of 45, Also for every d € T,f,1 we denote
by X? the element of C,,, which takes the value 1 at 4 and vanishes outside {d}.
The first step of our embedding of C,, into a Banach algebra is given by the fol-
lowing result:

TaeoreM 4.1 [11]. Let # be a radical commutative Banach algebra, If there
exists a faithful map p: T, — % such that g(d+d)= p(d)- ¢@d") and [p(d)Z]-
= [p(d)B]~ for every d,d’cT,,, there exists a faithful algebra homomorphism
y: C, — B such that p(X%) = q(d) for every deT,,.

The proof involves as in [1] a theorem of Arens and Calderén which asserts
that the equation @y+a;x+ ... +@,_; X" = 0 has a solution in # for every
commutative radical Banach algebra # and for every finite family (aq, a;, ..., @,-,)
of elements of #. The proof involves also the following lemma, where the
Mittag-Leffler theorem about projective limits is used as in [1]:

LemMMA 4.2 [11]. Let # be a commutative Banach algebra and let (a,) be a
sequence of elements of # satisfying [a,B]™ = RB for every n € N. There exists for

e (8,) of el
a,, 1B for every neN.

‘We shall not outline here the whole proof, in which some results of valuation
theory are used (in particular an old result by Mac Lane [21] which ensures that
some maximal fields with valuation are algebraically closed). In some sense certain
subrings of # can be considered as rings of valuation of “countably maximally
complete” valued fields in which the theorem of Arens and Calderén plays the
role of Hensel’s lemma, and some of our methods are related with Kaplansky’s
thesis about maximal fields with valuations [20].

every

"
ts of % an element o of # such thatg-—-zlala,_ @ 6y
™

€aja, ...

Remark 4.3. The condition of Theorem 4.1 is in fact necessary for a radical
Banach algebra # to contain‘a copy of C, . This follows from a result of [10]
which shows that for any algebra norm p over C, there exists a subalgebra of
C,,, isomorphic with C,, in which each nonzero ideal is p-dense.

The second step of our embedding is given by the following theorem.

THEOREM 4.4 [12]. Let B be any nonunital commutative separable Banach
algebra having bounded approximate identities. There exists a faithful map ¢: T, %
satisfying:

@B~ =8 (deT,),
p(d+d) = ¢(d) - p(d) (d,d'eT,).

In the case of C[[X]] the “second step” was an immediate consequence of the
Johnson-Varopoulos strenghtening of Cohen’s factorization theorem:

For any Banach algebra # with b.ai. and for any sequence (x,). of elements
of B there exists a sequence (y,) of elements of @ and an element b of & such that

icm

DISCONTINUOUS HOMOMORPHISMS FROM #(X) 257,

X, = by, for every n e N. So in the separable case applying this result to.a sequence
(x,) dense in & we obtain [bB]~ = # and [)"#]~ = # (n e N), the desired result.

The proof of Theorem 4.4 is much more complicated, because the semi-group
T, is an 7;-set. Also T, is divisible, so the elements of the range of the map 1,0
must have nth roots for every ne N,

The proof given in [12] involves a special class of elements of & (the “Cohen
elements”). We give here a definition of these elements which is simpler than but
equivalent to the original definition given by the author in [12]. .

DEFINITION 4.5. Let £ be a nonunital commutative separable Banach' algebra
with b.a.i. An element o of # shall be called a Cohen element if and only if there
exists a sequence (a,) of elements of # satisfying the following conditions:

) a= lim exp(a,).

(2) The sequence (exp(p“ a,)) converges for every pe N’ towards an el-
ement of # which we denote by al/?.
(3) f = limPBecexp(—a,) for every fe 4.
n—oo

(4) sup |la/Pexp(~p~la,)||< + oo for every p e N.
neN

The idea of the proof of Theorem 4.4 is roughly that every maximal divisible
semigroup of the set of Cohen elements is an “5,-set” so contains a copy of T, .
This property follows from four lemmas, two of them using some refinements of
classical factorization methods and two of them using only the definition of Cohen’s
elements and arguments related with the proof of the Mlttag—Leﬁ'lers theorem
about projective limits.

We thus obtain the desiréd embedding of C,, into-some Banach algebras‘

THEOREM 4.6 [12]. Let # be a commutative separable radical Banach algebra.
If # possesses bounded approximate identities, there exists a faithful algebra homo-
morphism from C,, into B@Ce.

Using Corollary 3.4, we can now give an answer to the so-called Kaplansky’s
problem:

CoRrOLLARY 4.7 [12). Let K be any infinite compact space and-let # be a com=

mutative separable radical Banach algebra having bounded approximate identities,
if the continuum hypothesis is assumed there exists a discontinuous homomorphism
from 4(K) into BPCe.

‘We obtain in this way discontinuous homomorphisms from € (K) into L}(0, 1)@
@Ce, where Li(0,1) is the “Volterra algebra”, and into the weighted algebras
LY (R*, w)®Ce, where w is a measurable positive valued function over R* such
that w(t+1) < w(t)w(t’) for every #,¢' € R* and such that lim (w(z))** = 0.

t-00

Note also that every nonmaximal prime I of ¥(X) such that Card(%(]{)/])
= 2% js the kernel of a discontinuous homomorphism from #(X). So if K is separ-
able every nonmaximal prime of %(K) is the kernel of a discontinuous homo-
morphism from %(K).

17 Banach Center t. VIII
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5. Discontinuous homomorphism from commutative separable
Banach algebras [13]

The above construction of discontinuous homomorphisms from #(K) can be sum-
marized by the following diagram, where I is any nonmaximal prime of #(X) such
that Card(%(K)/I) = 2% and # is any commutative radical Banach algebra with
bounded approximate identities.

ex)Sewi>c, S AOCe.

In this diagram Q; denotes the canonical map from %(K) onto ¥(K)/I, and
the maps 0 and yp are faithful. The continuum hypothesis is used only in the con-
struction of 6.

G. Dales constructs in [5] discontinuous homomorphisms from any commu-
tative Banach algebra having infinitely many characters and from the classical
radical algebras Li(0, 1) and Li(R*,w), where w is a “weight” satisfying the con-
ditions mentioned above. The kernels of these homomorphisms are some partic-
ular nonmaximal primes the quotient algebras by which may be “naturally” embed-
ded into /*/I for some suitable nonmaximal prime I of I,

We outline here a much more general but much more complicated construc-
tion, the proof of which can be found in [13].

. We first state a purely algebraic result, which involves an extension of Kaplan-
sky’s theorems about maximal fields with valuations [20] and Chevalley’s theorem
about extensions of places.

THEOREM 5.1 [13]. Let A be any ital iplex ¢ tative - algebra

which is an integral domain of cardinality 2%. If the continuum hypothesis is as-
sumed, there exists a faithful algebra homomorphism from A into C,,,.

CoROLLARY 5.2 [13]. If the continuum hypothesis is assumed the weighted con-
volution algebra L*(R*, e~**) contains a copy of any nonunital commutative complex
algebra which is an integral domain of cardinality 2%,

Note that L'(R*,e*) is itself a nonunital complex algebra of cardinality
2% which is an integral domain by Titchmarch’s convolution theorem.

COROLLARY 5.3 [13]. If the continuum hypothesis is assumed every nonunital
commutative complex algebra which is an integral domain of cardinality 2% is norm-
able with an algebra norm.

Using Theorems 5.3 and 4.5 we see that if the continuum hypothesis is assumed

every nonmaximal prime I of a commutative unitil Banach algebra «f such that
Card(of[I) = 2% is the kernel of an homomorphism from & into a Banach al-
gebra. This homomorphism may be continuous but using algebraic properties
of C,, it is possible to prove that for any algebra norm p defined over C,, there
exists an homomorphism ¢ from C, into itself such that the norm po g takes
arbitrary given positive values over a given base of transcendence of C,l,

So we obtain the followmg general result:
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THEOREM 5.4 [13]. Let of be any commutative unital Banach algebra and let
# be a commutative radical Banach algebra having bounded approximate identities.
If the continuum hypothesis is assumed every nonmaximal prime I of sf such that
Card(sf [I) = 2% is the kernel of a disconti H rphism  from s into
BD Ce.

The construction of the discontinuous homomorphism of Theorem 5.4 may
be summarized by the following diagram:

d—».ﬂ//[—) Cw;_’Cw; 5 BDCe.

In this diagram Q; denotes also the canonical map from & into &//I, the maps
6, o and y are faithful, the map v is the map constructed in § 4 and the continuum
hypothesis is used only in the construction of 8. Note that if & is a base of tran-
scendence of I over the complex numbers modulo I we may arrange by a suitable
construction of the map ¢ that the semi-norm induced over & via this homomorph-
ism by the norm of Z@Ce takes arbitrary given positive values over &, I being
any maximal ideal of & containing I

It is easy to sece that every unital commutative Banach algebra having infi-
nitely many characters and every unital commutative separable Banach algebra
whose nilradical is infinite dimensional possesses a nonmaximal prime I satis-
fying the hypothesis of Theorem 5.4. On the other hand, it is possible to prove
that an infinite-dimensional unital commutative Banach algebra whose nilradical
is finite codimensional has a maximal ideal M such that WM/IM? is infinite dimen-
sional. In this case there exists an obvious method to construct a discontinuous
homomorphism from & into any Banach algebra having nonzero nilpotent ele-
ments (and it is possible to arrange that the semi-norm induced over & via this
isomorphism takes arbitrarily gwen positive values over a Hamel basis of It modulo
M2). So we obtain.

THEOREM 5.5 [13]. If the continuum hypotheszs is assumed there exists a discon-
tinuous homomorphism from any infinite-dimensional commutative separable Banach
algebra into LL(0, 1)@Ce.

Remark 5.6. We actually proved much more. If & is any infinite-dimensional
commutative separable Banach algebra and if p is any linear norm defined over
& there exists an homomorphism from & into Li(0, 1)®Ce which is p-discon-
tinuous.

This follows from the existence of sequences of elements of & over which
the values taken by the semi-norm induced by the homomorphism of Theorem 5.5
may be arbitrarily fixed.

6. Further results

In this section we shall state some unpublished results of the author. We shall denote
by #(x) the spectral radius of an element x of a Banach algebra «f. We denote by
Spec(x) the spectrum of x in & if o is unital and the spectrum of x in #/@Ce if
& is not unital. The set {4 € Spec(x): |A| = »(x)} shall be denoted by A(x).

17*
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2 "When «f is unital, we shall denote by 9(x) the subalgebra of . generated
by x and the unit element and we shall denote by Z(x) the subalgebra of o gener-
ated by P(x) and the set of invertible elements of P (x); 2(x)'is the algebra of
complex polynomials in x and %(x) is the algebra of rational functions in x, where
we limit of course ourselves to the rational fractions whose poles lie outside the
spectrum of x. It follows easily from Gelfand theory that for every homomorphism
y from a Banach algebra & into another Banach algebra and for every x e«
we have: lim{jy(x")[["/" < »(x). In some cases it is possible to prove more. For
example we have the followmg result.

THEORBM 6.1, Let of be a semt-szmple commutative Banach algebra and let
x be a nonzero element of sf. If A(x) contains only isolated points of Spec(x), then
for every hamomorphzsm y from of into a Banach algebra we have:

sup (Ilp G/l < +oo.
On the other hand we can make the sequence [|w(x")|| grow as fast as possible
if the condition of Theorem 6.1 is not satisfied.

THEOREM 6.2. Let o be a commutative Banach algebra and let x be an element
of . Assume the continuum hypothesis. If A(x) -contains a nonisolated point of
Spec(x) there exist for every commutative separable radical Banach algebra % having
bounded approximate identities and for every sequences () of positive real numbers
such that lim(4,)"" = v(x) an homomorphism y: o — B@Ce satisfying:

liminf(A7 w1} = +co

Theorems 6.1 and 6.2 solve completely the question of the rate -of growth of
the ‘sequence (|| (x™||) for arbitrary homomorphisms from & in the semi-simple
case. The situation is more complicated in the non semi-simple case. If we assume
o tobe separable (or we suppose simply Card(sf) = 2%) it is possible to obtain
results: similar. to Theorems 6.1 and 6.2 with a more sophisticated condition. (If
x € Rad(«/) Theorem 6.2 works if x is not nilpotent.) We shall not state these
results here.

Now. we turn to the problem of constructing an homomorph1sm o from &
such that y|2(x) is discontinuous. Theorem 6.2 gives a solution in some cases, but
it may happen even in the semi-simple case that 2(x) is infinite-dimensional and
that' A(y) contains only isolated points of Spec(y) for every y € D(x) (consider the
element. x = (exp(in)/n) on c,@®Ce). Nevertheless the following result is true,

THEOREM 6.3. Let of be a commutative unital Banach algebra and let x be an
element of of. Assume the continuum. hypothesis. If o is a semi-simple or separable
and if P(x) is infinite-dimensional there exists for every commutanve separable
Banach algebra with b.a.i. and for every algebra norm q defined over o an homo-
morphzsm 1p A~ BOCe such that p|D(x) is g-discontinuous.

For the algebra #(x) we have a much stronger result:
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THEOREM 6.4. Under the hypothesis of Theorem 6.3 there -exists for any linear
norm p defined over R(x) an homomorphism y: o > B®Ce such that | R(x) is
p-discontinuous.

The proofs of Theorems 6.2, 6.3 and 6.4 are related with the construction of
Theorem 5.4. The problem here is to find some Cohen elements « in # having
special properties (this is done using factorization methods) and then to construct
a map y: C,, - #DCe such that p(2) = «, where z is related with x via the map
§ of the diagram following Theorem 5.4.

We state in conclusion some unpublished results related with chains of g-
closed primes of ¥(K) for a discontinuous algebra norm g on ¢(K). Theorem 2.8
has a converse.

THEOREM 6.5. Let K be any infinite compact space, let F be a chain of non-
maximal primes of €(K) which is well ordered by inclusion and let I be the smallest
element of F. If Card(€(K)/I) = 2% and if the continuum hypothesis is assumed
there exists an algebra norm q over €(K) such that all elements of & are g-closed.

I was not able to find a necessary and sufficient condition for a well-ordered
chain & of nonmaximal primes of #(K) to be exactly the set of nonmaximal g-
closed primes of some algebra norm ¢ over ¥(K). An obvious necessary condition
is that every union of an. increasing family of g-closed primes which has not
countable cofinal subset must be closed but I do not know whether this condition is
sufficient in the separable case.

Nevertheless we have the followmg result, the proof of which we shall not
outline here.

THEOREM 6.6. Let K be any infinite metric compact space. If the continuum
hypothesis is assumed there exists for every ordinal w less than o, an algebra norm
g over €(K) such that the set of all nonmaximal g-closed primes is a well ordered
chain order-isomorphic with w.
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I should like to begin by saying that it is 2 honour for me to give lectures at the
Banach Center and I should like to address my warmest thanks to Organizing
Committee for invitation.

The first part of my lecture will be essentially a survey of some results published
between 1971 and 1977 ([18], [20], [21]). In the second part I will discuss some
new unpublished results.

Before giving formal definitions, which are probably less known, let me begin
with some introductive ideas.

Introduction

1. Consider an operator T on a complex Banach space X, whose spectrum
consists of two separate parts:

sp(T) = FyUF,,
Then, by the Riesz decomposition theorem, X* decomposes into the direct sum

X = X(Fx)@x(pz),

Fy,nF, =@.

where X(F;) are closed subspaces invariant for T' and
sp(T,X(F))=F,, j=1,2.

Moreover, X(F)) is the range of the projection P; commuting with 7" which is defined
by:

T)-'dz,

Py = (2miy § (z—
Iy

Iy being an admissible contour of integration which “surrounds” F and leaves
outside Fy, k #J.
Consider now the dual operator T”, defined on the dual space X* by:

(Tw)(x) = w(Tx); ueX’, xeX.
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