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I should like to begin by saying that it is 2 honour for me to give lectures at the
Banach Center and I should like to address my warmest thanks to Organizing
Committee for invitation.

The first part of my lecture will be essentially a survey of some results published
between 1971 and 1977 ([18], [20], [21]). In the second part I will discuss some
new unpublished results.

Before giving formal definitions, which are probably less known, let me begin
with some introductive ideas.

Introduction

1. Consider an operator T on a complex Banach space X, whose spectrum
consists of two separate parts:

sp(T) = FyUF,,
Then, by the Riesz decomposition theorem, X* decomposes into the direct sum

X = X(Fx)@x(pz),

Fy,nF, =@.

where X(F;) are closed subspaces invariant for T' and
sp(T,X(F))=F,, j=1,2.

Moreover, X(F)) is the range of the projection P; commuting with 7" which is defined
by:

T)-'dz,

Py = (2miy § (z—
Iy

Iy being an admissible contour of integration which “surrounds” F and leaves
outside Fy, k #J.
Consider now the dual operator T”, defined on the dual space X* by:

(Tw)(x) = w(Tx); ueX’, xeX.

[263]
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Taking into account that sp(7”) = sp(T) = F;UF,, we have also a decomposition
for X":

=X'(FN®X'(F,), sp(T,X'(F))=F,;, X'(F)=RQ),
0= @iyt { @=T)4z, j=1,2.
Iy
It is easy to see that 0 = Pj, j= 1,2, By applying the range-kcrnel duality we get:
X'(Fy) = R(Q1) = R(PY) = N (P)) = B(P)L = X(F))L

and similarly X'(F,) = X(F,)L.

Of course, this example is a very simple one and everybody knows that a situ-
ation like that when the spectrum consists of separate parts is a rara avis in the
infinite dimensional case, What can we say when the spectrum of 7" has no separate

parts? If we assume that T"has a good spectral decomposition, then we get a similar
duality formula.

) 2.‘Le‘t T be a Dunford spectral operator ([10], [11], [12]); that means, there
exists a projection-valued measure on the Borel sets of the complex plane:
o - E(0), oe%(0),

such that'sp(T, E(6)X) = G, Yo € #(C).
It is easy to see that the map

o - (E(®)), oed(C),

is a projection-valued measure and sp(7", (E(6))YX') < G, Vo e #(C). Indeed, we

have (E(o))X’ = R(E(0)') = 4 (E(0))L = R(E(c?))L (we note that, by the ad-

ditivity of E(0), E(c)+E(s%) = I): By applying a well known isomorphism theorem,

we get ‘ ‘
2(E(0M)! = (X/E(e9)X) = (E(0)X),

so that sp(T", E(0)X") = sp(T", (E(6)X)') = sp(T, E(c)X) < G, Yo & #(C). There-
fore, if we denote X(0) = E(0)X and X'(0) = E(o)'X’, we get the following duality
formula:

X'(0) = X(o°), Yo ().

3. In order to make another step-towards generality let us make the following
‘remark Cons1der again a Dunford spectral operator T and o - E(0), its spectral
measure. Then we can integrate, with respect to E(o), each bounded Borel meas-
urable complex function f and we obtain an operator;

() = | F()E(d).

The mapping % from complex functions to linear bounded operators is linear,
multiplicative and %) =1, %(d) = § zE(dz) = § (the scalar part of - T). More-
over, Thas'a umque ‘Jordan decomposition T = S+Q where Q is a quaSlflllPOteﬂt
operator commuting with 7. Thus, the scalar part of a Dunford spectral operator
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admits a functional calculus defined on a very large class of functions; furthermore,
the spectral measure may be recaptured from the functional calculus. Now, what
cari we say when we only know that an operator admits a functional calculus? If the
functmnal calculus is given on the largest algebra (in some sense) of coraplex func-
tions, then the operator has a spectral decomposition of Dunford type. If the func-
tional calculus is given on the smallest algebra — the algebra of all analytic func-
tions in some neighbourhood of the spectrum — the best thing that we can get is
a decomposition of Riesz type, i.e. a decomposition of the spectrum into separate
parts. There are many interesting intermediate algebras between the smallest one
and the largest one; the algebra C*(C) of all complex infinitely differentiable func-
tions on the complex plane is an example, The operators having 2 C®-functional
calculus are called scalar generalized operators and have been introduced and
studied by C. Foiag in 1960 ([13]).

And thus, S is called a scalar generalized operator if there exists a mapping

U: Cm(C) hnd L(X)9

which is linear, multiplicative and % (1) = I, %(id) = S. Such a mapping is called
a spectral distribution of S.

Any scalar generalized operator has a spectral decomposition of a generalized
type. In order to describe such a decomposition, denote:
1) X(F):= {xeX, supp%(*)x = F},
where F is a closed subset of C. Then X(F) is a closed linear subspace, invariant
for S. A very useful and important fact is that X(F) has the following intrinsic
characterization:
2 XB={x eX the resolvent equatlon (z- ) f(z) = x,

has an analytic solution f outside F}.

It might be worth mentioning that just by using such a characterization, N. Dun-
ford was able to prove the uniqueness of the spectral measure. The function fappear-
ing in (2) is unique for any given x and f(z) = R(z; T)x if z € F°nr(T); this means
that f'is, in some sense, a local resolvent of T in x. By using the characterization
(@) of the space X(F) one can see that sp(S, X(F)) < F and X(F) contains any
subspace Y invariant for S, whose spectrum is contained in F; X(F) is called the
maximal spectral space corresponding to F.

Now take an arbitrary finite open covering{G;}i of sp(S). Then there exists
a correspondmg partition of unity {p;}} subordinated to thlS covering; that means:

thj=1, suppp; < G, j=1,...,m
j=1

Consequently, we get the following decomposition of the space X:

©) X=XE), Fe6, j=1,.n
Jj=1
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Tt is known that, unlike a Dunford scalar operator whose spectral measure is unique,
a scalar generalized operator may have several spectral distributions and it is even
possible that no one of them has values in the bicommutant of the operator ([1]),
Nevertheless, on account of (2), the spaces X(F) are the same for all possible func-
tional calculi associated to the operator. If § is a scalar Dunford operator then
X(F) is the range of the projection E(F). In the more general case we cannot say
that X(F) is associated to a projection but the family {X(F), F = C} acts as an
effective partial substitute of a spectral measure. The generalized decomposition
discussed before was formalized by C. Foiag ([14]; see also [28]) in the following
manner.

DrerINITION 1. A bounded linear operator T on a complex Banach space X is
called decomposable (or spectral in the sense of Foias) if the following conditions
are fulfilled:

(i) for each closed set F < C, there exists a maximal spectral space X(F) of
T, whose spectrum is contained in F,

(ii) for each finite open covering {G;}I., of sp(T), we have:
n

X = ZX(FJ) for some F; = G;, j=1,...,n.
Jj=1

tI‘h.e ma‘ximality property of X(F) stated in (i) means that ¥ < X(F) whenever ¥
is invariant for T" and sp(T, ¥) < F. A natural ¢andidate for X(F) would be the
following:

M(F) = {x X, the resolvent equation (z— T)f(z) = x has
an analytic solution f outside F}.

It is easy to see, looking at the definition, that M(F) is a linear subspace, in-
variant for T and that ¥ < M(F) whenever Y is invariant for T and sp(T, ¥) = F
(indeed, for each xe¥, the resolvent equation has the obvious solution f(2)
= R(z, T/Y)x, ze (T, Y) o F°). Therefore M(F) has the maximality property.
The problems that arise in connection with M(F) are the following:

1. Is M(F) closed?

2. If M(F) is closed, is it true that sp(T, M(F)) < F?

If M(F) is colsed and sp(T, M(F)) = F, then obviously M(F) is the maximal
spectral space whose spectrum is contained in F. Generally speaking, the answer
to Problem 1 is negative ([9]). As regards problem 2, the answer is almost affirmative
as is shown by the following basic result of Foiag: If the resolvent equation has
a unique analytic solution on F* for each x € M(F) and M(F) is closed (for a certain
set F), then sp(T, M(F)) < F (application of the closed graph theorem). Another
result‘ of Foias is that if T is decomposable then, for each closed set F, the resolvent
equation has a unique analytic solution on F* for any x & M(F). In other words,
a decomposable operator has the single-valued extension property (condition A of
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Dunford). Moreover, M(F) is closed for each closed subset F (condition C of
Dunford). Therefore the conditions A and C, which are necessary for spectrality
in the sense of Dunford, are necessary for spectrality in the sense of Foiag, too.

If an operator T has the single-valued extension property, then, for each x e X,
there exists a smallest closed set o(%) outside which the resolvent equation has an
analytic solution. This set o(x) is called the spectrum of x with respect to T and
its complement o(x)° = o(x) the resolvent set of x with respect to T. Then we may
formulate Definition 1 in the following equivalent way:

DEFNITION 1. T is decomposable iff the following conditions are fulfilled:
(i) T has the single-valued extension property, ,
(ii) for each closed set F the space M(F) is closed,
(iii) for each finite open covering {Gy}{ of sp(7T) and any clement x eX, we
have a decomposition:
n
[C)) xazx,, o(x)=G;, j=1,...,n
J=1
The decomposition (4) may be considered as an abstract non-classical par-
tition of unity. It should be observed that there exist spectral decompositions of
this type which are not obtained via a functional calculus ([4]). If the property
(iii) from Definition 1" holds for coverings consisting of a fixed number k of open
sets, then T is called k-decomposable ([30)). If the decomposition (4) holds for any

finite open covering {G;}} of 6(x), then T is called decomposable with almost local-
ized spectrum ([36]). Finally, if any element x € X bas a decomposition:

@) x=z;x,, o(x) € 6(INGy,. J=1,.sm,

then T is called stiongly decomposable ([S]). This last decomposition property is
the closest to the classical partition of unity.

The duality for generalized spectral decompositions

Let T be a scalar generalized operator and #: C*(C) —» L(X) bea spectral distribu-
tion of T. Then the mapping #: C®(C) — L(X") defined by:

%'(f) = (ﬂll(f))" fG Coo(C)’

is a spectral distribution for T" (the dual of T). By using simple arguments of partit-
ion of unity and the range-kernel duality, it is easy to see that the duality of spectral
spaces that we have got in more particular cases, holds in this case, as well, Namely,
we have:

X'(F) = X(EY*
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for each closed set F < C. Indeed, we can write successively: )
X'(F)= {ueX',supp'(*)u < F} = N {N¥ (%' (f)), suppf = F°}

N {#(@(N)L, suppf = F}

=V {@@), suppf = FoY|*

= [GgFm {# (2(g)), suppg = G}JL = X(Fo)L.

I

Therefore, if T'is a scalar generalized operator then I is a scalar generalized
operator, too, and the duality formula for spectral spaces holds.

We are now asking, up to what extent can this statement be generalized to
decomposable operators. The basic question to be answered is the following,

QuestioN. Is the dual of a decomposable operator decomposable and does it
satisfy the duality formula for spectral spaces?

As we will see in what follows, the answer is positive. Even more, it will be
shown that the dual of a 2-decomposable operator is decomposable with almost
localized spectrum. The first main result in this direction is the following,

TueoreM 1 ([18]). If T is a 2-decomposable operator, then

sp(T", X(F)L) < F

Jfor any closed subset F of C. Moreover, X(F°).\- is the maximal invariant subspace
for T' whose spectrum is contained in F.

We send to [18] for the proof. By using Theorem 1 it is relatively easy to get
the following duality result. .

TrEOREM 2 ([18]). If T is a 2-decomposable operator, then T’ is also @ -de-
composable operator.

Proof. First of all, condition (i) in Definition 1 is satisfied, by Theorem 1. In
order to verify condition (i), take an open covering {G;, G,} of sp(T”) and let
{Uy, U} be another covering of sp(T") such that U; « Gy, j=1,2. Denote H;
= 5nsp(T) = Ujnsp(T"), j = 1,2. Then HynH, = @, so that by applying the
Riesz decomposition theorem ([6]), we get the following direct decomposition:
' X(HyUH;) = X(H,)©X(H,).

Let now u € X’ be an arbitrary element of the dual space. Define i1, : X(H,UH,) —
— Cby (%) = u(x)) if ¥ = x,+x,, %, € X(H,), x, € X(H,). We obtain a continu-
ous linear functional #, on X(H,UH,). By the Hahn-Banach theorem, #; may be
extended to the whole space X by preserving the linearity and continuity. Denote
by u; such an extension and by u, = u—u;. From the definitions of u, and u,, it
follows that u, € X(H,)* and u, € X(H,)L; moreover, u = u, +u,. Now we have:
X(H) = M(H)) = M(U;) = X(U;) and X(H)) = X(T%), j = 1, 2. Therefore we have
obtained the decomposition:
X =XO)+X'(U,), UG, j=1,2.

The proof is finished.
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COROLLARY 1. If' T is 2-decomposable, then for any finite open covering {G;}}
of sp(T) there exist maximal spectral spaces X(F;) of T such that:

n
FyeG;,j=1,2 and X = the closure of ~Y_‘X(F,-).
J=T

In other words, if T is 2-decomposable then T' is weakly decomposable ([9],
[28]).

COROLLARY 2. If T is 2-decomposable, then the adjoint T* of T is also 2-de-
composable.

The adjoint T* of T is defined on the space X* of all continuous conjugate
linear functionals defined on X, in the usual way: (T%0) (x) = v(T%), v € X*, x e X.
If we denote by X the space having X as basic set, with the same addition and with
the new multiplication by scalars defined by 1x = 2x, 1€ C, x € X, then (¥)’
= X* and the dual of T considered as an operator on X is T*.

In particular, the adjoint of a 2-decomposable operator on a Hilbert space is
2-decomposable. .

COROLLARY 3. If T is 2-decomposable, then X'(F) = X(F)1 for any closed
subset F of the complex plane.

COROLLARY 4. If T is 2-decomposable, then sp(T', X/X(G)) = G° for any open
subset G of the complex plane.

A similar result for X(F) instead of X(G) was obtained by C. Apostol: if T
is 2-decomposable, then sp(T', X/X(F)) < sp(T)\F, for any closed subset F of the
complex plane ([5]). B

COROLLARY 5. If T is 2-decomposable, then X(F) = LX'(F°) for any closed
subset F of the complex plane.

Indeed, we have:

X(F)L =[N {X(G),F = G}]+ = wcl.U {X(G)}.,F = G}
= wcl. | {X'(G°), F = G} = w.cL. X'(F9).
Consequently, by applying the bipolar theorem, we get X(F) = LX'(F°).

Remark. If T is 2-decomposable and X is considered as a subset of X"/, then
we have:

X(F) = XnX"(F),
for each closed subset F of the complex plane.

COROLLARY 6. If X is reflexive, then an operator T on X is 2-decomposable iff
T’ is 2-decomposable.

By following the same lines of reasoning as in the proof of Theorem 2 we can
obtain the following result of F.-H. Vasilescu. ’

Taeorem 3 ([36]). If T is a decomposable operator with almost localized
spectrum, then T' has the same property.
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Proof ([19]). A simple inductive argument shows that an operator T is de-
composable with almost localized spectrum if T is 2-decomposable and

X(F) = X(G1)+X(G2)

for any closed set F and each open covering {G;, G,} of F.

We will prove that the dual operator T has that property. First of all, by
applying Theorem 2, it follows that 7" is 2-decomposable and X’(F) = X(F°)L for
any closed set F. In view of the duality between the spectral spaces of T'and T,
it will be sufficient to show that

¢+ X(GW = X(F)L +X(F3)L,

for any open set G and any closed sets Fy, F, Euch that F,nF, < G. Take two
open sets Dy, D, such that F; « D; and D, nD, = G. Since T is decomposable
with almost localized spectrum, we have:

X(F,UF,) = X(D)+X (D>).
Consider an element u € X(G)-L. Define #;: X(F, UF,) -+ C by:

() =u(xy) if x=x4%, x,€X(D),j=1,2.

It is easy to see that the definition of #, is consistent and that i, is a linear func-
tional. In order to show that & is continuous we shall apply the open mapping
theorem ([36]). Consider the mapping S: X(D,)®X(D,) — X, defined by S(x:®
®x,) = x;+x,. It is obvious that § is linear and continuous and that the range
of § contains X(F; U F,). Consequently, if we restrict S to S~*(X(F, U F,)), we
obtain a continuous linear surjection between two Banach spaces; by the open
mapping theorem, this surjection must be open, so that there exists a constant
K >0 such that for any element x € X(F; UF,) we have a representation x
= X+ X2, X; €X(D)), j = 1,2, |Ix1 ]| +1x2]| < K[x||. By using such a representa-
tion, it is easy to show that 7, is bounded. By applying the Hahn-Banach theorem,
'#t; may be extended to a continuous linear functional u, on X, If we define u,
= u—uy, then we get u = u; +u,, u; e X(F))4, j = 1, 2, and the proof is complete.

The arguments used before suggest that it would not be possible to obtain
more than 2-decomposability of the dual operator. However, as we shall see in
what follows, the result of Theorem 2 can be considerably improved.-

TaeoreMm 4 ([20]). If T is 2-decomposable then T’ is decomposable.

Proof. By applying the duality of spectral spaces, it is easy to see that T” is
decomposable if and only if the mapping

L XF)IOXF)IL @ ... @X(F)L - X',
defined by F(u; @u,® ... Qup) =ty +uy+ ... +uy, is surjective for any family
k
{F;}} of closed sets such that lﬂl F; = @. It is quite natural to look for an equiv-

alent property regarding the space X. Since X(F))L is isometrically isomorphic
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to the dual of the quotient space X/X(F)), j =1, ..., k, the mapping & is im-
plemented (by the isomorphisms above) by the dual of the mapping:

S X > X/X(F)BX/X(F)D ... DX/X(F),

defined by F(x) = (x+X(F))® (x+X(F))® ... ® (x+X(F)). Consequently, it
will be enough to prove that the mapping # has null kernel and closed range. The

k
condition (M) F; = @ implies that # has null kernel. It is more difficult to prove
j=1

that S has closed range. In order to do this we shall proceed by a reductio ad ab-
surdum. Suppose there exists a sequence (x3) < X such that d(x3, X(F))) — 0 for
n— 0,1 <j<k, and ||x%|| = 1 for any natural number »; that implies that there
exist sequences (x9,;) < X(Fy) such that ||xj—x5 ;|| — O for n— co. Since ||x3]|
=1, ne N, it follows that (x3;) are bounded sequences. Taking into account that
x% ;€ X(F;) and sp(T, X(F))) = F;, we obtain:

xg-] = (z_ T)fn,j(z)5
where f,.;(2) = R(z; T|X(F))x3 ;, z€ F§. It is obvious that the sequences £, ;(z)
are uniformly bounded on compact sets. Let us now put this situation in a more

adequate framework. Consider the space I,(X)/co(X) and denote by X° the class
defined by the sequence (x2) and by f; the function defined by:

fi@) = (fus(@)+eo(X),
Then we have f}(z) = f;(z), z € FjnF}, and consequently we can define an analytic

k k . - ~

function on |\ F§ = () F;)° = C by f(2) = fi(2) if ze F§. If T is the operator -
j=1 J=1 _ ‘
defined by T on I (X)/co(X), then we have X° = (z—T)f(2),z € C, and consequently,
by taking a circumference I" contained in the resolvent set of 7' and surrounding

the spectrum of T, we deduce:

z € F§,

'c
z € F§.

50 = @2mi)t {R(z; D)%z = mi)* {fz)dz = 0.
r r
We are thus led to a contradiction, since X° is the class defined by the sequence
(x9) and [|x§]| =1, neN.
COROLLARY 1. If T is decomposable then T’ is also decomposable.

COROLLARY 2. On a reflexive Banach space, any 2-decomposable operator is
decomposable.

By using arguments of topological dimension theory, E. Albrecht and F.-H. Va-
silescu have proved in [3] that any 3-decomposable operator is decomposable
(on any Banach space). Recently, I have read in Notices of the American Math.
Soc. that M. Radjabalipour has proved that any 2-decomposable operator is de-
composable ([33]), thus improving both the result in Corollary 2 and the result
of Albrecht and Vasilescu. Such a result justifies the analogy between the spectral

decomposition in the sense of Foiag and the partition of unity.
1
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The result in Theorem 4 is yet not the best possible. By using a Cousin type
theorem, it turned out possible to prove that the dual of a 2-decomposable operator
is a decomposable operator with almost localized spectrum.

THEOREM 5 ([21]). If T is a 2-decomposable operator, then T" is a decomposable
operator with almost localized spectrum.

Proof. By taking into account the duality between spectral spaces of T and
T", we see that the statement of Theorem 5 is equivalent to the following: for any
two closed sets Fy, F, and any open set G such that FinF, = G, we have:

X(G)L =« X(Fy)L+X(F,)L.

This, in its turn, is equivalent to say that for any sequence (x,) < X such that
d(x,, X(F)) = 0 for n ~ o0, j = 1, 2, we have d(x,, X(G)) - 0 for n~ co. The
first idea was to follow the same way as in the proof of the preceding theorem, by
taking X/X(G) instead of X. From Corollary 4 of Theorem 2 we know that
sp(T, X/X(6)) = G° and from hypothesis it follows that G is covered by F{ and
F%. This argument does not work because we need a decomposition property for
the space X/X(G) and we do not know such a property. In order to overtake this
difficulty, the following theorem of Cousin type can be used:

THEOREM. Let G, and G, be two open sets in the complex plane such that
GGy # @ and let (f,)) = A(G;, X), j = 1, 2, be two sequences of analytic func-
tions such that f, —fn»— 0 in A(G,NG,, X) for n— . Then there exists a

sequence (f,) <= A(G,wG,,X) such that fy—f,; =0 in A(G), X) for n— o0, j

=1,2.

The idea of the proof is to apply the open mapping theorem (for Fréchet
spaces) for the mapping:

Z: A(G1, X)BA(G,, X) - A(G,nG,, X)

defined by 2(f;®f,) = fi—f.. This mapping is continuous, linear and, by the
vectorial variant of the classical theorem of Cousin, is also surjective ([24]). To
go on with the proof of Theorem 5, let (x,) = X be a sequence such that
d(x,, X(F))) > 0 for n— o0, j = 1,2. We must prove that d(x,, X(G)) -+ 0 for
n— . Let (x,,;) = X(F)) be sequences such that d(x,, X,,;) = ||X,—Xn,j|| = 0 for
n-> o, j=1,2. Since sp(T, X(F))) < Fj, we may write:

Xn,y= (z=T)R(z; TIX(F))xy;, z€F5 j=1,2,neN.
Let us denote, for simplicity, £;,,(z) = R(z; TIX(F))xs;, z€F§, j= 1,2, neN.
Then we have:
Ja1(@)=f2(2) = R(ZZ T/X(F1UF2))(xn.1 ~Xp,2) = 0

for n —~ co0, uniformly on each compact subset of Ffn F§. Let us now transpose

our situation to the quotient space ¥ = X/X(G). Denote by S the operator coin-
duced by T

St=(Tx), if xeé, &eX/X(0).
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Since [[%,— X1l < (1%~ %n,5ll; it follows that [} %=X, ;] = 0 for n = o0, j= 1, 2.
By the remark above, f;,1(2) = f,,2(2) — 0 in A(F{n F%, Y) for n - co. Consequently,
by applying our variant of Cousin theorem, it follows that there exists a sequence
(pn) = A(FfUF3, Y) such that ¢,—f, ; — 0 for n — co, uniformly on each compact
subset of F§, j=1,2. By combining this with the fact that X,—(z—S) f;._ i@
= Xy ,,J—>0 forn— o0, j= 1,2, we get:

S)pa(2) = 0
for n — co, uniformly on compact subsets of FfUFf. We are thus led to the
following situation:

Given a complex Banach space ¥ = X/X(G) and a sequence (Yn) = (x,,) cY
such that there exists a sequence (p,) of analytic functions in a fixed open neigh-
bourhood of the’ spectrum sp(S, ¥) with the property y,—(z—S)@.(z) —» 0 for
n — oo, uniformly on compact sets. Then it is easy to deduce from these con-
ditions that y, — 0 for # — co. Indeed, write y,— (z—S)@a(z) = %a(2) and let us
choose, in the resolvent set of S, a contour of integration T “surrounding” sp(S, Y).
Then we may. write:

= @ni)yt |RG; S)yadz = @riy {gu()dz+@ri)t {R(z; ) a(2)dz
I r r

Xo—(z—

= @mi)? SR(z; 5) 1a(2)dz,
whence [[y,l] <
finished.

CoroLLARY 1..If T is decomposable with almost localized spectrum, then T" has
the same property ([36]). FE

Q2m)" (M xlp)II™) — 0 for n — oo, The proof of Theorem 5 is

COROLLARY 2. On a reflexive Banach space, any 2-decomposable operator is
a decomposable operator with almost localized spectrum.

A characterization of orthogonally decomposable operators

In a very interesting paper ([25]) J. W. Helton suggested that “it might be interest-
ing to study orthogonally decomposable operators, namely orthogonally separated
operators which are decomposable in the sense of Foiag”. An operator T is called
orthogonally separated if any two invariant subspaces Y, Y, of T which have
disjoint spectra are orthogonal. By using duality arguments it is possible to obtain
the following characterization of orthogonally decomposable operators.

THEOREM 6. An operator T on a complex Hilbert space is orthogonally decom-
posable if and only if it is a Dunford spectral operator with a normal scaldr part.
. It is almest obvious that any Dunford spectral operator whose scalar part is
normal is orthogonally decomposable. Indeed, if T = N+Q where N is normal
and Q is quasinilpotent commuting with N, then Hy(F) = Hy(F) for any closed

18 Banach Center t. VIII
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set F. Let Y;, ¥, be two invariant subspaces for T such that sp(T, Y,) nsp(T, Y,
= @. Then Y; < Hy(Fy), where F; = sp(T, Y}, j = 1, 2. Since a normal operator
has an orthogonal resolution of the identity, we have Hy(F,)1 Hy(F,) and con-
sequently Y, L Y,. Therefore it remains to prove that if T is an orthogonally de-
composable operator, then T = N+Q where N is normal and Q is quasinilpotent
commuting with N. It will be enough to show that T'is 2 Dunford spectral operator.
Once this is proved, we have the canonical decomposition T'= S+Q where S is
a scalar operator and @ is a quasinilpotent commuting with S ([10], [L1], [12]).
Since T is orthogonally separate, S has an orthogonal resolution of the identity
and consequently is a normal operator. In order to prove that T is a Dunford
spectral operator we shall use the characterization of Dunford spectral operators
on weakly (sequentially) complete Banach spaces ([12]): an operator 7" on a weakly
complete Banach space is a Dunford spectral operator if and only if it satisfies
the conditions (A), (B), (C) and (D) of Dunford. Therefore we shall prove that
an orthogonally decomposable operator satisfies the conditions (A), (B), (C) and
(D). Condition (A) means the single-valued extension property and is satisfied
since T is decomposable ([9]). Another direct consequence of the decomposability
of T is condition (C), which means that the maximal space M(F) is closed for any
closed set F. Condition (B) requires that [|x|| < K]||x+ || for any elements x and ¥y
having disjoint spectra (K being a positive constant). Since T is orthogonally sep-
arate and decomposable, it is easy to see that any two elements whose spectra are
disjoint are orthogonal and consequently condition (B) is also satisfied. As regards
condition (D), the verification is more difficult. Let us recall in what consists con-
dition (D). Denote by &, (T) the family of all subsets ¢ of C such that the elements
of the form x+y where o(x) = o and 0(y) = o° constitute a dense set in H. De-
note by &,(T) the family of all subsets o of C such that for any x € H and any
& > 0 there exist x,, x € H with the properties: 6(x,) = o(¥) o, o(x]) = a(x)n
no° and {x;+x;—x|| < & If o belongs to &, (T), then there exists a projection
E(o) such that E(o)x = x if o(x) < ¢ and E(o)x = 0 if o(x) = ¢°. Denote by
&(T) the family of all subsets ¢ of C such that there exist two sequences of sets
Bn < 0, ¥y < 0%, i, ¥, € F5(T), ne N, with the property:

X = llm [E(ﬂn) +E("'n)]x »

for any x € H. The condition (D) requires that any complex number have a neigh-
bourhood of arbitrarily small diameter which belongs to &F(T). We shall prove
that &(T) contains any closed subset of C (if T is orthogonally decomposable).
The main steps in proving this are the following.

. Lemma 1, If T is an orthogonally decomposable operator on a Hilbert space

H, then the adjoint T* of T is orthogonally decomposable and ar.(x) = orp(x)* for
any element x ¢ H.

Proof. By applying Corollary 2 it follows that T* is 2-decomposable and
Hro(F) = H[(F)*)L for any closed subset F of C ((F9)* denotes the complex
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conjugate set of F°). In order to prove the equality or«(x) = or(x)*, write F
= gr(x) and denote by T the restriction of T to Hp(F). It is easy to see that the
function x*(z) = R(z*; Tr)x, z € (F°)*, is analytic on (F9)* and (z— T*)x*(2) = x,
z € (F°)*. Consequently, ar.(x) < or(x)*, for any element x € H. Since T and T*
may be interchanged, we have also the opposite inclusion and so the proof is
finished.

LemMmA 2. If T is orthogonally decomposable, then HT(a)@I—{;(Tr?) = H for any
closed set o.

Proof. Taking into account that Hy(o) L ITT(T”), it will be enough to prove
that x | Hy(c¢)® Hr(c°) implies x = 0. By using the reflexivity of H and the duality
of spectral spaces, we see that the last statement is equivalent to Hy(¢9)inHr(o)-
= {0}. This statement, in its turn, is a consequence of the fact that T is ortho-
gonally decomposable.

LeMMA 3. If T is orthogonally decomposable, then
Hy(02) = Hr(o1n02)@H (05 No3)

‘for any itwo closed sets o4, 0,.

Proof. By Lemma 2, we have: H = Hy(o,)®Hr(o%). Denote by P, the orthog-
onal projection of H on Hy(s,). Since both Hr(o,) and Hr(of) = Hy(oy)L are
invariant for T, P, commutes with 7. Consequently, we have o7(P;x) < ar(x)
and or((I- Py)x) < o7(x), whence Hy(o,) = Hr(oy00,)@Hr(a)nHr(of). It is
easy to see that Hr(o,)nHy(0%) = Hy(o,nof) and so Lemma 3 is proved.

In order to close the proof of Theorem 6, it suffices to remark that, by Lemma
3, the family &(T) contains any closed subset of the complex plane.

The operators with strongly decomposable dual

We have already seen (Theorem 5) that the dual of a 2-decomposable operator is
decomposable with almost localized spectrum. So it is quite natural to conjecture
the dual might even be strongly decomposable. We have not succeeded in solving
this difficult problem but, by trying to reduce it to more transparent equivalent
questions, we have obtained several characterizations of the operators with strongly
decomposable dual, as well as a new characterization of strongly decomposable
operators. In this way, we have found a new class of decomposable operators
which is, in some sense, dual to the class of strongly decomposable operators.
Moreover, the results of this type reveal some more complete aspects of duality.
We shall begin with a characterization of strongly decomposable operators by
a spectral condition. )

THEOREM 7. Let T be a 2-decomposable operator. Then the following statements
are equivalent: .
(i) T is strongly decomposable,
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(i) sp(T, X(F)/X(H)) < FNH for any two closed sets F, H such that H = F.

The implication (i) = (ii) is essentially a result of C. Apostol ([5], [6]). The
implication (ii) = (i) may be proved by using the Riesz decomposition theorem in
a way similar to that used in [32] and [26].

By applying Theorem 7 and the duality of spectral spaces we get the following
characterization of the operators having strongly decomposable dual, by a spectral
condition.

Tueorem 8. Let T be a 2-decomposable operator. Then the following statements
are equivalent:

@) T is strongly decomposable

(i) sp(T, A_’:(I‘/j/z\’*(ﬁ)_) = VN\U for any two open sets U, V such that U < V.

Before stating the next result let us reformulate a basic result for strongly

decomposable operators ([5]).

THEOREM 9. A 2-decomposable operator T is strongly decomposable if and only
if T is decomposable on any spectral space X(F). If this condition holds, then T is
decomposable on any quotient space X/X(F).

The following result is a.dual variant of Theorem 9.

" THEOREM 9. The dual of a Z-decomposable operator is strongly decomposable
if and only if T is decomposable on any quotiént space X, /X(G). If this condition holds,
then T is decomposable on any space X(G).

Another characterization of the operators with strongly decomposable dual
may be given in the terms of geometry of spectral spaces.

Turorem 10. Let T be a 2-decomposable operator.. The following statements

are equivalent:
(i) T is strongly a’ecompasable

(i) X(G,UG,) = X(G,)+X(G,) for any two open sets G, Gz with the property
G, \G, n Gz\Gl =,

+ (iii) The subspaces X(G,) and m are gaping for any two open sets Gy, G,
with: the property G,\G, N G,\G, =

Theorem 10’ is a result dual to the following new characterization of strongly
decomposable operators.

TreoreM 10. Let T be a 2-decomposable operator. The Jollowing statements
are equivalent:

() T is strongly decomposable,

__ (D) XF, OF,) = X(F)+X(F,) for any two closed sets F,, F, with the property
FNF, nFN\F, = 9,

(i) X(F, 1) and X(F,) are gaping for any two closed sets F,, F, such that FyNF,
o By NFy =

The precedmg results point out the importance of the spectral spaces X(G),
as well as their dual position with respect to spectral spaces X(F). A comparison
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with the Dunford spectral operators would be useful. In that case we have X(F)
= E(F)X and X(G) = E(G)X where E denotes the spectral measure of T, There-
fore both X(F) and X(G) are complemented in X and X/X(F) = X(F°), X/X(G)
=~ X(G°). In the more general case of decomposable operators the spaces X(F)
and X(G) are not necessarily complemented so that we must consider four djﬂ'erent
types of spectral spaces X(F), X/X(F), X(G) and X/X(G). It would be interesting
to study in great detail the operators which are strongly decomposable and have
strongly decomposable dual.

Duality for general operators

A very deep result due to E. Bishop ([8]) shows that the essence of the duality
relations between spectral spaces remains valid for general operators on reflexive
Banach spaces. Furthermore, in a more recent paper ([29]), V. Lomonosov, Ju.
Liubiéi and V. Matzaev extend Bishop’s results to nonreflexive Banach spaces.
In order to formulate his duality theorem, Bishop introduced two types of spectral
manifolds associated to a closed set F of the complex plane. )

The strong spectral manifold M(F, T) is the closure of the set of all vectors
x in X which have the property that the resolvent equation (z— T)f(z) = x has an
analytic solution f outside F.

The weak spectral manifold N(F, T) is the set of all vectors x in X with the
property that for any ¢ > 0 there exists an X-valued analytw functlon 1, defined
outside F such that’ fiz— T)f,(z) xl| <e,zeFe.

THEOREM B1 ([8]) For any (continuous lmear) operator T on a reﬁexzve Banach
space X, the fallowmg duality relations hold:

M(F,, T') « N{Fy, T)L, = N(F,, T) = M(F;, THL
Jor any two disjoint closed sets Fy, F, and )

M(G,, )L = N(G,, T'), N(Gy, T)l I M(Gz, T)
Jor any two open sets G,, G, which cover the complex plane.

A very interesting consequence of Theorem B, is a general decomposition
theorem. By following [8], we say that an operator T satisfies condition B if, given
any open set G and any sequence (f,) of analytic functions on G such that (z—
—T)f,(2) ~ 0 for n — oo uniformly on G, it follows that (f,) is uniformly, bounded
on compact subsets of G. There exist several equivalent reformulations of the
condition f. One of them is the following, T satisfies the condition 8 if, given any
open set G and any sequence (f;) of analytic functions on G such that (z— T f,(z) -

— 0 uniformly on compact sets, it follows that £,(z) — 0 uniformly on compact
sets, : .

THEOREM B, ([8]). Let X be a reflexive Banach space and T be an operator on
X. If both T and T’ satisfy the condition B, then to any open covering {G;}i of the
complex plane corresponds a fami!y {M;}; of invariant subspaces of T such that:

(T, M) =Gy, j=1,..,n and X=clm.{M,j=1,..,n}.
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By using some ideas similar to those occurring in the proof of Theorem 2
and Theorem B,, it is possible to improve the result of Theorem B,.

TueoreM 11. Let X be a reflexive Banach space and T be an operator on X,
If both T and T satisfy condition B, then T is decomposable.

Actually, the statement converse to that of Theorem 11 is also true. Indeed,
by a result proved in [17] and [16], any decomposable operator satisfies condition
p. Consequently, on account of Corollary 1, Theorem 4, it follows that T" also satis-
fies condition f. In this way we get the following interesting characterization of
decomposable operators on reflexive Banach spaces.

THEOREM 12. An operator T on .a reflexive Banach space is decomposable if
and only if both T and T" satisfy the condition B. :

It is very probable that a similar characterization holds on nonreflexive Banach
spaces.

It can be expected that all operators satisfying a reasonable growth condition
of the resolvent satisfy the condition B, too, and consequently, by Theorem 11,
are decomposable.

1 should like to close my lecture with a remark concerning Theorem B, . The
key to the proof of Theorem B, was a duality theorem for spaces of analytic func-
tions. Recently I discovered in a paper of A. Grothendieck ([23]) a definitive
result concerning the duality of spaces of analytic functions due to J. Silva,
G. Kothe ([35], [27]) and A. Grothendieck. Although Grothendieck’s paper
was published much before Bishop’s paper, the duality result contained there was
probably not known neither by Bishop nor by the authors of the more recent
paper [29].

It seems to me that the result of Silva-Ké&the-Grothendieck will be the key
to obtaining a definitive duality result for general operators on Banach spaces.
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