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The purpose of this paper is to generalize a classical theorem of Lie concerning
the existence of weights for solvable Lie algebras of operators on a finite-dimen-
sional space. Such a generalization has been suggested to the author by [1] and [3].

Let us firstly recall the classical Lie’s theorem. Let ¥ be a linear space and let
L < £L(V)be a Lie algebra of operators on V. We mean thereby that & is a linear
subspace of #(V), which is closed with respect to the cross-product defined by:
[T, S}:=TS—-ST, T, Se.Z(V);ie wehave [T, S]c.Z whenever T, Se.2. Given
a Lie algebra % of operators on ¥, consider the following decreasing sequence
of commutator algebras: &, = &, %, = [¥y, L], ... . [.?,,_1, Puils -

DEerFNITION 1. A Lie algebra & < #(V) is called solvable 1f there exxsts a natural
number n such that %, = {0}.

Remark. The condition in Definition l is a natural generahzatxon of the com-
mutativity property of . In fact, & is commutative if and only if &; = {0}.

Lie's THEOREM ([2]). If V is a complex finite-dimensional space (V # {0})
and & < L (V) is a solvable Lie algebra of operators on V, then there exists a vector
v # 0, v eV, which is a joint eigenvector for all operators of & .

In other words, there exists v % 0, v € V, such that Tv = 1;v, for any Te Z.

In such a setting, the corresponding eigenvalue A, is uniquely defined by T
(i.e. we cannot have Tw = Av, Tw = uv unless 4 = p) and the scalar function
T— o(T) = 1 is called a weight for 2.

It is well known that an operator on an infinite-dimensional space may have
no eigenvector and consequently Lie’s theorem cannot be true, in its classical
form, on infinite-dimensional spaces.

However, it is also well known that any bounded linear operator on a complex
Banach space, T € .Z(X), has at least an approximate eigenvalue, i.e. a complex

number A such that lim (T%,— Ax,) = 0 for a certain sequence (x,) of unit vectors,
n—+0

|[Xall =1, VneN. In fact, any point of the topological boundary of the spec-
trum of T is an approximate eigenvalue. Gurarii and Liubiti deal in their paper
[1] with the group-theoretical variant of Lie’s theorem.
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DeriNITION 2 ([1]). Let X be a complex Banach space and let ¢ = 4.2(X)
be a separable group of operators on X. A scalar function T'— x(T) defined on @
is called a weight for @ if there exists a sequence (x,) < X, ||x,|| = 1, Vn e N, such
that

lim (Tx,— x(T)x,) = 0 for any Te¥.
oo

THEOREM OF GURARII AND LIUBISL If ¢ is a solvable, separable, locally compact
and connected group of operators on X, then ¥ has a weight.

In their proof Gurarii and Liubidi use essentially the assumption of local com-
pactness of &, which is a very strong property.

Definition 2 is natural only for separable groups. For a more general set-
ting it has to be modified as follows.

DerFINITION 3. Let £ < #(X) be a Lie algebra of operators on X. A scalar
function T — @(T) defined on & is called a generalized weight for & if there exists
a net (x,) = X of unit vectors, ||x]| = 1, VeeD, such that Lim{Tx,— (T)x,)

=0, for any Te %.
The main result of this paper is the following.

THEOREM 1. Any solvable Lie algebra of operators on a complex Banach space
X # {0} has a generalized weight.

As a corollary of this theorem, we obtain that any solvable Lie group of oper-
ators on a complex Banach space has a generalized weight, thus improving the
result of Gurarii and Liubiti.

The main step in the proof of Theorem 1 is an extension theorem for general-
ized weights, which is interesting also by itself,

THEOREM 2. Let ¥ = Z(X) be a Lie algebra of operators on X. Then any
generalized weight for &, = [Z, %) can be extended to a generalized weight for %.

As soon as this is settled, Theorem 1 may be proved by using the following
theorem due to W. Zelazko:

Z8LAZKO’S THEOREM ([S]). Let A be a commutative complex Banach algebra
with unity. Then any maximal ideal of A that belongs to the Silov boundary I'(A)
of A consists of joint topological divisors of zero. In other words, if M & I'(A) then
there exists a net (z) < A, ||z,]| = 1, Ve, such that lim z,x =0 for any x e M.

o

With Zelazko’s theorem and Theorem 2 at hand, we can derive Theorem 1 as
follows. First, consider the algebra #,-; which is a commutative Lie algebra of
operators (since &, = [Z,_,, L, ] = {0}). By using Zelazko’s theorem, it is easy
to prove that .#,_, ha§ a generalized weight. Then, by applying Theorem 2, we
can extend this weight step by step, until we get a generalized weight for the whole
algebra 2. Therefore, it will be sufficient to prove that any commutative Lie algebra
of operators has a generalized weight.
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PROPOSITION 1. Any commutative Lie algebra & of operators on X has a gen-
eralized weight.

Proof. Consider the smallest commutative Banach algebra & of operators
which contains .# and the identity operator I.

By applying Zelazko’s theorem to &, we see that any maximal ideal .4 that
belongs to the Silov boundary I'(s#) of & consists of joint topological divisors
of zero. Therefore, there exists a net {T,} < &, ||T,]| = 1 for any index «, such
that limT,T = 0 for any T € .#. We will prove that the character ¢ of & cor-

" y

responding to .4 (more precisely, the restriction of this character to &) is a gener-

alized weight for .%. Indeed, let us remark that T—@(T)Tekerp = # for any

T e o and consequently, lim [T—@(T)I]T, = 0 for any T € .«/. (The convergence
-3

is taken in the norm operator topology.) Taking into account that [[T,|| = 1 for
each index «, it is easy to construct a sequence (¥,) < X, ||[yql| = 1, Ve, such
thatlim [T— @(T)I]y, = O for any T € & and, in particular, for any Te £.

(Tl = 1= 3x, X, [Pl = 1, [ Taxoll > 1/2; write z, 3= Tox, = izl > 1/2,

1

[zall

1

Zgs ¥l = 1, IIT=@(T]yall = TEAT T=-@(T)] T x|
< 2[T-@p(T T}l - 0 with respect to a.)

Yo'i=

Thus the proof of Proposition 1 is concluded.

The proof of Theorem 2 is more complicated and requires some auxiliary
facts.

First of all, we need the following characterization of generalized weights,
which is similar to the characterization given by Zelazko for sets consisting of
joint topological divisors of zero in. Banach algebras (cf. [5]).

LeMMA 1. Let & < &(X) be a Lie algebra of operators on a complex Banach
space X. A scalar function ¢: & — C is a generalized weight for & if and only if
for any finite subset F < %, we have:

(03] inf

Sx= = 0.
Ti=1 {Isréiex” x—p(S)x[1}

Proof. If ¢ is a generalized weight for . then there exists a net (x,), [[xd] = 1,
such that lim [Sx,—@(S)x,] = 0.
o

Consequently, for each S €. and any ¢ > 0, there exists an index «(S) such
that ||Sx,— @(S)x,]| < & whenever @ > «(S). If we now take a finite subset # = &,
there exists an index o, such that @, > «(S) for any S € & (since the set of indices
is directed). Hence, for a > «;, we get [[Sxyx—@(S)x,|| < &, for any Se &F.
Therefore: ’ :

inf

o {Tsa;( [1Sx—@(S)x|]} = 0.
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Conversely, if condition (1) is satisfied, then for any finite subset # ¢ &
and each natural number »n, we can find an element x, depending of & and n, with
lix|| = 1 and max |{|Sx—@(S)x|| < 1/n. By applying the choice axiom, we obtain

SeF

a net (x,) of unit vectors, having as index set the set of all pairs « = (&, n) where
F is a finite subset of .% and n is a natural number, ordered increasingly with
respect to both & and n. Furthermore, for each x, = xg,, we have:

”qu =1, ma.XHqu"(P(S)xa” < 1/"
SeF

Now, it is easy to see that Lim [Sx,~@(S)x,] = 0, for every Se.2.
o

In order to verify this last statement, let us consider an arbitrary positive num-
ber & > 0 and an arbitrary operator S e &. Pick a natural number n, such that
1/no < & and consider the index a, = ({S}, n).

Then, for each o = (F,n) > otg = ({S}, 1), we have Se&F and n > N,
so that, by the definition of x, = X, We get:

max{|S'x, —@(S)%,)] < 1/n < 1/ny < e.
S'eF

In particular, we obtain

[18%, —@(S)x|| < &
for any o > op. .
Consequently, we have proved that lim [Sx,—@(S)x,] =0 for any oper-
o

ator S € %, and the proof of Lemma 1 is finished.
The proof of Theorem 2 will be reduced to the particular case when we have
an ordinary weight on %, = [.%, #].

THEOREM 2'. Any ordinary weight for &, = [ £, &) can be extended to a gener-
alized weight for L.

Proof. Let @o-be an ordinary weight for %, = [%, &]. That means, there
exists an element x, € X, x, 5 0, such that:

Txo = @o(T)xy for any Te %,. -
Consider the following subspace X, of X:
= {x €X; Tx = o(T)x for any Te ¥ )

Since x € Xy, X, # 0, it follows that Xo # {0} and we will prove that X, is in-
variant for all operators Se .. .

Let S be an arbitrary operator from .% and consider the mapping:

AdS: 2(X) - LX)
defined by:

(AdS)T=[S, T], Te2(X).
We have the following well known formula:
exp(~zS) Texp(zS) = exp[zAdS]T, VzeC.
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If Se % and Te ¥,, then (AdS)T e ¥, and exp(zAdS)T € &, (the closure
of %, in the norm operator topology). It is easy to see that T — @o(7) is a linear
continuous scalar function on %, and, consequently; it has a unique continuous
extension @, to .Z,, which is an ordinary weight for .2, with the same eigenvec-
tor x,. Therefore, if x € X, then:

exp(—zS) Texp(zS)x = [exp(zAdS) T]x = §,([exp(zAdS)T])x, VzeC,

thence

Texp(zS)x = , ([exp(z AdS) T])exp(zS)x, VzeC.
In particular, the equality (2) holds for x = x,; hence the number
Go([exp(zAd S)T]) is an eigenvalue of T for each z & C, and consequently it belongs
to the spectrum of T for each z € C. Since the spectrum of T'is a bounded set, the
function z — @o([exp(zAdS)T]) is a bounded analytic function on the whole
complex plane. By Liouville’s theorem, this function must be constant, namely:

Fo([exp(zAdS) T]) = o ([exp(zAdS) T])l.o0 = o(T), VzeC.
Consequently, we get from (2):

(V%) Texp(zS)x = @o(Texp(zS)x, VzeC, Vx eX,.
By derivating (2') with respect to z and putting z = 0, we get:
TSx = @o(T)Sx, VxeX,.

The relation (3) holds for each T'e &y, S.€ & and x € X,,. Therefore we have
proved in fact that the subspace X, is invariant for all operators S € %. Let us
now restrict all operators S € & to.the subspace X,. Note that X, is a closed linear
subspace of X, X, # {0}.

‘We will prove that the algebra of all restrxctlons S| Xy, S'e % is commutative.
Indeed, for any x € X, we have:

[SilXo, S,1Xolx = @o([Sy, S:Dx, S1,8.€Z.

Therefore, [S|X,, S:1X,] is a scalar multiple of the identity operator on Xo.
By the theorem of Wintner-Wielandt (or Kleinecke—Sirokov), we must have:
@o([S1, S2]) = 0, and consequently [S;|Xp, S,1X,] = O for every pair Sy, S, € #.

Thus, the algebra of all restrictions S|X,, S € Z, is a commutative Lie algebra
of operators on the (Banach) space X, # {0}, and, by Lemma 1, it has a gener-
alized weight. Therefore, there exists a scalar function S — o(S) and a net (x,)
< Xo, |xgl] = 1, such that lim[Sx,— @(S)x,] = 0 for each Se &Z.

o

@

&)

If Te %, then Tx, = @o(T)x, for each a and consequently @o(T) = ¢(T).
The proof of Theorem 2’ is concluded.

It remains only to prove Theorem 2.

The proof of Theorem 2. Let g, be a generalized weight for the algebra %,

= [#, & ]. That means, there exists a net (x,) = X, [|x|| = 1, such that lim{T%,—
: -3
—@o(T)x,) = 0 for any T e &;. Let D be the set of indices of (x,) and consider
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the quotient space X = 1,(D, X)/co(D, X) of the space of all bounded functions

from D to X, by its subspace consisting of all bounded functions with the limit
equal to zero. On this new space the weight induces an ordinary weight.

To any operator § € % there corresponds a linear bounded operator § on

the space x: §[(ya)+c0(D X)] = (Sy.)+co(D, X) It is easy to see that the set
= [§, § € &} is a Lie algebra of operators on X and that the mapping

§—8

from % to .# is a homomorphism of Lie algebras. Since ||x,/| = 1 for any «, the
net (x,) defines an element & of X different from zero, £ = (x“)-i—co({), X). Taking
into account that lim[Tx,—¢o(T)x,] = 0, for any T'e &,, we get T¢ = @,(T)§,
for any Te %,. :

Consequently, the scalar functlon T @o(T), Te Zl = [.5? .?7], becomes
an ordinary weight for 21 = [.9 .9?] on the space x By applying Theorem 2,
we infer that this weight can be extended to a generalized weight @ for . It remains
to prove that the scalar function ¢(S) = ¢(§), Se, is a generalized weight
for & (it is obvious that @ extends @,). To this purpose we use the characteriza-
tion given in Lemma 1. We know that for each finite subset {S,, ..., S} = &
and any & > 0, there exists an element 7 eX, |Imll = 1, such that HS,n tp(S,)nH
<ef4, j=1,..,k If (y,) €7, then, by the definition of the norm on a quotient
space, it follows that there exists a bounded net (z) € ¢o(D, X) such that:

sup |[8,va—F(S)y—2ill < /4, j=1,.., k.

Now, since (z) & ¢o(D, X), it is possible to find an index «, such that ||zJ|| < /4
for each « > o, and any j = 1, ..., k. Consequently, we get
1S;7.—$(S)yall < &2 for any a > ag, j = 1, ..., k.

Since (y.) €7 and |||l = 1 in the quotient space I,,(D, X)/co(D, X), it follows
that sup {[|yll, @ > @} > 1 (if {sup|[yll, « > #o} < 1, then the net: y, =0
for a > «y and y, = y, for a > «,, belongs to co(D, X) and

”(ya:)_(y;)H = lnc(D3X) = sup{”yuH: o> “0} < 1:
whence [|5]l# < 1, a contradiction).

Therefore, sup{||y,/l, « > @} > 1 and HS,ygwt'jz(ﬁj)ya[] < g/2for any o > o,
j=1,.. k.

Take an index § > ay such that ||y, >
115,25~ F(S)ysll < /2,

1
A Yes then |[x,]| and

1/2; then
ji=1,..,k.
Put x,:=

118,20~ §(E)xol| < 2118,y5~P(ENyll < e.
The proof of Theorem 2 is finished.

Other generalizations of Lie’s theorem have been obtained by M. Sabac ([3],
[4]).

icm

GENERALIZED WEIGHTS FOR OPERATOR LIE ALGEBRAS 287

References

2

[I1D.L. Gurarii and Yu.I. Liubi&i, An infinite-dimensional analogue of Lie’s theorem
concerning weights (Russian), Functional Analysis and its applications 7 (1973), 41-44.

[2] Seminaire Sophus Lie 1954~1955, Théorie des Algébres de Lie Topologie de groupes de Lie,
Paris, Secretariat mathématique 1955.

[31 M. Sabac, Une généralisation du théoréme de Lie I, Bull. Sc. Math. 2° série, 95 (1971).

[4] —, A generalization of Lie’s theorem II, Rev. Roum. Math. Pures et Appl. 20 (1975), 961-970.

[S1W. Zelazko, On certain class of non-r able ideals in B h algebras, Studia Math.
44 (1972), 87-92.

Presented to the semester
Spectral Theory
September 23-December 16, 1977


GUEST




