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THE SINGULAR SEQUENCE PROBLEM*
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The so-called “singular sequence problem”, to be described herein, was as far as
I know formulated jointly by the present author and Konrad J6rgens in 1970 in
Boulder. In its simplest form the question is: if a bounded self-adjoint operator B
can be written as the difference 4,—A4; of two bounded self-adjoint operators A4,
and A4; where 4, and A4, possess the same singular sequences, does it follow that
B is compact? The condition of “same singular sequences”, to be specified below,
may for the moment be regarded as a certain type of strong condition relating the
spectral measures of 4, and 4,.

This problem is.of interest for at least three reasons. First, it arises
originally in differential equations and in particular in applications involving
continuous spectra. Second, there are important connections: to. more general
considerations and- questions in Banach .algebras. Third, although the degree of
difficulty .of the problem is not yet clear, it is nonetheless a question in the spectral )
theory for a single bounded self-adjoint operator, or, if you will, for pairs of bound-
ed self-adjoint operators, which as .of this writing has not been resolved. It has not
been previously exposed in the open literature and I will do so (briefly) as follows.(*)

1. The original problem: Weyl’s Theorems.

2. The generalized problem: Banach Algebras.

3. The specialized problem: Singular Sequences.

1. The original problem: Weyl’s Theorems

Weyl [10] showed in 1909 that if a bounded self-adjoint 4 on a complex Hilbert
space H is perturbed by a compact operator B, the essential spectrum is preserved:

0(A+B)= 0.(4).

* Presented in absentia to the 10th Semester, Spectral Theory, ‘Stefan Banach International
Mathematical Center, Warsaw, -Poland, Fall, 1977.

(!) The author became aware of the wider interest in this general area of problems at the
Leipzig International Congress on Operator Algebras in September, 1977. Accordingly the author
presented essentially this brief survey of these problems in the Applied Mathematics Seminar in
Boulder on 6 October 1977, from which this paper is taken.

19 Banach Center t. VIII [289]
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Weyl was interested in this result for application to ordinary differential operators,
and this theorem and its extensions have since been useful in many other areas
of differential equations and in other contexts. Von Neumann [4] later proved
a converse of Weyl's Theorem, namely, if two bounded self-adjoint operators A4,
and 4, on a separable complex Hilbert space have the same essential spectrum
0.(d;) = 0.(44) then there exists a unitary operator U such that the operator
A,—UA,U* is compact. That is, B = 4,—A, is “almost” compact.

Gustafson and Weidmann [2] later showed that under the stronger assumption
that ¢.(4+ B) = ¢.(4) for all 4 in B(H) one obtains the stronger conclusion that
B is compact. This latter converse result applies to any Bin B(H), self-adjoint or
not. The proof, interestingly, used only three operators A4: B*, —B*, and 0.

Let us recall that the essential spectrum o.(4) of a bounded self-adjoint oper-
ator A is its limit-point spectrum and is comprised of its continuous spectrum,
cluster points of the spectrum, and eigenvalues of infinite multiplicity. Alterna-
tely, a real number A is in 0,(4) if and only if the spectral measure of every neigh-
borhood containing A is infinite dimensional. A third characterization, and one
that we will need in Section 3, is that of singular sequences: 2 is in ¢.(A) if and only
if there exists a sequence of elements ¢, in the Hilbert space such that ||g,|| = 1,
s >0, (4— D, — 0. Such a sequence {g,} will be called a singular sequence
for A at A

We refer the reader to the survey paper Gustafson [3] and the references therein
for further information on Weyl’s Theorems and the essential spectrum. We note
here (see [3]) that for non-self-adjoint operators 4in a Hilbert space H or a Banach
space X there are several (seven) in general different types of essential spectra o%(4)
in use, with the largest 05(4) corresponding to the above-described limit-point
spectrum. In [3] we treated, for the most part, the essential spectrum ¢4(4), for
reasons of simplicity of exposition and also because o*(4) is the most natural in
the context of the Fredholm perturbation theory. The latter is by virtue of the fact
that o¥(4) = () o(4+B) = () a(4+F), where the first intersection is taken
over all compact B and the second intersection may be taken over thq smaller set
of all bounded operators F of finite rank. However, another essential spectrum,
and one that we will need in the discussion in Section 2, is the essential spectrum
03(A). This essential spectrum has the property that for 4 € B(X) one has o3(4)
= (), where A denotes the image of 4 in the Calkin algebra C(X) = B(X)/K(X),
K(X) denoting the compact operators on the Banach space X.

2. The generalized problem: Banach Algebras

The above described Weyl-von Neumann Converse Theorem in the form given
by Gustafson-Weidmann [2] for operators on a Hilbert space, as described in
Section 1 above, was extended to Banach space in Gustafson ([3], Theorem 250):
If for B in B(X) one has

0(A+B) = g.(A)
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for all 4 in B(X), then B is inessential. Recall that an operator 7 in B(X) is called
inessential if its image T in the Calkin algebra B(X)/K(X) is in the Jacobson radi¢al
there; recall also that the Jacobson radical of a Banach algebra with identity I may
be characterized as the set of all elements B such that I+ CB is invertible for all
invertible C, or, what is the same thing, as the set of all elements B such that 4+ B
is invertible for all invertible A.

The proofs in [2] and [3] were entirely different. The result in [2] for B(H)
was obtained by reducing the problem for a single operator B to the self-adjoint
case, whereas the result in [3] for B(X) necessitated demonstrating that the class
of B under consideration formed an ideal of operators each possessing the property
o.(B) = {0}. Although the result obtained in [3] was for the version of of the
essential spectrum being treated in that paper, the proof given there applies in the
same way to o. One may just delete the “index zero” consideration and recall
the characterization of o2 as a Fredholm spectrum.

Let us give here for completeness an alternate proof of the result of [3] for the
version ¢3, which as mentioned just above, is an easier case. That is, we may regard
03 as a Calkin spectrum, rather than as a Fredholm spectrum as was done in {31,
and we may make full use of the theory of the radical and in particular the charac-
terization mentioned above, rather than using the properties of the inessential
operators themselves as was done in [3]. Then from o02(4+B) = ¢3(4) for all 4
in B(X) we have a(d+ B) = o(A) for all 4 in the Calkin algebra B(X)/K(X), from
which the result follows.

Recently Zemének [11], see also Zeminek and Ptik [12] and the references
therein, has generalized the result of [3] to an arbitrary closed two-sided ideal
in a Banach algebra &: If {a(m)l = ‘lo“(AA)}; for all A in the quotient algebra
%/1, then B is in the Jacobson radical of 4. That a(A/-i-}) = a(ﬁ) for alt 4 is suffi-
cient would be expected from the known characterizations (e.g., those mentioned
above) of the radical, but it should be pointed out that Zemének’s condition, in-
terestingly, required a priori only the equality of the spectral radii rather than the
previously supposed equality of spectra.

3. The specialized problem: Singalar Sequences

The Weyl-von Neumann Converse Theorem described in Section 1 asserts that if
two self-adjoint operators 4, and 4, have the same essential spectra

’ Ue(Az) = O'G(Al)i
then 4, minus a certain unitary equivalent of 4, will be compact. Simple examples
(e.g., take A;e, = Me,, i=1,2;n=1,2,3,... in I, with the 2 countable dense
sets appropriately chosen in the unit interval) show that the difference B = 4,— A4,
is not in general compact. That is, on the one hand one needs the unitary change

of basis, and on the other hand it is somewhat remarkable that it then does the job
so well.

19*
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In view of the result of [2], and as mentioned in the introduction, the specu-
lation was that a condition somewhat stronger than ¢.(4,;) = 0.(4;) yet of the same
essential type would suffice to characterize the difference B = A4,— 4, as compact.
The precise formulation was: if two bounded self-adjoint operators 4, and 4,
on a complex Hilbert space H have the same singular sequences, i.e., written sym-
bolically,

582 (A) = s54(%)
for all scalar A, then they differ by a compact operator. If one prefers a statement for
a single:operator B: any bounded self-adjoint operator which can be written as the
difference of two salf-adjoint operators possessing the same singular sequences is
compact. ’

Recall (as stated in Section 1; for a proof see, for example, Riesz-Sz. Nagy
[5]) that 4 is in the essential spectram of an operator 4 if and only if there exists
a singular sequence {p,} for 4 at 4. The condition in the speculation that ss,(1)
= s5,(A) is taken to mean that at each scalar 1 the {p,} for 4, are the {g,} for 4,,
and vice-versa. The condition ss,(1) = s5;(4) thus means that o.(4,) = ¢.(4,)
and in addition says a little more (than just their infinite dimensionality) about
the relation between the spectral families E,(4) and E, (%) over the essential spectra.

Note that if B is compact then the assertion (which may if you wish be regarded
as a theorem of Weyl type) 5544.5(4) = s5,(4) is valid for any operator 4, by the
property that B maps weakly convergent sequences into strongly convergent se-
quences. That is, the speculation is an appropriate converse statement. Note also
that if B is to be compact, virtually every singular sequence {p,} must be a
singular sequence for B at A = 0.

Let us rhention now some results for this singular sequence problem for bounded
self-adjoint operators that have been obtained by students in Munich and Boulder.
Jorgens gave the question to a student W. Tafel in Munich who obtained some
partial results in his 1974 Diplomarbeit [6]. In particular it was shown in [6] that
if B is a bounded self-adjoint operator on a separable Hilbert space such that By, —+ 0
for all orthonormal bases {g,} in H, then B is compact. After being reminded of
the question upon hearing of Tafel’s work in [6] I mentioned it later to a student D.
Barraza in Boulder who gave (joint with P. Bader; see Barraza [1], Chapter II,
Section 3) an example of a bounded self-adjoint operator B on a separable Hilbert
space which annihilates (i.e., By, — 0) an orthonormal basis {ga} but which is
not compact. Tafel [6] also showed that the singular sequence speculation is true
in many cases: If 4; and A4, are bounded self-adjoint operators on a Hilbert space
with the singular sequence property that ss,, (1) < ss4,(4) and with the additional
assumptmn that the number of limit points of the essential spectrum o,(4,) is
ﬁmte, then the difference B = A~ A, is compact. This contains a result obtained
later by Bader and Barraza that the speculation is true for projections.

Let us conclude by also mentioning that Weidmann has given, in a recent
(1975) survey [9] of perturbation theory for self-adjoint partial differential equations,
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a result concerning perturbation of singular sequences. In [9], Appendix, Weidmann
showed that for 4 a self-adjoint operator under perturbation by a symmettic oper-
ator B such that B is 4-bounded, 4%-compact, and such that 4+ B is self-édjoint,
then not only is o.(4+B) = 0.(4) but also s5,,5(4) < ss.(4). Let us recall and
mention that for unbounded operators 4 and B the versions of Weyl’s theorems
that appear involve conditions such as that of B being A-compact, i.e., B is compact
on the domain D(4) equipped with the 4 operator norm; we refer the reader to
[3] and [9] and the references therein for further information concerning the ver-
sions of these theorems for unbounded operators and for the applications to diffe-
rential equations. k

4. Additional remarks and observations(*)

As mentioned in Section 1 the result in [2] required not all 4 in B(H) but only
A = B*, —B*, 0. This suggests generalizations and formulations involving con-
ditions involving only operators 4 in the vector space (or more generously the C*

, algebra) generated by B.

In connection with the discussion in Section 2, Zemének [11] has raised the
question of whether for an arbitrary Banach algebra with identity the condition

o(Ad+B)nao(4) # 0
for all 4 in the algebra implies that B belongs to some proper two-sided ideal.

In a very recent paper [7] Tafel, Voigt, and Weidmann have extended the
problem of singular sequences as discussed in Sectlon 3 to unbounded self-adjoint
operators: if two unbounded self-adjoint opera.tors A, and A4, have the same singu-
lar sequences and their difference B = 4,— A, is A;-bounded with' relative bound
zero, can it then be concluded that B is 4;-compact? Also in [7] an example is given
for bounded self-adjoint operators in which ss;x().) < 55,,(4) but the number
of limit points of the essential spectrum o.(d4,) is not finite and the difference B
= A,— A, is not compact.

In connection with the related result of Weidmann ([9], Appendix) mentioned
in Section 3 above, Weidmann raised the following conjecture: for self-adjoint
operators 4,, A, and an operator B, such that D(4,) = D(4,) = D(B), does
it follow that B is 4}-compact if and only if B is 43-compact? As T. Kato observ-
ed (Kato also went a bit further there) in Weidmann ([9], Appendix), the answer
is yes in the case that B = 4,~A;. In a recent preprint [8] Voigt has answered that
conjecture négatively with a (rather complicated) counterexample. We should
perhaps observe here that in the case that the operator B is closable and D(43)
= D(43), the answer is affirmative, as is easily seen by use of the closed graph
theorem; and (as we have suggested to Voigt in a private communication) this
sufficient condition is easily generalized to D(4%) = D(4%) for some p > 1 by

(*) Added later.
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following the argument in [2], Section 3, Remark (5). However, a more generally
formulated theorem would perhaps be desirable — which gave a necessary and
sufficient condition appropriately involving domains.

Finally we would like to mention that although the singular sequence problem
may remain of interest for normal and some normal-like operators also, it is not
of interest very much beyond them. To show this we would like to give a short
construction which might be of some use elsewhere in these considerations. Let B
be any bounded noncompact operator such that ¢.(B) = 0 and B+ I is invertible.
Let 4 be B2. It follows immediately (from 4+ B = (B+1I)B) that c.(4) = o,(4A+
+B) = 0 and that 4+ B and A have the same singular sequences. But B was not

compact. One may use for an explicit example the B = ([0 0]) of [2]. In that case

one even has A (= 0) self-adjoint, ss,4.5(2) = $54(4), and a negative conclusion
for the singular sequence question.

Added in proof. For W* algebfa the question of Zemdnek [11] may be answered affir-
matively, and negatively for general C* algebras. For further references see K. Gustafson
and M. Seddighin, Nonperturbing algebras, to appear, and the survey by the present author
to appear in the proceedings of the Spectral Theory Semester (2n9), 1982.
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ON THE SPECTRAL PROPERTIES OF TENSOR PRODUCTS
OF LINEAR OPERATORS IN BANACH SPACES*

TAKASHI ICHINOSE

Department of Mathematics, Hokkaido University, Sapporo, Japan

1. Introduction

Let X and Y be complex Banach spaces and let « be a uniform reasonable norm
on X®Y. The completion of X®Y with respect to o is denoted by X&,Y Let
A: D[A] « X - X and B: D[B] = Y — Y be densely defined closed linear oper-
ators with nonempty resolvent sets. Associated with each polynomial of degrees
min £ and n in 7

.1 PEm) = ) cxbinft

Jk
is a polynomial operator

(12) P{4®I,I®B} = ) ¢, A/@B*

i3
in X é,Y with domain D[A™|®@D{B"]. In particular, to £+# and £n correspond
respectively AQI+I®B and A®B. The identity operators in both X and Y are
denoted by the same I. Assume that (1.2) is closable in X ®aY with closure P, This
is the case, for mstance 1f o is faithful on X®Y, i.e. if the natural continuous linear
mapping j&: X®,,Y~+ X®3Y is one-to-ome.

We are interested in the problem of what spectral contributions P gets from
A and B.

The aim of this note is to make a brief survey of our results ([9], [10], {11],
[12]) on the exact representations of the spectrum, essential spectra, approximate
point spectrum and approximate deficiency spectrum of P by the parts of the spectra
of A4 and B. By the essential spectra are meant those in the sense of F. E. Browder
[31, F. Wolf [22], M. Schechter [18], Gustafson-Weidmann [7] and T. Kato [14].
Further we refer to the formulae expressing the nullity, deficiency and index of
P in terms of the quantities concerning 4 and B.

* This work was supported jointly by the Stefan Banach International Mathematical Center,
‘Warszawa, and the Yoshida Foundation for Science and Technology, Tokyo.
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