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Let X be a Krein space, i.e. a Hilbert space with respect to some scalar product
(-, ), equipped with an indefinite scalar product [, -] given by [x, y] = (Jx, y),
x, y € X. Here J denotes the difference of two orthogonal projectors P, , P_ with
P,+P_ =1 (the identity on X): J=P,—P_. Let %.,(X):=dimP,Xe {0,
1, ..., ©}. The quantities.»,(X) are called the rank of positivity and the rank of
negativity, respectively, of the Krein space X. A bounded operator 4 on X is said
to be J-self-adjoint if [Ax, y] = [x, Ay], x, y €X. A J-self-adjoint bounded operator
A on X is said to be definitizable, if there exists a real non-constant polynomial p with
property [p(4)x, x] = 0, x € X. The non-real spectrum of a definitizable operator
can be proved ([6]) to consist of no more than a finite number of eigenvalues.

In what follows 4 denotes a;bounded definitizable operator. We assume that
the spectrum o(4) of A4 is real (for the following considerations thxs is, in fact no
restriction).

The spectral function E( ) of a definitizable operator was found by M. G. Kféin
and H. Langer ([5], [6]). It is a projector-valued interval function defined on all
real intervals whose endpoints do not belong to the set {u,, ..., ux} of real zeros
of the definitizing polynomial p. :

The Riesz-Dunford functional caleulus fi— f(4) can be extended (cf. [6], [4])
to an L(X)-valued distribution which on R\ {1, ..., 4} provides the measure
corresponding to the interval function E(-). This distribution is also denoted
by E. It is a spectral distribution in the sense of Foias (cf. [2]).

In the case of dimX < co (and for an arbitrary linear operator) the order
of E in a neigbourhood of a point u € 0(4) is equal to the maximal length of Jor-
dan chains in the root space of this point minus one.

In this note we are concerned with connections between the order of the dis-
tribution E on one-sided and deleted neighbourhoods of a point u;, 1 =1, ..., k,
and the length of Jordan chains in certain subspaces of the root space to y;.

M. G. Krein and H. Langer ([5], [6]) proved connections of the type consi-
dered here in the case of a Pontrjagin space, i.e. min (%, (X), %-(X)) < co0. Here
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we do notassume that X is a Pontrjagin space. Butin § 3 we make additional assump-
tions on the operator 4. Under these assumptions, which are close to the case of
a Pontrjagin space, we obtain the same relations asin [5], [6]. As a simple consequence
we get conditions for the spectrality of definitizable operators. We mention that
our results can be applied to the spectral theory of operator pencils having only
real zeros (cf. e.g. [8]).

We shall confine ourselves to definitizable operators A with real spectrum
such that

[A"x,x] > 0, xeX, ]

where n is some non-negative integer. This is no restriction, as can easily be seen.
The class of these operators is denoted by .D(0, »). Throughout the paper permanent
use will be made of results (cf. [6] and also [7], [4]) on the spectral function of
AeDO,n).

I thank Professor H. Langer for many valuable suggestions.

1. Definitions and some auxiliary results

1.1. For any linear subspace Y of the Krein space X we put
Y= {x eX: [x,y] = O for all y € ¥}.
The subspace Yn Y[Jj] is called the isotropic part of Y. We set
Py = {xeX: £[x,x]20} and Po= {xeX: [x,x] = 0}.

A linear space W equipped with an Hermitean sesquilinear form [-, -] is called
a pseudo-Krein space if W is the direct sum W = W, + W, of a space W, on which
[+, -] vanishes, and a Krein space W, (with respect to a suitable definite scalar
product and [-, - ]). A subspace ¥ of the Krein space X is a pseudo-Krein space if
and only if it can be written as the direct sum of its isotropic part YA Y“! and a sub-
space of the form PX, where P is a J-self-adjoint projector (cf. e.g. [1]):

o ' Y= YnYW4px.

Suppose that for a pseudo-Krein subspace‘Y we have two decompositions

Y= YnYH4PX, Y= ¥Yn¥YWiQx

of type (1). Then it is easy to see that #.. (PX) = x, (QX) and x_(PX) = x%_(Q0X).
We denote the quantities ., (PX) and x_(PX) by ».(¥) and »_(¥), respectively.

A pseudo-Krein subspace Y of the Krein space X is called positive (resp. nega-
tive) pseudo-definite if ¥ < P, (resp. ¥ = P_). Note that every closed subspace
Y of a Pontrjagin space X is a pseudo-Krein space with %, (Y) < %, (X).

1.2. Let A4 be a definitizable operator belonging to D(0,n) and let E(+) be
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its spectral function. The] following subspaces are needed throughout the paper.
Denoting open intervals by 4 we set

L := span {E(d)x: 4 = (~,0),x €X},
L; := span {E(d)x: 4 <= (0, ), x X},
Ligy :=span {E(d)x: 0 ¢4, x X},
L:=1I;, L.:=1IL, Lg:=Lg,
Ly:= QE(A)X ={xeX: 0¢4=E(d)x =0},
Loyi=LonLi, Loi= LonL;, Lo := LonLiy.
By well-known properties of E (see [6], [7]) we have

()] LicP,, L <P, ifand only if n is even
and

©)] LieP_, L <P, if and only if n is odd.
Furthermore, we have Ly, = L+ L, and

@ LM =L, IHM=1L,

(see [5), [6]). Hence the subspace Lo, is the isotropic part of L,. For every non-
negative integer i we set
N;:= {xeX: 4'x = 0}.
In accordance with the usual notion of order in distribution theory we define
the order of E at 0 to be the minimum of the integers m, such that on some interval
(—¢&, ¢, € > 0, the spectral distribution E is the mth derivative of a bounded
(L(X)-valued) measure. We denote by p the order of E at 0. Owing to [4], Satz 4,
we have .
Q) u<n.
LeMMA 1. Nyyy =-Nypo = ..
Proof. Let the spectrum o(4) be contained in the interval [—M, M]. The
sequence (y,41,;)52, of real functions defined by
@+~ i -M<tg -,
Yurr, (1) 1= 70 ey,
(=t i jUSt<M
converges in C*([—M, M]) to the function ¢+s##*1, Since the spectral distri-
bution E is the uth derivative of a bounded measure, we have

© lim y,41,,(4)x = A**1x, xeX.
Joo

If 4**2y = 0 for some y € X, then, obviously, y,4.s,;(4)y =0 for all j = 1,2, ...
and hence by (6) 4*+'y = 0.
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We have shown that the root space of 4 to 0is Nyy; = Nyyq. The following
lemma asserts that the subspace L, defined above coincides with the root space
of 4 to 0. ‘

LemMma 2 ([6]). Lo = Nyya.

Proof. 1. Let xe N, and let 4 be a real interval with 0 ¢ A. Then we have

E(Mx = A"“(A ¢+DE(M)x = (47 LR (A)) A*Hix = 0.
Thus x € Lg.

2. Let x € Ly. We consider the sequence (4 1,y)j%1 from the proof of Lemma 1.
Obvxously, we have y,,,;(4)x =0 forallj=1,2,. .. and hence by (6) it follows
that X & N,,q.

We shall need the following lemma, which can partly be found in [6].

LemMA 3. Let k be a non-negative integer. The following assertions are equivalent:

I: The integral | t*dE(t) converges in the weak sense.
(0, )

IIi: The integral § t*E(t) converges in the strong sense.
©,')

I The interval function A*E(-) on (0, ) is bounded.

IVS: The distribution E on (0, 00) is the k-th derivative of a bounded measure
on (0, o).

Proof. It was shown in [4] that IITj is equlvalent to IVL. Evidently, I} is equiv-
alent to

I': For every ¢ > 0 and every x € X there exists a § > 0 such that [A*E(4)x, x]
< & for every interval A with 4 < (0, J).

Therefore, the assertions If and IIT are equivalent.

Now the lemma will be proved if we can show that I' and III imply II;.
Making use of the Schwartz inequality

[[AXE (4)x][* = [A*E(d)x, JA*E (4)x]
[A"E(A)x, x]!? [A*E (4)JAE (d)x, JAXE (A)x]“2
we. infer from I’ and III} that: For every & > 0 and every x € X there exists a 6 > 0
such that || 4*E(4)x]| < & for every interval 4 with 4 < (0, 8). Thus II{ is valid.
. Obviously, the lemma remains true if we replace the interval (0, ) by (— 0, 0);

The assertions with (~ oo, 0) instead of (0, co) are denoted by I}, II}, III}, IV},
respectively. The conjunctions of If and I}, ..., IVi and IV} are denoted by I, ..., IVy.

The minimum of the non-negative integers k for which one of the assertions
I%, ..., IV§ is valid is called the right order of E at 0 and is denoted by u,. Replac-
ing If, ..., IV by I}, ..., IV} and I, ..., IV, we define the left order u; and the
reduced order u,, respectively. We have
(7) ' Hey ,ul ,uo U

Obviously, an operator A € D(0, n) is spectral if and only if 4y = 0, and 4 is scalar
if and only if g = 0.
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In what follows we need notations for the maximal lengths of those parts of
the Jordan chains of 4 to the eigenvalue 0 which lie in the subspaces of L, defined
above:

v 1= min {i: ALy = {0},i=0,1, ...},
= min {i: A'Ley = {0},i=0,1,...},
where ¢ stands for one of the symbols 1,1, 0. The integer » is called the index of
0 and ¥, v, v, are called the right index of 0, the left index of 0, and the reduced
index of 0, respectively.
Obviously,

P,V S Vo K V.

2. Connections between order and index quantities; general case

In the following we are concerned with the connections between the order quantities
Hes ths Ho and the index quantities v,, v, vo.
THEOREM 1. Let A € D(0,n). Then the following holds.
@) 7 < G+, n< G+ D]
(b) If n is even (cf. (2)), then
o € Gluo+D)
(c) If n is odd (cf. (3)), then
mm{[ po+11, jio}-
Here the square brackets | ] stand for “integral part”.
Proof. First, let u, be an even integer and let x € L,,. There exist - a sequence
(x)) of elements of L, and a sequence (4;) of open intervals with 4; = (0, c0)
such that x; = E(4))x; and x; — x, i » 0. Then for every y € X we have
[y, Yl = 1[x0, A2EADY] < [0, x]Y2 [A#E D)y, Y12

Since [x;, x;] — [x,x] = 0, i > o0, and the interva.l function 4*E(-) is bounded
on (0, c0), we obtain 4%/2x = 0, and hence », < §u, or, equivalently, », < [ (ue+
+1]

For odd u, we get »,
equality of (a).

The proof of the remaining relations is similar. In the case (c) one has to use
the form [4-, -] instead of [-, -].

Lemmas 1 and 2 imply the inequality » < g+ 1. Under an additional assump-
tion we can easily obtain another estimate for the index »: Making use of Theorem
1 and of [1], Theorem IX.4.9, we verify the following

COROLLARY. Let A € D(0,n) and let L, be a pseudo-Krein space with u(Lo)
= min(e, (Lo), %-(Lo)) < co. Then we have

® v < Epo+ D] +2% (L) +1

20 Banach Center t. VIII

< £ (u+1) in the same way. This proves the first in-

for even n
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and
Q) v < min{[Zpo+11, po}+2#(Lo)+1  for odd n.

Now we assume that the root space L, is a pseudo-Krein space. If L, is finite-
dimensional or if X is a Pontrjagin space, this condition is fulfilled. Under this
assumption we can estimate the reduced index v, from below:

THEOREM 2. Let A € D(0, n) and let L, be a pseudo-Krein space. Then we have

lo € 2vq  for even n (cf. (2)

and
to < 2wo+1  for odd n (cf. (3)).

Proof. One easily verifies that X is the orthogonal sum
(10) X = Lo+ Lioy®JLoo
with respect to the definite scalar product. Let
All 'AIZ
0 4
be the operator matrix of 4 with respect to (10). The relation ALy = {0} and
the J-self-adjointness of 4 imply A%, = 0. Thus we have
an A"X < Lo+ Lg,-
Let ye Lo+ L. Since L, is a pseudo-Krein space, by (4) the element y can be
written as a sum y = u+wv, where u € L, and v € L,. Let 4 be an interval with
0 ¢ 4. If n is even, we have
[E(d)y, y] = [E(d)0, ] < [E(d)o, o]*/*[v, ]2
Thus
[E)y, y1 < [v, 2]
Then from (11) we infer that the set {[4><E(4)x, x]: 0 ¢ A4} is bounded for any
xeX. If n is odd, we have
[AE(4)y, y] = [AE(d)v, v] < [AE(d)v, o]"* [Av, o}'2.
Thus
[AE(4)y, y] < [dv, o).
Then from (11) we see that the set {[42"s+1E(d)x, x]: 0 ¢ 4} is bounded for any

xeX.
Theorems 1 and 2 yield:

Taeorem 3. Let 4 € D(0, 1) and let L, be a pseudo-Krein space. Then we have
@)
(12) % < B+ DL

() If n is even (cf. (2)), then
o = [F(uo+1).

» L 3w+ D).
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©) If n is odd (cf. (3)), then

2o < Gpo+1] < wo+1 Yo < Mo-

Remark. It can be seen that the estimates (12) and (13) are sharp. Indeed, -
for an operator of the special class considered in § 3 the equality sign holds in
(12). Further, for an operator of this class and odd po we have v, = [Fuo+1]. It
is easy to construct operators of D(0,1) with o = 1 and » = », = 0, in other
words: J-positive operators which are invertible and not spectral. See, for example,
[3]. For these operators the equality sign holds in [Fuo+1] < #o+1.

Theorem 3 implies a criterion for spectrality: For even n an operator A
€ D(0, n) whose root space is a pseudo-Krein space is spectral if and only if it has
no eigenvectors in the isotropic part of the root space Lg.

(13)

and

3. Connections between order and index quantities;
a special class of operators

3.1. Now, imposing stronger conditions on our operator 4, we shall prove
some closer connections between the order and the index quantities. We suppose
that the subspaces L, and L, are pseudo-definite. If X is a Pontrjagin space, this
condition is fulfilled for every A € D(0, ).

THEOREM 4. Let A € D(0, n) and let the subspace L, (resp. L,) be pseudo-definite.
Then we have
a4 v = Ga+D)  (resp. v = [ +D)).

Remark. We can write the relations (14) in the form (cf. Lemma 3)
v, = min{k: I, is valid},
» = min{k: I} is valid}.

Proof. The proof is given for », and y,. In the other case a similar reasoning
applies. In view of Theorem 1(a) it remains to prove the inequality

(15)

Let P be a J-self-adjoint projector such that (1) holds with ¥ = L,. Let 4 be an
interval with 4 = (0, c0) and let x,yeX. Since ALy = {0} and (I—P)L,
< Lo, we obtain
(16) [x, PA*E(A)y] = [A*E(4)Px, y] = [4*{P+(I~P)}E(4)Px, ]

= [A*PE(4)Px, y].
It is easy to see that the operators PE(A)P, A < (0, o), are orthogonal projectors
in the Hilbert space (PX, [, -]) and, therefore, uniformly bounded. Then from

(16) it follows that the operators PA”E(4), 4 < (0, o), are uniformly bounded.
For every interval 4 with 4 < (0, c0) we have

[PA"E (d)x, PA*E (d)x] = [A*E(4)x, x).

e < 20,

(17

20%
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Making use of this equation we sce that the operators 42’E(4), 4 < (0, o), are
uniformly bounded. This proves (15).

Now under our stronger assumptions we are going to show a closer relation
between the reduced order u, and the reduced index », of 4 € D(0, n) for odd n.
Such a relation results immediately from the following lemma.

LevMa 4. Let A€ D0, n). Let the subspaces L, and L, be pseudo-definite, and
let P, and P, be some corresponding (cf. (1)) J-self-adjoint projectors.

Then Ly, and Ly are pseudo-Krein spaces and Ly can be written as the direct
sum
(18) Loy = Lyo+P X +PX,

where the summands are pairwise J-orthogonal, Further, we have

(19) Lyo = Loc+ Loy
Hence
(20) vo = max {.,w}.

Proof. Let x € Ly,. There exist sequences y; € L, and z;e Ly, i = 1,2,...,
such that y;+z; — x for i — co. Then (P.y;) and (P,z;) converge to P.x and P,x,
respectively, Thus

(yf+zl_Pryl—Plz‘l) = (U-P)y+(I—P)z)
also converges and we have

x = lm [([~ Py yi+ (I~ P z]+ Prx + Pyx.

Consequently, L, has the decomposition (18) and L, is a pseudo-Krein space.
Setting above x € Ly, we obtain Lyy < Lo+ Lg, and hence (19).

By (4) it easily follows that L, is a pseudo-Krein space.

Making use of Theorem 4, Lemma 4, and of the obvious relation u,
= max{u,, ¢, }, we get the following theorem, which is a slight generalization of
a result of M. G. Krein and H, Langer ([5], [6]).

THEOREM 5 (M. G. Krein, H. Langer). Let 4 € D(0, n). Suppose that the sub-
spaces L, and L, are pseudo-definite. Then we have

o = [5(uo+1)].

Remark. We can write the preceding equation in the form

vo = min{k: IIT,, is valid}
(cf. Lemma 3).
CoioLLARY 1. Let Ae D(0,n)and let the subspaces L. and L, be pseudo-definite.
If #(Ly) = min{oe; (Lo), %_(Lo)} < 00, then we have
¥ < [z (o + DI +2x(Lo)+ 1
(cf. (8), (9)).
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COROLLARY 2. Let A€ D(0, n) and let the subspaces L, and L, be pseudo-definite.
Then A is spectral if and only if it has no eigenvector in the isotropic part of the root
space.

3.2. We shall see from the following example that, generally, Theorem 4, (19)
and (20) do not hold without our pseudo-definiteness condition.
ExaMrLE. We construct a compact operator 4, € D(0, 1) such that
® #o=p:=p=1,
i) vo=1, =2 =0,
(iii) Ly = Loo, dimL, = 1.

Let Y be a complex Hilbert space. Consider the Hilbert space Z := YO Y®
@CPHC. We introduce an indefinite scalar product on Z by setting

I 00 o
o -10 o
7=10 o1 o
0 00 —I

and [z, z,] := (Jzy, 25), 2,,2, € Z.

First, we are going to define some subspaces L, and L. of Z. Let (¢,)¥ be
a complete orthonormal system of ¥ and let g be an element of C@C with [g, glege
=0 ([-, *Jege: induced indefinite scalar product) and [|gf] = 1. Let (»)f and
(0)? be sequences of positive numbers with the properties y; € (3, 1), ;= 1 for

i-—»oo,zo'§<oo and.
i

@n (I—y)or* =0, i—>o0.

Define a self-adjoint operator Be L(Y) by Be; = y;e;, i=1,2,..., and put s
= Z o;¢; € Y. We write the elements of Z = Y@ Y®C? as triples and define the
i

following two closed linear subspaces of Z:

"L, =

y By
By 1 yeY;, L_:= ¥y t yeYi.
+By,9)g —(y+By,9g

Obviously, [L,, L] = {0} and L, = (B, \Po)u {0}, and hence

22)

L,aLl = {0}.

We put
€ | Yié
Yi,i = Vi€ )eL+, Yo,y = e eL., i=1,2,
(es+7ie, 9)g —(er+yie1,9)8
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Note that [y, ;, ¥4, = [¥-.;, ¥-.4] =0 for j # k. Making use of (21), one easily
verifies the convergence

0
(a1 +9)) @s iy, ) > | O],
g

i— 0.

It follows that
(23) L ¥L. = YO Y&,
where {a) denotes the linear span of an element a.

We are now coming to the definition of the announced operator 4,. Denoting
by P,,, the J-self-adjoint projector on (., ;), we choose a sequence (¥;) of positive
numbers with the properties

00

D nlPy il <

i=1

and Y wlP_ ]l < .

=
Obviously, the operator

© ~ 0
A=) nPy- Zv,P_,,
i=

i=]

is compact and belongs to D(0, 1). Let E(-) be the spectral function of 4,. We

have E(4) = 24 P, 4 = (0, ). In the case 4 = (~w, 0) a similar relation
v(E,

holds. We easily obtain uo = p, = g, = 1. By the definition of 4, and by (23)

we have

L=L,, Li=L_., Lg=YdY®{g.
Hence, on account of (22),
Lo, = {0}) Loy = {0}, Lgp = {O}Q{O}@<g> = Lo.

Thus »; =9, =0, v, = 1.

33. Finally, assuming the pseudo-definiteness of the spaces L, and L, we
give assertions that are equivalent to III5,, III%, and IIl,,, respectively. Hence
by the remarks on Theorems 4 and 5 we get another formulation of these theorems.

LemMa 5. Let A€ D(0,n) and let the subspaces L. and L, be pseudo-definite.
Then I1L; (resp. IILyy) is equivalent to: For every z & Ly, (resp. z € Lyy) the interval
JSunction 4**E(-)Jz is bounded on (0, ) (resp. on (—c0,0)).

Proof. Suppose that the interval functions A2*E(-)Jz, z € L,,, are bounded
on (0, ). We have to show that 42*E(- )x is bounded on (0, c0) for every x & X.

Let P, and P, be as in Lemma 4. According to (17) the lemma will be proved
if we can show that P, 4*E(- )x is bounded on (0, o) for every x & X, Owing to
(10) and to (18), we can write an element x € X in the form

X =Px+Px+u+tJwtJz,
where u€ Ly, z€ Ly, we Lyy©L,,.
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Obviously the interval functions P,4*E(:)P,x and P,4*E(-)u vanish on
0, ©). We have P.A*E(-)P.x = P, A*P.E(-)P.x on (0, ). The operators
P.E(A)P,, & = (0, ), being orthogonal projectors in the Hilbert space (P.X,
[+, +]), are uniformly bounded. Therefore, the interval function P, 4*E(-)P,x is
bounded on (0, o).
Further, we have

[PAYE(A)Iw, y] = [Jw, E(4) A*P.y]
= ‘(W’ (I_Pr)E(A)AkPry)'i‘ [Jwa PrE(A)PxAkPry]
= [st PrE(A)PtAkPry] »

for 4 < (0, ) and y €X. Hence by the same argument the interval function
P.A*E(-)Jw is bounded on (0, o).

Summing up, we conclude that 42*E(-)x is bounded on (0, o).

The assertion for I, can be shown in the same way.

THEOREM 6. Let A € D(0, n) and let the subspaces L. and L, be pseudo-definite.
Then vy (resp. v.,v)) is equal to the least integer k such that the interval function
A®XE(-)Jz is bounded on (—o0,0)u(0, ) (resp. (0, o), (—c0,0)) for every z
€ Loo (resp. Lo, Loy)-
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