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The aim of this paper is to present a summary of the eight lectures I gave at the
Banach Center in Warsaw on this subject. I shall speak only about applications
in the theory of Banach algebras and in the theory of polynomial approximation
in several complex variables. All the details and other results will be found in my
book Propriétés Spectrales des algébres de Banach.

For the definition and the main properties of subharmonic functions see [5],
(10, 111}, [18], [22].

1. Banach algebras theory

In the following pages Spx denotes the spectrum of x, o(x) denotes the full spectrum,
i.e. the union of Spx with its holes, o(x), 8(x), c(x) denote respectively the radius,
the diameter and the capacity of the spectrum of x. Rad 4 is the Jacobson radical
of the algebra A.

The fundamental starting point is

TueoreM 1 (Vesentini). Let A — f(4) be an analytic function from a domain
D in C into a complex Banach algebra A, then A — o(f(4)) and 4 ~ logo(f(2)) are
subharmonic.

For the proof, see [19], [20]. A more elementary proof not using Radé’s the-
orem is given in [S5]. With that result the well-known theorem of Kleinecke and
Shirokov and related results are coming more naturally.

CoroLLARY 1 (Kleinecke-Shirokov). Let 4 be a Banach algebra and a, b
elements of A verifying a(ab—ba) = (ab—ba)a, then ab—ba is quasi-nilpotent.

COROLLARY 2. Let a, b be elements of A verifying a(ab—ba) = 0 or (ab—ba)a
= 0 and suppose that 0 is on the exterior boundary of the spectrum of a (}'.e. the
boundary of the full spectrum), then ab~—ba is quasi-nilpotent.

COROLLARY 3. (Principle of maximum for full spectrum) (Vesentini). Let
A = f(2) be an analytic function from a domain D in C into a complex Banach algebra
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32 ) B. AUPETIT
A and suppose there exists « in D such that o(f(1)) is included in o(f(e)), for every
Ain D, then we have o(f(2)) equal to o(f(2))) for every A in D.

If N denotes the set of quasi-nilpotent elements in a Banach algebra, we know
that N includes the Jacobson radical of 4. For commutative algebras we have
equality but the converse is false. R. A. Hirschfeld and S. Rolewicz, H. Behncke,
A. S. Nemirovskii, J. Duncan and A. W. Tullo, have built non-commutative al-
gebras where N is reduced to zero. In 1968, R. A. Hirschfeld and W. Zelazko con-
jectured that this last condition, with continuity of the spectrum, implies commu-
tativity. But in [3] we showed it is false even for rather regular algebras.

Using Vesentini’s theorem and Jacobson’s density theorem J. Zemanek [25]
has given a very interesting spectral characterization of the radical.

COROLLARY 4 (Zemének). If 4 is a complex Banach algebra, the following
properties are equivalent:

(i) a is in the Jacobson radical of A.

(ii) a+x is quasi-nilpotent for every x quasi-nilpotent in A.

(iii) Sp(a+x) = Spx, for every x in A.

(V) (1+x)a is quasi-nilpotent for every x quasi-nilpotent in A.

It is possible to give a proof not using subharmonicity with the help of ideas
developed in [7] or in [14], this proof works even in the real case. As an immediate
corrolary we get:

CoroLLARY 5 (Stodkowski, Wojtynski, Zemének [16]). If 4 is a complex

Banach algebra, the following properties are equivalent:
(i) N is equal to the Jacobson radical of A.

(ii) N is stable by addition.

(iii) N is stable by multiplication.

If I'is a closed two-sided ideal in a Banach algebra we denote by kh(J) the
intersection of all primitive ideals containing I, In fact it is the set of x for which
the class X defined by 7 is in the Jacobson radical of A4/F. Using a rather compli-
cated proof, J. Zeméinek [26] obtained:

CorOLLARY 6. If Iis a closed two-sided ideal of a Banack algebrd A, then the
Sollowing properties are eguivalent:

@) a is in kh(I).
(i) SpX is included in Sp(a+x), for every x in A
(i) o(x) < e(a+x), for every x in A.

‘With the help of Corollary 4, in [5], we gave a very simple proof of this fact.
Corollary 4 charactermng the Jacobson radical has an interesting application
which allows us to generalize Gleason-Kahane-Zelazko theorem.

THEOREM 2. Let A be a complex Banach algebra and B a complex semi-simple
Banach algebra with continuous spectral radius. If T is a linear mapping from A into
B such that o(Tx) < o(%), for every x in A and such that the image of T is dense in
the set of quasi-nilpotent element of B, then T is continuous.

icm°®

SOME USES OF SUBHARMONICITY 33

Rather intricate calculus on several complex variables gives:

THEOREM 3. If A is a complex Banach algebra with identity and T a linear map-
ping from A onto M,(C) such that T1 = 1 and x invertible implies Tx invertible,
then T is a morphism or an antimorphism of algebras.

For numerous applications, see [4].

Several persons (C. Le Page, R. A. Hirschfeld and W. Zelazko, G. Mocanu)
showed that complex algebras satisfying o(x) > k||x||, for every x in 4 and a con-
venient k < 1, are commutative. But these condition characterizes only function
algebras. For a general spectral characterization of commutative algebras we got
in [1] the following:

THEOREM 4. If A is a complex Banach algebra then the following properties
are equivalent:

(i) 4/Rad 4 is commutative,

(ii) The spectrum is uniformly continuous on A.

(iii) The spectral radius is uniformly continuous on A.

(iv) There exists @ > 0 such that o(x+y) < a(e(¥)+0(¥)), for every x and y
in A.

(v) There exists o > 0 such that o(xy) < wo(x)e(y), for every x and y on A.

(i) o(x+¥) < o(x)+0(») in a neighborhood of identity if A has an identity.

(vii) o(xp) < o(x)o(p) in a neighborhood of identity if A has an identity.

The proof uses Theorem 1 and Liouville’s theorem for subharmonic functions,
nevertheless it is possible to prove the equivalence of the first five conditions by
using purely algebraic methods and no subharmonicity, as made by V. Pték and
J. Zemének [15]. But their method is useless for the last local conditions. Recently
J. Zemének and myself discovered an even more s1mple proof m

For real Banach algebras the previous theorem is not true (even in the case
of quaternions K) but by a very sinuious way it is possﬂ:le to prove:

THEOREM 5. If A is a real Banach algebra then the followmg propertzes are
equivalent:

(i) For every irreducible representation m of A, 7(A) is isomorphic.to R, Cor K.

(ii) Each one of the conditions (ii) to (vii) in the previous theorem.

For the proof it is necessary not to use analytic theory directly. It uses two
rather deep theorems: Corollary 7, to' be seen later, about spectral character-
ization of finite-dimensional real Banach algebras and Kaplansky’s theorem about
locally algebraic rings (see [7]).

Now by the use of classical potential theory, we shall give deeper results whxch
are contained mainly in [2], [5].

TrHEOREM 6 (Spectral ‘pseudo-continuity. theorem). Let A — f(A) be an ana-
Iytic function from a domain D in C, containing o, into a complex Banach algebra
A and let E be a subset of D which is non-thin at o, then there exists a sequence (An)
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of elements of E, converging to «, with A, # «, such that the full spectrum of f(A,)
converges to the full spectrum of f(«) for the Hausdorff metric.

The analog result for the spectrum is not true. We shall not give the definition
of non-thin at a point (see [10]) but we keep in mind that a Jordan arc is not thin
at every of its points (Oka-Rothstein theorem) and that a domain is not thin at
every of its boundary points. Theorem 5 permits to extend some spectral properties
even when the spectrum is not continuous, for example it is very useful in the proof
of Theorem 9. To understand that this result us not evident let us mention the example
given by V. Miiller [13] of a Banach algebra 4, of two elements @, b in A and of
a sequence of real numbers w, converging to zero such that a+u,b is quasinil-
potent and & is not.

Vesentini’s theorem can be extented by:

THEOREM 7. Let A — f(A) be an analytic function from a domain D in C into
a complex Banach algebra A, then 4 — 3(f(2)) and A - log 8(f(A)) are subharmonic.

Using the following lemma, which is an extension of a result of Hartogs, and
previous theorem we get Theorem 8.

LemMma (Aupetit~Wermer). Let 2 — h(1) be a bounded function from a domain
D in Cinto C such that A — log|h(A)—«| is subharmonic for every a in C, then h
is holomorphic or antiholomorphic.

THEOREM 8. Let A — f(A) be an analytic function from a domain D in C into
a complex Banach algebra A and let o, be an isolated point of the spectrum of f(Ao)
Jor some Ay in D. There exists a neighborhood V of A, such that the set of Ain V for
which the spectrum of f(A) has an isolated point in the neighborhood of a, is of outer
capacity zero and otherwise, for every A in V, the spectrum of f(1) has an isolated
point h(2) in the neighborhood of oy and h is holomorphic on V.

If A'is a Riesz algebra (see [17]) or equivalently a modular annihilator algebra
(see [8]), which implies that the spectrum of every element has at most 0 as limit
point, we conclude in this case that every isolated point of the spectrum of f(4)
varies holomorphically ‘outside of a countable set of singularities.

The following scarcity result has been invented to extend theorems (‘)f Kap-
lansky, Hirschfeld and Johnson concerning spectral characterization of complex
finite-dimensional Banach algebras to the real and involutary cases. The proof
would be more easy if we could prove subharmonicity of the functions A—
— log 8,(f(%)), where 8, denotes the n-th diameter and even less, the subharmonicity
of 2 —loge(f(4)) (this last result would have a lot of interesting applications in
Banach algebras theory). .

THEOREM 9 (on scarcity of operators with finite spectrum). Let A — f(4) be
an analytic function from a domain D in C into a complex Banach algebra A, then:

(i) either the set of A in D for which Sp f(2) is finite is of outer capacity zero

(ii) or there exists an integer n > 1 such that Sp f(}) has exactly n elements

Jor every A in D except on a closed discrete subset of D where Sph(2) has less than n
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elements. In this case, for every A outside of this subset, Sp f(2) varies holomorphi-
cally. .

It would be very interesting to know if there exists an analog to this theorem
in the countable case.

COROLLARY 7. Let A be a real Banach algebra, then A[Rad A is finite-dimen-
sional if and only if A contains an absorbing set on which the spectrum of each el-
ement is finite.

COROLLARY 8. Let A be a complex Banach algebra with involution, then A{Rad A
is finite-dimensional if and only if the set of hermitian elements contains an absorbing
set on which the spectrum of each element is finite.

COROLLARY 9. Let A be a real Banach algebra containing a non-void open set
of invertible elements for which ||x||-llx~*|| =1, then A is equal to R, C or K.

This last result is a nice local generalization of Gelfand-Mazur theorem.

Using Corollaries 7 and 8§ it is possible to improve greatly, in the case of real
and involutary Banach algebras, the results of B. A. Barnes [8] about the existence
of minimal ideals and the characterization of modular annihilator algebras.

A. Pelczynski has raised the following conjecture for B*-algebras: if the spec-
trum of every hermitian element is countable then the spectrum of every element
of the algebra is countable.

This problem, obvious in the commutative case, is still unsolved.

In relation with Corollary 8 it would be convenient to make the more general
conjecture:

Let A be a complex Banach algebra with involution such that the spectrum of
every hermitian element is countable, is it true that the spectrum of every element
of A is countable?

Using the method of subharmonicity with Corollaries 7 and 8 we have been
able to give a partial answer to this question. It is true if the spectrum of every
hermitian element has a finite number of limit points and in this case 4/kh(s0c(4))
is finite-dimensional, where soc(4) denotes the socle of A.

For a lot of other applications, see [5].

2. Function algebras theory

By G. Stolzenberg’s example we know that in general the set of characters of a
function algebra has no analytic structure, but for several examples we know more.
Let K be a compact set, A be a function algebra on K and M be the set of

-1
characters of 4. For fin A and A complex we denote by f (%) the set of characters

x satisfying x(f) = 4. )
E. Bishop has proved the following result which is fundamental in all the
proofs of polynomial approximation on arcs (see [24]).

3
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TaeoreM 1. Let K, A, M, f be defined as previously and let W be a component
of C\J(K). Suppose there exists a subset G of W such that:
() G is of positive planar measure,

(i0) }1(/1) is finite on G.

Then there exists an mteger n> 1 such that f (A) has at most n elements for

every X in W. Consequently f (W) has the structure of a complex analytic variety
of dimension one on which each element of A is analytic.

A partial generalization of this theorem has been obtained by R. Basener [9].

THEOREM 2. Let K, A, M, ;. W be deﬁned as previously. Suppose there exists
a subset G of W such that:

1° G is of positive planar measure,

2° f (2) is countable on G.

Then there exists a non-void open subset of f (W) having the structure of a com-
plex analytic variety of dimension one on which edch element of A is analytic,
For g in A if we introduce the functions:

og(D) = 8,(7) = diameter(g( 7 (1))

as in Vesentini’s theorem and Theorem 7 of Section 1 we can prove that 1 — logg,(41)
and A — log 8,(1) are subharmonic (the first case has been proved in [23]). In [6],
using the techniques developed in [2], we have been able to improve the results
of Bishop and Basener by a completely new method, replacing the condition G of
positive planar measure by the weakest condition G of positive outer capacity. The
theorem obtained is strangely similar to the scarcity theorem of Section 1. It is also
the best result which can be obtained, because, if £ is a compact of éapacity zero
in the unit disk 4, there exists a function algebra 4 on a compact K and fin 4 such

-1 -
that f(X) = boundary of A4, f(2) has one element on E and fl(l) is uncountable
on ANE. The construction of such an example is very technical. The theorem
of R. Basener about analytic structure for several variables can also be extended.
Recently D. Kumagai [12] has also proved subharmonicity of more general func-
tions 4 —~ log@g(4), with some hypothesis on the algebra A.

All of this can be used to simplify the proof of the Alexander-Bjoérk theorem
which says that every continuous function on a rectifiable Jordan arc in C” is uni-
formly approximated by polynomials in » variables.

Subharmonicity has also proved to be interesting for problems of holomorph-
ic automorphisms of the unit ball in Banach spaces (see [21]).

. 'Remarks added in December 1981, All the unsolved problems mentioned
in this paper are now proved and also many resu'ts have been improved. See the subse-
quent publications of B. Aupetit and Z. Stodkowski.
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