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In this paper we shall present some considerations concerning the remarkable
definition of a joint spectrum for a finite number of commuting linear operators
introduced by J. L. Taylor in [3] and [4]. In the first part we shall show that the
Taylor construction of functional calculus can easily be described in terms of
sheaf theory. This permits us to give a short proof of the main Taylor theorems.
Further we give a characterization of the Taylor spectrum and of the correspond-
ing functional calculus as the best in some sense, satisfying some natural condi-
tions. Finally, we announce a definition of the essential Taylor spectrum and some
of its properties, and in some cases the existence of a corresponding functional
calculus in Calkin algebra.
A part of these results was obtained in [2].

1

The standard construction for functional calculus in a commutative Banach
algebra (see, for example, [1]), can be described as follows. For the finite set
@y, ..., a, of clements of the commutative Banach algebra 4 one can choose n
smooth functions u,(2), ..., u,(z), with values in‘A, defined for z € C"\\ K, where
K is the joint spectrum of ay, ..., @, in 4, such that

n

D (a—zou@ =e 2=, 7).

I=1
The A-valued differential form of type (0, n—1), defined by the expression
03} ) R=nluA Bus A ... A Ou,,
is d-closed on C"™\ K. To each function f(z) which is analytic in some neighbour-
hood of K corresponds an element f € A, given by the formula

@ f=riyn{fRAdz, dz=dz..dz,
1Y%
where V is some neighbourhood of K with a smooth boundary b¥. Since the choice

of R is important only up to the 3-exact form, R can be considered as an element

21 Banach Center t. VIII [321]
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of the d-cohomological group H"1(4, C"\K) with coefficients in the sheaf 4 of
germs of A-valued holomorphic functions.

In the case where 4 is subalgebra of the algebra L(X) of all bounded linear
operators acting in some Banach space X the operator-valued form R determines
for each element x of X a closed X-valued form R(x). Therefore R can be cgnsidered
as a correspondence between the space X and the cohomology group H"~!(X, C"™\K)
with coefficients in the sheaf X of germs of holomorphic X-valued functions. More
formally, R can be considered as an element of the group Ext"~ (¥, ¥, C"\K).
The functional calculus is given by the formula

©) Je) = @niyr § f2)- RG)A dz
’ by

where f is the linear operator in X corresponding to the holomorphic function f,

Now, we shall construct a similar correspondence x — R(x) for the Taylor
spectrum of commuting operators. Taylor’s definition of joint spectrum does not
depend -of the choice of ‘the enveloping Banach algebra of operators. We shall
give this definition. Further in the paper we will denote by Ty, ..., T, a finite set
of commuting linear bounded operators in the Banach space X. Let 4, denote the
free anticommutative algebra with n generators sy, ..., ,, and let A% be'a linear
space of homogeneous elements of order p. Put X, = A3QX for0< p < n. X, is
isomorphic to the direct sum of finitely many copies of the space X. Any element
x of X, has the form

X = Xigyeestp Sig A oee
Igii<...<bsn

A Sy

where x;,,..;, are elements of X.
Let z = (zy, ..., 2,) be a point in C". Consider the mappmg 4p(2): Xpy - X,
defined by the formula

n
,(2) [xt;.‘...l,-; Sty A e ASy, ] = Z(Tl_zi) [XtsnnrtpodSey A <o ASppy A Sie
© =l

It is easy to prove, by using the commutativity of operators T}, that %5(2) < ot 1 (2)
= 0. So, the spaces X, and the mappings «,(z) form a complex

@ E@): 0 X, %, % .. %9 x, - 0.

Note that X, ¥ X, ~ X, X,_, ~ X, ~ P X, «, and «, are given by the formulas
n

ul(z)fx] = (,(Tl _zl)xs seey (n'—'zn)x))

%@ i, %] = D (Tmz) %

i=1

DerintTION (Taylor [3]). The Joint spectrum of the operators Ty, ..

.» T, consists
of all points z in C" such that the complex E(z) is not exact.

icm

TAYLOR JOINT SPECTRUM OF COMMUTING OPERATORS 323

THEOREM 11 (Taylor [4]). There exists a functional z:alculus in X for the
algebra of functwns :holomorphic in some neighbourhood. of the Taylor spectrum.

« The . proof of this theorem is the main result in Taylor’s paper [4]. We shall
give a short proof of the theorem, based on cohomology sheaf. theory.

Denote by X, the sheaf of X,-valued holomorphic functions on C" and by
&(X,) the sheaf of X,-valued smooth functions. We have complexes

B 0o £,%9 . 890%, Lo,
EE): 0 &(Xe) 2 .. e(x,) ~ 0.

‘We shall use a preliminary Taylor result asserting that the complexes E and &(E)
are exact at all points z for which the complex E(z) is exact.

In sheaf theory, the correspondence between the exact complexes of sheaves
and suitable groups Ext is well known. Let X be the Taylor spectrum of T, ..., T,
and Jet ¥ be some neighbourhood of it with a smooth boundary bV. Then the
functional calculus can be defined by formula (3), where R is an element of the
group Ext" (X, X, C"\\K) corresponding to the complex F, which is exact on C"™\K.
More precisely, the mapping x — R(x) can be obtained by the following standard
procedure. Let #%(X,) denote the sheaf of germs of differential fornis of type
(0, g) on C* with values in the Banach space X, and let £(X,, C*\K) denote the.
linear space of séctions of #7(X,) on C*\ K. (We consider in this paper only forms
with smooth coefficients.) In other words, 24X,, C"\\K) is the space of all X -
valued differential forms on C™\ X of type (0, q) We can construct the complex
of sheaves

u,.(z)

WPE): 0 WP(X) S ... B wPX)-0 .
and the complex of linear spaces %
©B(E, CN\K): 0~ (X, ON\K) 3 ... B (X, C'\K) - 0.
Since the sheaves #°? are thin and the complex #°?(E) is exact on C"™\K, ‘the com-
plex Q7(E, C"™\K) is also exact (this is not true for the complex of sections of E).
Now let x be an element of X. It follows from the exactness of Q°(E, C™\K)
that there exists a smooth function #°y = # ,(z, x) on C"\ K with values in X,_;
such that -
an(2)[# o(z, X)] = x. T
Applying the operator 3 to this equality, we have a,[0% o] = 0. (Since the operators
oy(2) depend analytically on z, they commute with the operator d;) Using the exact-
ness of 2'(E, C"\K), we obtain the form #"; belonging to 2*(X,.,, C"\K)-such
that o,_,[#',] = 6% ,. In this way one can construct the forms #; = ¥(x),
i=0,1,..,n—1, W, belonging to &(X,_;_,, C"\\K) such that

*) i [W)= W, for o [# o] = x,
oW,y = 0.

i=1,..,n,

21*
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We define R(x) as a class of d- cohomo]ogy of #Wn_1(%). Thls definition does
not depend of the choice of #7¢, ..., #~;.In fact, if W 0y seey Wy ATE differential
forms satisfying the same equalmes (5), we can prove, using induction by i, the
existence of forms 7; € Q'(X,.;_,, C"\K) such that

W — W = o_y_1[07]).
Indeed, if this is true for given i, it follows that
an—i—l[Wl+l"W:+l—5tl] =0
hence
Wi =W 11— 07 = o[0Tl
5”/’-;4-1—.5"/”4-1 = %-—t—-z[571+1]-
For i = n—1 we have
oW, 1= W e =0T, 5] =
and

Wpr—W g1 = 57.;-—2-

This means that %',_; and %", _, are in the same class of J-cohomology. From this
immediately follows the linearity of the mapping x — R(x).
. - In some cases:it is more convenient to use another,‘vari_ant of this construction.
Let ¥ and U be neighbourhoods of X such that the closure U of U is contained in V.
Denote by #7; a differential form, defined on C", such that its restriction on CN\U
coincides with #7,. Put

'771 = 5"‘;’1«1—“.--:["/7'1]3 "/7’0 =X an['i/O];
W' is an element of Q'(X,_;, V). It is easy to check that
) oW, = [ ) ["T/’Hl], 5"/7".‘ =0, x"’?o elma,.
The whole of #7; has a compact support contained in V. We denote by R(x) the

class of %' in the group HZ(X, V) of cbhomologies with a compact support. For
every. function f holomorphic in ¥ we have by the Stokes formula

’Wn = E’i/‘n—l

3) | ‘ k f(x) = S R(x)Adz = Sfl_{(x) Adz.

If #, ..., #, are differential forms with a compact support satisfying equalities
(6), then V » and W, are in the same class of cohomologies in the group HJ(X, V).
'We ot the proof, because, it is similar to the proof in the preceding case.

Let Ty, ... » Tny 81, ..., 'Sy be commuting operators in the Banach space X.
Let W 4(x), .., Wa(x) be the differential forms, constructed above, for the oper-
ators Ty, ..., Ty, and let %'y (x), .. W (%) be corresponding forms for S, ... S,,.

Denote by z, ...;24, &5 ..., A the coordinate functions in €"**. The forms v
can be considered as dlﬂ'erentlal forms in C"**, depending only on zy, . For
fixed z = (zy, ..., z,) the coefficients of the components of these forms are elemcnts
of X and we can give to it the form #" ; with coefficients depending on 4 = (1,,

icm

TAYLOR JOINT SPECTRUM OF COMMUTING OPERATORS 325

., A4). So, we obtain the superposition of the mappings x — #°(x) and x - % FEIR
denoted by : o
Wi W) (x)=Wi(W; (x))
as a differential form on the space C**%, ¥ o ¥ ¥ is a differential form of type
(0, i+j) with values in the space 4, ;@45 ;® X.
Now, we can give a new proof of the “projection property” for the Taylor
spectrum and for corresponding functional calculus.

LemMA 1.2. Let K be the Taylor spectrum of the operators Ty, ..., Tay Sy, vy Sk
and let R be the mapping X — H(X, V) constructed above. Let K’, R’ ‘and K", R”
be the corresponding objects for Ty, ..., T, and for Sy, ..., Sc. Then we have:

(a) p(K) = K’, where p is the projection of C*+* on C", p(z, 1) = z;

(b) Let V' and V"' be neighbourhoods of K’ and K''. Then in the group H;*"(j’ s
V' x V") the equality

R’ o R"(x) = R(x)

is satisfied.

Note that in (b) the supperposition R’
corresponding elements in the groups Ext.

Proof. Denote by X, «,(z, ) the elements of complex (4), constructed for the
operators Ty, ..., Tp, Sy, ..., Si. Let X, ay(z) and X,’, a,'(A) be the elements of
corresponding complexes, constructed for Ty, ..., T, and for S, ..., S%. We have
an 1somorphxsm Ak > Av@ A%, Hence

R” is in fact the Ioneda product of

L= @ L4
gq+r=p
Write
Xow = A;@A’L‘@X.
Then "

X, = é Xon-a-
4=0 . A
We have a morphisms &(2): Xo- 1, - X, and o (0): Xpoy = X I x€ Xy,
< X4,y then
Usrt 12> D] = (= Drogea (D) + o (D]

In order to prove (b), we shall construct differential forms W
fying (6). Put

W sk SAtis-
® Fio WY
: ‘q+r=p -
where #'3, ..., ¥, and ¥y, ..., W are differential forms satisfying (6), construc-
ted for the operators Ty, ..., T, and for S, ..., S. "17, is a form with a compact
support with values in X,. It is easy to check that they satisfy equalities (6). In fact,
X=Wo(X) = X~ W50 W (X) = x=W s X)+H# (%),
k WeW o (x) eIlmoy+Imey’ = Ime,,y,

7, =
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and ' .
W= @ (~D@HD W +Hyo0W"]
q+r=p
— @ (DTl o Wy + W0 G H ]
g+r=p

]

Ot k—p [Wﬂd-l]
Hence '

RR'G) = W0 W) = W) = RO)
and (b) is provgd -
In order to prove (a), it is suﬁ‘iclent to conslder the case k= l Thcn we have
Xp _.X'@X;,_l fOl‘ 1< p n, Xo = n+1 = X .
At the point {z,"2) (zy; .0, zy, 4) € C"** the mapping o has thé forim
oz S-2 ‘
o= ol
The complex o;, X; is exact for the point (2, 4) in X; if and on]y 1f for cvery palr
xeX %, eX;_, such that

5 Hirs(@xd = 0, (S Dx; = di(2)lx- 1], s
there emsts and element: y € X;_; such that
' a,(z)[y] = X, (S Dy—x_y elmay.. 1(23

Evidently this is satisfied if z € X". On the contrary, suppose that for fixed z° & C*
the complex «;, X; is exact at the point (z°, 1) for every A € C. We shall prove that

2% does not belong to K. Fix an integer i, 0 < i < n. Let x be an element of Keraj(z°).
Then the element (0, x) of the space X; = X;® X;_, belongs to Keroy,,(z°% 4)
for every AeC. It follows that there are elements y(4) e X{_, and u()eX;_,
such that

U] (S-l)[J’(ﬂ)]+ai-1(Z°)[ﬁ(l)] =x, )@ =0.

We cin choose y(4) and u(4) to be smooth functions of A-such that for 2|
> (IS} y(A) = (S—2)~'x, u(4) = 0. From (7) we obtain by derivation

S+ [Bu] = 0,  oj[dy] =

8o, the pai of functions »(4), u(4) belong to Ker a; and there are smooth functions
o(4) e X;_,,w(A) € X;_; such that

21 @)M)] = y(A),  (S= DR+, ) WA] = u(A).
For p > l]S[[ we have : :

x= S -2 txdi= § ydi= | Sy (DdAdd

H=e Wse

= S % (z9)fe(A)dAd] = a;_l(z")[ § v(ﬁ)dzdI].
fif<a <o

* ©
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Hence, x belongs to Ime;_,. It follows that for every 7 Keraj(z%) = Ime}_;(z%)
and z° does not belong to the Taylor spectrum K. Assertion () is proved.

CoROLLARY 1.2. If the function f is holomorphic in V', ‘we have

§fORndz= | f@RAdzndi.
v 1227%

‘In order to prove that the correspondence f — f given by formula (3) or (3')
possesses the properties of functional calculus, we shall prove two lemmas.

Lemma 1.3. Let B be a compact subset of C" such that for every point z€ C*\ B
there exist operators U(2), ..., U,(z) commuting with Ty, ..., T, such that

" .
N (Ti=2)Ui = I.
A
i=1
Then B contains the Taylor spectrum of Ty, ..., T, and the restriction of R on C"™\ B
coincides with. the class of cohomologies of the form (l).
Proof. Put

Wy = Z D ULBULA oo ABULS) o Sja s

where {ig, .5 fpe1}Y {Jus ooy famp-1} = {1,2,...,n}, and s are generators of
A" W, is a form of type (0, p) with values in the space X,_,_y = A7 ,_,®@X. It is
easy to check that the forms satisfy equalities (5). Hence

i=1

R=Woy=(@=D!Y VU A ... AGUA .. ABU(=1),

which is equivalent to (5).
Lemma 1.4. For the mapping R: X - H"- 1(X C"\K) the followmg equalities
are satisfied:
(i) S R(X)Adz = x,
14

(@ii) (Ti—z)R(x) =0,
(iii) R(A4x) = AR(x) for any operator A in X, commuting with Ty, ..., T,.
Proof. (i) Let B denote a ball in C" such that B > K. We have

' S R(x)adz = S R(x)A dz.

The requirement of Lemma 1.2 is satisfied on C*"\ B and here R can be defined by
formula (1). Assertion (i) for form (1) is given in [4].
(ii) In the construction above we have o, [# ,_i] = 3% ne2- Since o; % p-1
= ((T1=2)W nrs ier» (Ta=2)Wn_1), all (Ti—z)W,_y are G-exact forms.
(i) If we choose #, ..., #n_, as those in the construction of R(x), then
R(Ax) can be constructed by using 4%, ..., A# ,_,, which proves the assertion.
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Proof of Theorem 1.1. Let O(K) be the algebra of functions, holomorphic in some
neighbourhood of K, and let L(X) be the algebra of bounded linear operators in X,
Consider the mapping f — f of O(K) in L(X) given by formula (3) or (3'). Obvi-
ously it is a linear mapping with the following properties:

0 F=Iy,
() 2i=T,, i=1,2,..,n,

(iii) For any f the operator f belongs to the blcommutant of Iy, .., T,.

This follow immediately from assertions (i), (i), (iii). Now we have only to
prove the multiplicativity of the mapping f — ﬁ i.e. to prove that

® fog=fsg fgeow,

which is equivalent to

®) [ /e R - Razd2 = { fg(IRdz,
. |44 v

where ¥ is a neighbourhood of the Taylor spectrum K of T,..., T, and R is the
form with support in ¥ constructed above. Denote by R? the analogous differential
form for 2 operators Ty, ..., Ty, Ty, ..., T,. Using Lemma 1.2 (b), we infer that
(8) is equivalent to

§ (& —f)ex) R2(z)dzda = o.
Y=y .
It is easy to see that the Taylor spectrum of T4, ..., T, Ty, ..., T, in C?" is con-
tained in the diagonal
A= {1, s Zas hgy oy Az = Ay i = 1,2, ...,n}.
Indeed, for the point (z, 4) & C*, z; # 4,, we have
Iy = (Ti—z)(h—2) Uy (Ti— W) —21) "y

gnd by Lemma 1.3 (z, ) does not belong to the joint spectrum.,

For fixed f € O(K) we can choose ¢ > 0 in such a way that at all points (z, 1)
€ C?" such that [z— 4| < ¢ we have

f@)—fh = Z =)z, 3),

where hy(z, ) are holomorphic functions defined in some neighbourhood V' of
AK) = {(z, ), z= 1, ze K}. By (ji) we obtain’

(@~ A)R? = (Ti- W)R*—(T,—z)R* = 0
and

S (f(z)-f(z))g(z)mdzdz = Z Sh,g(z)(z, 2)Redzdh = 0.

The proof is ﬁmshed
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2

In this section we give some properties of maximality for the Taylor spectrum.

Let K be a compact subset of C". By K we denote the hull of holomorphy of

K, i.e. the compact of maximal ideals of O(K). The mapping
p: m— (m(zy), ..., m(z,)
defines projection of K on a subset of C*.

Let Ty, ..., T, be comnmtmg linear operators, let K = or(TY, ..., T,) be their
Taylor spectrum, and let f— f be the Taylor functional calculus. Suppose that
K’ is another compact subset of C" such that there exists a functional calculus,
i.e. a homomorphism O(K) - L(X): f— f with properties (i), (i), (ii).

THEOREM 2.1. Under the assumptions and notations of this section we have

(a) p(K’) contains K.

(b) For any fe O(K'Yn O(K) we have f f

Proof. Suppose that O(K’) has a finite number of generators fy(2), ..., fi(2)
(in the general case we can consider K’ as a limit of a decreasing system of compact
sets with this property). Then K’ can be considered as a subspace of C*+* and the
mapping

i (Z1 oo Z0) = (245 ons Zns [1(2)5 oo, Fil(2))

is an injection of K’ into K'. Denote by T,.; the operator ﬂ, i=1,2,..,k. For
any point zo = (22, ..., 25.4) ¢127' there exist holomorphic functions uy, ..., #y4r,
defined in some neighbourhood of K’ in C***, and such that

ntk

2 (Zl—z()ui(z)

fe=1
This means that

n+k

S (=20 oty = I,
i=1

and therefore o5 (T, ..., Ty4x) i8 a subset of K’ Lemma 1. 2 (a) implies that ¢4(77, ...
ey ,,) < p(K). Since the set of all polynomlals of 2y, .euy Zns fis .-, Jfi IS dense
in O(K ), the functional calculus f— f coincides w1th the Taylor functional
calcutus for T, ..., Tpyx. Using Corollary 1.2, we obtain assertion (b).

ExampLE. Let a Banach space X be represented as X;@®X,. Let T, S; be
a pair of commuting linear operators in X; such that a,(7y, Sy) = K = {(z1, 2)
€ C?: |z;| < 1, |23] < 1} and let T3, §; be commuting operators in X, such that
or(Ty, 8;) = {(0,0}. Let T = T, ®T,, § = S1®S, be operators in X. Then

or(T, S) = {(Zn z,), 23] € 1, |22] € 1}-

Putk’ = {z;,2,): lz;] = 1, |zz] < 1}U{(z1, 22): lza| € L, |22 =130{(0, 0)}. Any
function f€ O(K’) can be represented as a pair (f},/2), yvhere fie O(K), f» is bo-
lomorphic in a neighbourhood of (0; 0). We can define f = f, (T}, S,)efz(Tz, S2).
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This is a functional calculus with properties (i), (ii), (iii) for the operators 7, § which
is larger than the Taylor functional calculus. ’

Now we give an axiomatic characterization of the Taylor spectrum. Let X be
a category of Banach spaces with a fixed action of n commuting operators T}, ..., T
Let all the morphisms in X be bounded linear mappings, commuting Wiﬂ,l _;l."’ "
<y T,. Denote by o,(T, X) = o,(T}, ..., Tn, X) the complement in C* of th:s.;t

of all points zZ = (Zl vy & ) such that the linear span of Im(T;—z 2
ERERER ) !
i ]I . P ( i i)’ 1 >4y ey Ny

THEOREM 2.2. Suppose that for any X € X we have a ¢

‘ ompact subset o(T

< C" with the following properties: ’ @0
@) If X' is a direct sum of finitely many copies of X, then o(T, X') = o(T, X)
(b) For every X we have o(T, X) > 0,(T, X). o
©) If Y is an invariant Banach subspace of the Banach space X, then

o(T, Y) < o(T,X)uo(T,X/Y).

Then, for every X ¢ X, o(T, X) contains the Taylor spectrum of Ty, ..., T, in X.

Remark. Obviously the Taylor spectrum has § i
properties (2) and (b);
(c) was proved by Taylor in [3]. i ® (0 roperty

Proof. Let X be an object of ¥, and let z be a point in the Taylor spectrum

of I‘l .ee 1;, in X. Then the com i
( N N . plex E(z y defined by i
o : ( ) enne (4), is not exact. Let 7 be an

H(E@)#0, Hyi(E@)= ... = Hy(E@) =0

(here H,(E(2)) = Keray,,(2)/Imay(z)). Pu
i i N t Yi = Ke i
corresponding isomorphisms reies® and consider e

O X% = Ima,, () = Yors, k=1i,i+1,...,n~2, X, /Yoo, =X.
If yeY;, we have (T—z)yelmoy_1(2), I=1,...,n. Tn fact, let
y= 2 Vi eS8y = Y+,

Ishs..<iisn

where
y= S e YL
: teflomiy (it
'I'henSio:: ;%:;i=#(llg;§21)1’:. ;,:t fa: eXi-l be such that uas; = »'. Then oy(z)u =y.
z €0, (T, Keroy,4(2)) = o (T, Ker oy41(2)).

S .

wl;};];:;s: that ; ¢a(T, X) Smc‘e all X, are direct sums of finitely many copies of X,
A z ;’a'( > X). Using the isomorphisms (9), we infer by (c) thatz ¢ (T, ¥,_,), ...

-3 2 ¢0(T, Y;) — a contradiction. The theorem is proved. ’
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3

DEFINITION. We shall say that the point z belongs to the Fredholm spectrum
0¢(Ty, --.» Tw) of the operators T, ..., T, if z belongs to or(Ty, ..:, T,) and all homo-
logy groups H,(E(z)) are finite-dimensional. By o.(T}, ..., T,) (essential Taylor
spectrum) we shall denote the complement of (T}, ..., Tp) in ox(Ty, ..., T

TueoREM 3.1. The essential Taylor spectrum possesses the “projection property”.
TaeoreM 3.2, o5(Ty, ..., T,) is an analytic subset of C".

It is easy to prove that to every function holomorphic in some neighbourhood
of o, corresponds an element of the Calkin algebra L(X)/K(X) (quotient algebra
of the algebra of all bounded operators over the ideal of all compact operators).
This result is interesting only in the one-dimensional case. In fact, if dimor > 2,
then o, contains the boundary of g, and any function holomorphic in some neighbour-
hood of o, can be extended holomorphically to oy. Hence, the holomorphic functional
calculus in L(X)/K(X) is trivial, i.e. it is induced by some functional calculus
in L(X). In order to obtain a nontrivial functional calculus, it is necessary to
consider a larger algebra of functions, and to assume the corresponding require-
ments for the “growth of the resolvent”. Another obstacle to the existence of non-
trivial functional calculus can be the geometry of the spectrum. There exists
a Banach space and operators T}, T, such that their joint spectrum coincides with
the unit polydisc, the essential spectrum is the boundary of the polydisc, and there
exists no nontrivial functional calculus, Now we have the following

TueoREM 3.3. Let Ty, ..., T, be commuting bounded linear operators in X such
that

@) or(Tyy.... Tw) = D, 6(T,...,T,) =bD,where D is a strongly pseudoconvex
domain in C".

(b) For every K and sufficiently small open set U we can find finite dimentional
subspaces H,(2) <1X,_,, Hy(2) < X4, such that for every holomorphic vector-function
x(2) € Keroy(z) on U there exist a sequence y"(2) € Xx—1 of holomorphic vector-func-
tions such that:

limay(2) [Y"(2)] = x(2) mod Hy(z) on U
n

and
113*(z) mod H, ()|l < M(dist(z, bD)) on UNbD

where M(t) is a positive function satisfying the estimate

L] .
{intn M()dt < 0.
0

Then there exists a nontrivial functional calculus B — L(X)/K(X) for some regular
Banach algebra B of functions, defined on (Tys -es To)
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1

Let E be a complex Banach space. We shall investigate the structure of a commuta-
tive Banach algebra with identity A which has the following three propertxes
(i) 4 contains (an isometric copy ‘of) E.
(ii) Every linear functional (L.f.) on E of norm at most one can be extended
to a multiplicative linear functional (m.Lf.) on A.
(iii) The algebra generated by E is dense in A.
Property (ii) will be called the multiplicative extension property (m.e.p.).

2

It was historically first proved that some subspaces of certain given Banach algebras
had the multiplicative extension property. The problem of giving a general characteriz-
ation of subspaces with the m.e.p. was then raised. There are examples of algebras
which have no subspaces with the m.e.p.: for instance, every finite-dimensional
algebra and the algebra of continuous functions on a compact scattered space.

On the other hand, the following are two positive examples:

(a) Let X be a compact convex and balanced subset of a Hausdorff locally
convex topological vector space. Then the subspace of continuous linear functionals
on X has the m.e.p. in C(X).

(b) If A is any function algebra on an uncountable compact metrizable space
there exists an isometry T: 4 — A4 such that T(4) has the m.e.p. in 4.

We now give some necessary and sufficient conditions for a subspace E of
a Banach algebra A4 to have the m.e.p.

(1) Let {x;: ieI} be a set of linearly independent elements of E whose span
is dense in E. Then E has the m.e.p. if and only if the joint spectrum of the
x;’s is balanced and convex.

(2) E has the m.e.p. if and only if every finite-dimensional subspace of E has
the m.e.p.
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