332

R. LEVI

References

- [1] N. Bourbaki, Théories spectrales, Paris 1967, chap. I. § 4.
- [2] R. Levi, Thesis (in Russian), Moscow State University, Moscow 1973.
- [3] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6.2 (1969), 172-191.
- [4] —, The analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1–38.

Presented to the semester Spectral Theory September 23-December 16, 1977 SPECTRAL THEORY
BANACH CENTER PUBLICATIONS, VOLUME 8
PWN-POLISH SCIENTIFIC PUBLISHERS
WAS AN 1987

THE STRUCTURE OF A CLASS OF BANACH ALGEBRAS GENERATED BY A BANACH SPACE

S. LEVI

Istituto di Matematica, Pisa, Italia

1

Let E be a complex Banach space. We shall investigate the structure of a commutative Banach algebra with identity A which has the following three properties:

- (i) A contains (an isometric copy of) E.
- (ii) Every linear functional (l.f.) on E of norm at most one can be extended to a multiplicative linear functional (m.l.f.) on A.
 - (iii) The algebra generated by E is dense in A.

Property (ii) will be called the multiplicative extension property (m.e.p.).

2

It was historically first proved that some subspaces of certain given Banach algebras had the multiplicative extension property. The problem of giving a general characterization of subspaces with the m.e.p. was then raised. There are examples of algebras which have no subspaces with the m.e.p.: for instance, every finite-dimensional algebra and the algebra of continuous functions on a compact scattered space.

On the other hand, the following are two positive examples:

- (a) Let X be a compact convex and balanced subset of a Hausdorff locally convex topological vector space. Then the subspace of continuous linear functionals on X has the m.e.p. in C(X).
- (b) If A is any function algebra on an uncountable compact metrizable space there exists an isometry $T \colon A \to A$ such that T(A) has the m.e.p. in A.

We now give some necessary and sufficient conditions for a subspace E of a Banach algebra A to have the m.e.p.

- (1) Let $\{x_i: i \in I\}$ be a set of linearly independent elements of E whose span is dense in E. Then E has the m.e.p. if and only if the joint spectrum of the x_i 's is balanced and convex.
- (2) E has the m.e.p. if and only if every finite-dimensional subspace of E has the m.e.p.

[333]

Let us now look at a single linear functional on E and find conditions under which it can be extended to a m.l.f. on A(E), the closed subalgebra generated by E. The result is as follows:

THEOREM 1. A linear functional L on E can be extended to a m.l.f. on A(E) if and only if for every finite subset $\{x_1, ..., x_n\}$ of E and every complex polynomial in n variables the following inequality holds:

(3)
$$|p[L(x_1), ..., L(x_n)]| \leq ||p(x_1, ..., x_n)||_{\infty}$$

where $||p(x_1, ..., x_n)||_{\infty}$ is the spectral radius of $p(x_1, ..., x_n)$.

As a consequence we have the

COROLLARY 1. Suppose that the subspace E of A has the m.e.p. Then every linearly independent subset of E is also algebraically independent.

3

Let us go back to the problem posed in Section 1.

Let E be a Banach space, A a Banach algebra with properties (i), (ii) and (iii) and $\{x_i: i \in I\}$ a subset of E as described in (1) of Section 2.

Finally, let A_I be the algebra generated in A by the x_i 's and the identity and let $C[(X_i)]$ be the algebra of complex polynomials in the indeterminates $\{X_i : i \in I\}$. By Corollary 1, A_I and $C[(X_i)]$ are isomorphic and it then follows from condition (iii) that A is the completion of $C[(X_i)]$ for a norm which is compatible with conditions (i) and (ii). It is a consequence of Theorem 1 that a norm $||\cdot||_1$ on A is compatible with condition-(ii) if and only if for every $p \in C[(X_i)]$, $p = p(X_1, ..., X_n)$, we have

(4)
$$||p(x_1,...,x_n)||_1 \ge \sup_{\tau} |p[L(x_1),...,L(x_n)]|$$

where L ranges over the closed unit ball of the dual of E. Hence we have the following theorem.

THEOREM 2. It is always possible to construct an algebra A which has properties (i), (ii) and (iii). Any such A is the completion of $C[(X_t)]$ for a norm which coincides with the initial norm on E and verifies inequality (4) for every polynomial.

4. Examples

[α] Let E_1' be the unit ball of the dual of E. Then E can be viewed as the space of continuous linear functionals on E_1' . As in example (a) E has the m.e.p. in $C(E_1')$ and the algebra generated by E in $C(E_1')$ verifies conditions (i), (ii) and (iii).

Here
$$||p||_1 = \sup_{L \in F_1} |p[L(x_1), \dots, L(x_n)]| = ||p||_{\infty}$$
.

[β] Let E^n be the *n*th tensor power of E and $E^{\hat{n}}$ the projective *n*th power ($E^{\hat{n}} = E^{\hat{n}-1} \hat{\otimes} E$). Put

$$T(E) = \sum_{n=0}^{\infty} * E^{\hat{n}} = \left\{ x = (x_n) \in \prod_{n=0}^{\infty} E^{\hat{n}} : ||x|| = \sum_{n=0}^{\infty} ||x_n|| < \infty \right\}.$$

T(E) is a Banach algebra under the product

$$(x \cdot y)_n = \sum_{k+r=n} x_k \otimes y_r.$$

Let K be the closed ideal generated by the set $\{x \otimes y - y \otimes x: x, y \in E\}$. Then the algebra T(E)/K contains an isometric copy of E and has properties (ii) and (iii). For this construction see Leptin [1].

 (γ) In the case E=C construction (α) leads to the disc algebra and construction (β) to the algebra of analytic functions on the closed unit disc with absolutely convergent Fourier series.

References

- [1] H. Leptin, Die symmetrische Algebra eines Banachschen Raumes, J. Reine Angew. Math. 239/240 (1969), 163-168.
- [2] S. Levi, The multiplicative extension property in Banach algebras, Bull. Sc. math. 2° série, 101 (1977), 189-208.

Presented to the semester Spectral Theory September 23-December 16, 1977