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Iipu k = 1 us aroil Teopems! MbI Tosyqyaem Teopemy M. I'. Iaceimosa [3]
n A. T'. Kocrrouenko, koropas oGobmaer peaynsrar M. I'. Kpeiina u I'. K. Jlanrepa
[5] mpy camocornpsKEHHBIX ONEPATOPHEIX IIYUKOB BTOPOI'O IMOPAMKA.

OrMernM, YTO TIpH BBIIOJHEHMM YCIOBHSL TEOPEMBI 4 KODHEBBIE BEKTODBI
K(17+) myuxa P(1) orsewaroluux COGCTBEHHBIM SHAUECHHAM M3 NPABOH NOIIyILIO-
CKOCTH TaroKe ofpasyer K-KparHO NOMHYIO CucTeMmy B H.

Trorema 5. ITycmb swnoansromes ycaosus meopexst 2 (meopems 3) u A-' e
€C, 0<p< ), 4;/47eC, (j=1,..,n). Tozda cucmena; K(II_) nyyxa
(1) (2k4-1)-kpamno ((2k—1)-xpamno) nosna ¢ H.

Ormernm, uro ecmu B Teopemax 4 u 5 omeparop 4! € C;, 10 Aust jmoboro
Habopa m BextopoB (m = k, 2k+1, 2k—1)), f; € D(4A"/~?) pasnorxenme
no cucreme K(I71_) m-xpatso cymmupyema meromom AGens.
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Summary. Positive definite scalar functions on homogeneous spaces are one
of the main objects of representation theory of groups. Functions of this type are
on the other hand closely related to induced representations of groups. Several
generalizations of results concerning such functions to the case of operator functions
have been extensively studied by Kunze in [1], whose paper inspired the investi-
gations discussed below. Inspiration goes also back to recent trends of general
dilation theory as presented in [2], [3], [6].

We introduce _the notation: Let E be a complex Banach space and E* its topo-
logical dual. By L(E) we denote the space of all antilinear bounded operators
from E into E*. Given two Banach spaces M, N, we denote by L(M, N) the space

of all linear bounded operators from M into N. We write L(M) £ gM, M).

DerFINITION (see [2), [6]). Let Z be a set and B(-, Y: ZXZ - L(E) an oper-
ator valued function. We say that B(-, -)is positive definite (abbreviated: p.d.)
and write B > 0 if for every n, every fi,....fs € E and every z;,..., 2, the in-
equality

[

f;.(B(z" 20£) (f) > 0

holds true. . .

The factorization property of positive definite functions presented below
plays a basic role. For p.d. scalar functions it is atributed to Aroszajn and Kolmo-
gorov, and its abstract operator version appears.in papers [1] and [7] for Hilbert
space valued operator functions. In both these papers the factorization is used
essentially in connection with certain dilation problems. The extension of factor-
ization theorem to Banach space valued operator functions and an explicit use
of it to dilation problems appears in [2] and [6] and reads as follows:

(A-K)Let B(-, -): ZxZ — L(E)bea positive definite operator valued function.
Then there is a Hilbert space K and an operator valued function X(-): Z » L(K)

such that B(u, v) = X(v)*X(u) for allu,veZ K iS‘ minimal, i.e. K = XZX(U)E,
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then X(+) and X are unique up to unitary equivalence. This means that if X, ()
Z - LK), Ki = \/ X(2)E and X,(0)*X,(u) = B(u,©) for i = 1,2 and u,v ez,
ueZ

then there is a unitary map U: K; — K, such that UX;(u) = X,(v) for all ue Z,

If X in (A-K) is minimal, then the expression of B in the form B(u,v)
= X(v)*X(u) is called canonical. When identifying canonical expressions, which are
unitarily equivalent, We can say that B has a unique canonical expression.

Let S be a certain semi-group of mappings of the set Z into itself, and B(-,-):
Z xZ - L(E). The main idea involved in [1], [2], [6] concerning the construction
of dilation 7 is to define it directly by formula m(u)X(t)f = X(u(t))f for ues,
teZand feE, B(t, s) = X(s)*X(r) being the canonical expression of B. The linear
operator z(u) will be well defined if the following Getoor type condition holds
true:

(G) For every m, zy, ..., 2, € Z, fi, ..., fy € E, the equality

i

D BEnzf)(f) =0
=

1
implies the equality.

2 (Bt ute)) ) = .

To be more precise, (G) implies that 7m(u) given by
) ) X, = Y X(u(t)f,
= 7=1

is well defined and maps the linear manifold spanned by X(¢)f (t e Z, f € E) into
itself and, moreover, 7)o n(2) = a{uw) for u,veS. If we require 7(u) to be
bounded, we have to assume that the following boundedness condition (of type
introduced by Sz.-Nagy in his pioneer paper [S]) is fulfilled:

(B) For every n,z,, ...,z,€ Z, f,, s Ju€E

LZI (B(utz0, u)) £)(£) < o) kZ (Bz1, 20f) ()

with some finite o(x) independent of », z; and f£;.
.Indeed, if (B) holds true, then (G) holds true and w(u) is well defined and,
again by (B), |jn(w)]|> < o(u). We are then able to extend 7(y) onto the whole

space K = ze\éX(z)E and then get a representation n(-): § — L(K) (provided (B)
holds for all u € §), which satisfies the equality '
[6)] B(u(1), v(s)) = X(s)*n(e)*n(u)X (¢).

Fomuh (1) in this general setting appears implicitly in [2] for semi-groups and
in [6] for S = Z = a group (u(t) = ut). This formula is basic for dilation theory.

° ©
lm ON GENERAL DILATION THEOREMS 349

To give an illustration, assume that Z is a multiplicative semi-group and define
8= {u(-): u(t) = ut, ue S}. Suppose e is the unit of Z. Then taking s = # = e,
we derive from formula (1) . . )

B(u, v) = R*a(v)*n(u)R

where R = X(e), and we call n(+) an R-dilation for B(-, -).

Following the ideas of the theory of group representations in homogeneous
spaces and the related so-called multipliers used by Kunze in [1], we assume in
the sequel that we are given the following objects:

(a) A positive definite function B(-, *): ZxZ - L(E).

(b) A semi-group S of mappings of Z into itself.

(c) An operator valued function ¥(-, +): SXxZ — L(E) which satisfies the
equa ion

V(uw,t) = V(u,v())V(v,t) for u,veS and teZ.

The function V(-, -) satisfying (c) ‘will be called a multiplier.

Let B(t, s) = X(s)*X(¢) (X(¢) € L(E, K)) be the canonical form of B. Then the
formula

() 2 XN = D X @)V, 1)
=1 =

will define an operator =(u) on the manifold M spanned by X(1)f (te Z, fe E) if
the following analogue of Getoor condition will be satisfied:
(G,) For every n, t,,...,t,€Z, f;, ..., fy € E the equality

n
Z (Bt t0f) (fd = 0
[ 2=31
implies the equality

D7 (Vs 10*B @), u(t)) Vi, 1) (D) = 0.

(7=t
If (G,) holds true for every u € S then m(u) o 7e(v) = n(uv), where 7(1), %(v)
are linear operators in M. Indeed, since

4 = a() (=) D X)) = 2) Y X (@) V(e 1),
! VR
= X (@) (1)) V(u, v(t)) Viw, 1)
J

and since, by (¢),
V(u, v(t)) Vv, 1)) = Ve, t),
we get by the deﬁnitiqn of n(uv)
4= X (W0)t) Vo, 1), = m(uo) D X5,
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which proves the claim. The natural analogue of the boundedness condition (B)
now reads as follows: .
(By) There is a finite positive function g: S — R* such thdt for every u €S,
every n and every t;,...,t, € Z, fy, ..., f, € E the inequality
D (P, t0*B (), ut) Vi, 1) () < o) Z (B, t)f) ()
i k=1 T k=1
holds true.
It is plain that (B,) implies (G,), and so m(x) makes sénse. Then, since the
left-hand side of the inequality in (B,) equals to [|n()) Y. X(#)f;||¢ and the right-
J

hand side to g(u)”; X(t,)f,“,z(, w(u) extends' uniquely to a bounded operator in

L(K), which we denote also by 7(). Certainly n(-) is a representation of S,
i.e. m(ww) = n(u)n(v) for u,v € S. Notice, by the way, that if V(u, s) = Iy (= the
identity operator in E), then the above construction of 7(- ) is just the same as
that petformed under condition (B).

We are now able to formulate our dilation theorem.

THEOREM 1. Suppose that Z, B(-, ) S and V(-, -) satisfy (a), (b) and (c).
If the boundedness condition (B,) is fulfilled then there is a representation (- ):
S LK) (K = \/ZX(z)E) such that

@ (@, $)*B(u(t), 2(s)) Vi, 1) = X(Vn(e)*n ()X (1)

Jorall t,se Z; u,v €S, where B(s, t) ="X(s)*X(t) is the canonical representation
of B(-, *). S

. I_(emark 1. We can always extend S to a unital semi-group S by adjoining the
identity map e: Z — Z (e(t) = t for teZ) and to extend F(-, ) by writing
E’(e, t) = Ir. It is then plain that (c) is satisfied for V(-, -) extended as above to
§ and the boundedness conditions for u = e remains valid, for it reduces simply
to cqualit}" with p(e) = 1. The representation z2(- ) of S in Theorem 1 then extends
to the unital representation %(-): §— L and (2) remains true with = being re-
placed by ﬁ: Notice that if Z is itself a semi-group without unit and S is the semi-
group of 3}01”.10115 on Z by formula u(s) = us, S is usually different (up to semi-group
isomorphism) from the formal algebraic unitization of Z,

The above theorem includes the general theorem of [2] (simply by taking
V(u, t)‘E I5), and consequently also the theorem of [5], and is a slight extension
to seml-gm}lps f’f Theorem 2 of [1], which we will briefly discuss below.

T? begin with, suppose that assumptions of Theorem 1 are satisfied and Z is
a semi-group and define S to be the semi-group of actions by elements of Z,
fmmely S={u Z— Z| u(s) = us for s € Z}. Assume additionally that Z is unital,
ie. S has a unit e(s) s es = s (s € Z), where e is the unit of Z, and

@ Ve s)=I; for seZ.
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Then w(e)X(t)f = X(et)V(e, t)f = X(t)f, which proves that 7(-)is unital, i.e. 7(e)
= Iy in this case. Moreover, (c) now implies also :

V(u, e) = V(u, e)*
If V(u, €) = the constant operator, then by (d) we conclude that V(u, ¢) = Iz. n
this case the relation (2) can be written in an orthodox dilation form as
©) B(u, v) = R*n(v)*n(u)R

where R = X(e).

Let us now go back to general assumptions of Theorem 1. It is obvious that
if B(-, -) is projectivity invariant, i.e. if (a), (b) hold true and
) V(u, s)*B (u(t), u(s)) V(u, 1) = B(t, s)
for u,veS; t,s€Z, then (B,) holds true, and =(-) are isometries. We hence
derive the following theorem:

THEOREM 2. Let B(-, -): ZxZ — L(E) be a positive definite operator fimc-
tion which satisfies (3), where V(- , -) satisfies (a), (b), (c). Then (2) holds true and
a(+): S — L(K) is an isometric representation of S. If, additionally, S is unital with
unite (e(t) = tforte Z)yandVie,s) = Igfor s € Z, then m(- ) is a unital representa-
tion. Also () holds true if Z is a unital semi-group with S = semi-group of actions.

Proof. Only the last statement requires a proof. By definition,
a(@XOf = X(e®)V (e, f =XO)f. =

Assume now that S is a group of transformations of Z onto Z (e(t) = t) and
let all assumptions of Theorem 2 be satisfied. Then:

@ #(*): § — L(K) is a unitary representation.

The above statement is just the algebraic part of Theorem 2 of [1], slightly extended,
namely to Banach space valued operator functions. To prove (4), we first notice
that 7(-) is by Theorem 2 an isometric unital representation. It is then sufficient

to prove that the range of every m(x) is all of X = r\54.1( (#) E. We have by definition
2w HX (u())f = X@) V™, Of.
By (c) and (d) we get
Vw, ) V(o™ o()) = Vo, o™ (o)) V(@™ o) = V(e o(t)) = Ig
and
V(e o))V, 1) = V(o v, 1) = Ip.

It follows that ¥(v, ¢) has a 2-sided inverse in L(E). Consequently Vi, )E = }.5,
which by the previous equality ihvolving s(u~1) shows that the range of m(u1) is
dense in K, as was to be proved.
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Remark 2. If Z(= S) = a group, and ¥(u, t) = Iy, then the above statement
is just the assertion of Naimark dilation theorem — see [4], [5], [6].

Remark 3. Using standard arguments of dilation theory —see [3], [51, oné
can prove suitable theorems, which explain how some continuity properties of B
and V(-, -) imply such properties of (- ).
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The lecture was devoted to the results of paper [4].
In [1] the following theorem was proved:

THEOREM. Let T be a contraction of the class Cy on a separable Hilbert space
Then there exists a unique (up to constant factors of modulus 1) sequence {m;},
of inner scalar functions such that:

(1) my;,, divides m; for each i,

(2) T is quasisimilar to S(m,)@Sm.)® ... (the “Jordan model” of T).

In [3] and [5] it was proved that if T has finite defect indices 8; = dpe = n
then, for i=1,2,...,n, m; is equal to the (n—i+1)-th invariant factor of the
characteristic function of T.

In [7] the problem was raised what is the relation of the functions m; to the
characteristic function of T in the general case. An answer to this question was
given independently in [4] and [2]. The main result of [4] is the following theorem:

THEOREM. Let T be an operator of class C, acting on a separable Hilbert space,
O its characteristic function and let Q be a contractive analytic function such that
O = Q0 = y- I, where y € H® is inner and n is the defect index of T (such an
2 exists by [6], VL3.1). Let S(m)®S(m)P ... be the Jordan model of T. Then
m, = y/[e,(2) for every natural number r < n, where &,(2) denotes the r-th invariant
factor of  (if n is finite then in this notation m; = 1 for i > n),
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