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In 1949 Beurling gave the now famous factorization of analytic functions on the
unit disk as the product of an inner function and an outer function. Years earlier
Szegs had solved the somewhat similar problem of describing the positive functions
on the unit circle that can be written as the modulus of an analytic function. (The
best known contemporary reference for these theorems is Hoffman’s book [3]).
Within the past few decades many theorems in.operator theory have exhibited
some resemblance to the above results. Not always has the relationship between
the operator theory and the classical function theory been clear. The purpose here
is to describe one direction in which such research has moved, to tie together some
theorems that have appeared in the past few years, and to answer a few previously
unanswered questions concerning these theorems. Most of the 1dcas contained
herein arose in, conversations with Ralph Gellar. In particular, the multiplicity
theorem (Theorem 4) was his conjecture.

First we briefly review the necessary language of Hardy spaces. For each of
the LP spaces of functions on the unit circle, H? is the subspace consisting of those
functions whose Fourier coefficients of negative index are all zero. In H?, an outer
function is a function f having the property that fH™ is dense in H 2, and an inner
function is a function that is of modulus one almost everywhere on the unit circle.
The bilateral shift is the operator U: L? - L* defined by U: f(z) — zf(z). The
unilateral shift S on H? is the operator S = U|H>.

Recall also that there is an easy description of the operators that commute
with U or S. (Wé shall assume throughout that “operator” means “bounded oper-
ator.” Also, for simplicity in the multiplicity discussion surrounding Theorem 4
we shall assume that the underlying Hilbert space is separable.) The commutant
of U'is L™, ie. each operator B that commutes with U is of the form 4 = 4,:
f— ¢f for all f € L?, where @ € L™. In the same sense, H” is the commutant of S.

The original factorization theorems of Beurling and of Szegs are as follows:

TreoreM 1. If f€ H?, then f = gh where g is inner and h is outer.

23+ [355]
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THEOREM 2. If feI! and > 0, then f = |h|*> where he H® if and only if
{logfle™dt > — 0.

Theorem 1 is easily stated in the language of operator theory. There is a slight
loss of generality since we discuss only bounded operators. In effect this means
that in Theorems 1 and 2 we shall be factoring only bounded functions. Then, in
the language of operator theory, Theorem 1 becomes the following:

TrEOREM 1”. If A is an operator that commutes with the unilateral shift S on
H?, then A = WB where ' ’
(i) W and B commute with S,
(i) W is an isometry, and
(iii) (BH*~ = H>.
It is not so clear just what one can do with Theorem 2 in the language of
operator theory because of the log integrability condition. Suppose @ e L®, Let

4, be the operator on I? that is “multiplication by ¢.” If {log|@(e")|dr > — 00,
from the Beurling and Szegd theorems one gets that [p| is the modulus of an outer
function 4 € H®, or ¢ = wh where w is of constant modulus one (not analytic in
general). If D then is the operator “multiplication by 1/#%” on L2, it is easy to check
that D has the property that DA,H? < H2 The preceeding discussion is reversible
8o as to permit the following simple “Szegi-type” theorem.

THEOREM 2'. A non-zero operator A on L?* that commutes with the bilateral

shift U can be factored into a product A = WB where
(i) W and B commute with U,

(ii) W is unitary, and

(i) (BH?~ = H?,
if and only if there exists an invertible operator D that commutes with U and maps
AH? into H*. .

It is now known that the Beurling factorization theorem for operators that
co'n‘nﬁu'te with the unilateral shift can be extended so as to provide a factorization
for operators commuting with any isometry. The following extension may be found
in”either [4] or [2]. i '

. THEOREM 1". If S is any isometry in Hilbert space and AS = SA, then A can
be factored A = WB where
() W and B commute with S,
Gi) W is a partial isometry with initial space equal to R(B)~, and

(i) R(B)~ reduces .

Theorem 1" bears an interesting relationship to the polar factorization. Let o
be: the -algebra of operators that commute with a given isometry, The theorem
asserts that if 4 € o/, then'd = WB where (i) W, Be o, (ii) W is a partial isometry
with initial space equal to R(B)~, and (iii) R(B)- corresponds to an orthogonal
projection in /. By way of comparison, if o is a w*-algebra, then the standard
polar factorization of an operator 4 € o satisfies these three properties. It would
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be of interest to know what other kinds of unstarred algebras admit such a factor-
ization.

Two recent and related generalizations of the Szegs factorization theorem have
appeared. Theorem 2 below appeared in [2).

THEOREM 2". Let U be unitary on K and H an invariant subspace for U. If
AU = UA, then A can be factored A = WB where

(i) W and B commute with U,

(i) W is a partial isometry with initial space (BK)~,

(iii) W|H is a partially isometric mapping of H into K with initial space (BH)™,
and

(iv) BH < H and (BH)" is a reducing subspace for the isometry U|H on H,
if there exists an invertible operator D commuting with U and mapping AH into H.

Moore, Rosenblum, and Rovnyak [4] consider the Szegs problem from a dif-
ferent viewpoint. Rather than factor operators that commute with some given
unitary operator, they factor operators which are “Toeplitz” with respect to a given
isometry; if ¥'is an isometry, T'is-“V-Toeplitz” if V*TV = T. Of cours, it is elemen-
tary to “lift” this equation to the space of the minimal unitary extension of ¥ in
which case the “lifted” version of T commutes with the unitary extension of V.
Establishing the relation between the factorization studied in Theorem 2” and the
Moore, Rosenblum, Rovnyak factorization of [4], however, is a non-trivial matter.
The next theorem does this. ‘ '

THEOREM 3. Let U be a unitary operator on K and H an invariant subspace for
U. Suppose AU = UA. Let Py be the orthogonal projection of K onto H, and T
= Py A*A|H. Finally, let V = U|H.

Then A = WB as in Theorem 2" if and only if T = C*C where CV = VC and
(CH)™ reduces V. (This factorization of T is the factorization found in [41.)

Proof. One implication is trivial. If 4 = WB as in Theorem 2", then clearly
A*4 = B*B. Simply let C = B|H and it follows that T = C*C and C has the
desired properties. ‘

The proof of the converse implication is similar to the proof of Theorem 2"
given in [2]. For that reason some of the details are omitted.

Assume T = C*C where CV = VC and (CH)~ reduces V. Let H, be the
smallest reducing subspace for U containing H. Then C may be extended to an
operator B on H, which has the properties that BH <'H and (BH)™~ reduces V, -
and (BH,)~ reduces U. (B is determined by the fact that BU~"f = U-"Cf when
feHand n>0) .

It is easy now to define W on BH. Since B|H = C, W can be defined by WBf
= Af on BH, where fe H. Then W is well-defined and norm-preserving on BH.
So W extends uniquely by continuity to an isometric linear map on (BH)~ into
K. Furthermore, W “lifts” to (BH,)~ in a natural way, i.c. there is 2 unique way
to extend W to an operator on (BH,)~ into K that is isometric, that commutes
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with U on (BH,)~, and satisfies now Af = WBffor all fe H,. (Keep in mind that
(BH,)~ reduces U.)

The remainder of the proof uses a technique found in [2]. Since H, reduces U/
and AU = UA, (AH,)™ reduces U. Let P be the orthogonal projection-onto (4H,)~
and let Q = I-P. Then Q4 commutes with U and Q4H, = {0}. Consider now
the polar factorization of Q4; Q4 = JR where R >0 and J is a partial isometry
with initial space (RK)™. Extend B, which is presently defined on Hp, to all of K
by defining Bf to be Rf for fe Hj. Since Q4H, = {0}, RK L Ho Thus the closure
of the range of B splits into an orthogonal sum

(BK)™ = (BH,)” ®(RK)".

Finally, to extend W to the entire space K, recalling that W is already defined on
(BH,)~, define W to be equal to J on (RK)™ and zero on (BK)!. This makes W
a partial isometry with initial space (BK)~. It can be checked now that W and B
satisfy the conditions of Theorem 2" and that Af = WS for all fe K.

The existence of an invertible operator D as in Theorem 2" is a condition
that merits some examination, In the original setting where U is the simple bilateral
shift (Theorem 2'), the existence,of D is necessary and sufficient for the Szegs
factorization, In fak:t is:shown in. [2] that if U is any unitary of finite spectral
multiplicity, then the exnstence of D in Theorem 2" is. necessary for the factoriza-
tion, Also in [2] is. the conjecture that the multiplicity of U completely determines
whether the existence of D is both necessary and sufficient for the factorization
to exist for all commuting operators. Below we shall show that this is true, given
the proper interpretation of multiplicity. :

In this discussion, a measure will always mean a positive ﬁmte Borel measure
with compact support in the complex plane. Also, a “part” of an operator is simply
the restriction of the operator to some reducing subspace.

. Suppose now that # is a measure; let M, denote the operator on L?(g) which
is multiplication by the 1dent1ty function. The w-multiplicity of U is the maximum
number X such that an orthogonal sum of K copies of M), is isomorphic to a part
of U. To say that U is of weakly finite multiplicity means that the u-multiplicity
of U is finite for every measure u. (This criteria can also be described via the
multiplicity function of U, Such a viewpoint, however, does not seem quite so well
suited for the construction needed in Theorem 4 below as does the above.)

THEOREM 4, The. sufficient condition in Theorem 2" that D exist is also a nec-
essary condition. for the factorization if and only if U is of weakly finite multiplicity.

In [2] it is proved that if U is of weakly finite multiplicity, then the existence
of D in Theorem 2" is both necessary and sufficient for the factorization, What
remains then is to show that if U does nor have weakly finite multiplicity, then
there is a commuting operator A that factors A = WB as in Theorem 2"’ but for
which no such D exists. The construction is not difficult, but rests on the following
propositions. We shall use “~” to denote (i) unitary equivalence between operators,
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(i) the correspondence between an operator and a spectral representation for the
operator, or (iif) equivalence of two spectral representations, in the sense that they
represent the same operator.

PROPOSITION 1. If p < v and v, is the absolutely continuous part of » with
respect to p, then M, ~ M, .

Proof. It is easily checked that the hypothesis implies that x and , are equiv-
alent meagures (each absolutely continuous with respect to the other). This implies
that M, ~ M,,. (This is the cornerstone of the uniqueness part of the spectral
representation theorem.)

PROPOSITION 2. If u and v are orthogonal measures, then there are no non-zero
operators A that intertwine M, and M,, i.e. that satisfy AM, = M,A.

This result is known. A simple proof may be given involving only elementary
topological considerations. Basically, the idea is that two orthogonal measures
“almost” live on disjoint compact sets.

PROPOSITION 3. Suppose {u;} and {v;} are sequences of es such that

wi Lv; for all i, j, and suppose that U is unitary operator which has a spectral rep-

* resentation 3 L*(u)®Y L2(y;). (Here of course the symbol “3™ denotes orthogonal

direct sum, and M,
L (#).)

Then if AU = UA, the subspaces M = Y. L*(u;) and N = }:Lz(vj) must be
reducing subspaces for A. Consequently, for A to be invertible it is necessary and
sufficient that A|M be invertible on M and A|N be invertible on N.

Proof. Let i and j be fixed, let P denote the orthogonal projection onto L>(;),
and let 4;; = PA|L*(u;). Then for any fe L?(uy),

M, 4,;f = UA,;f = UPAf = PUAf = PAUf = PAM, f = 4;M, .
It follows then from Proposition 2 that 4;; = 0. This proves AM = M. Similarly
AN = N.

Proof of Theorem 4. Now it is possible to perform the indicated construction,
i.e. if U is not of weakly finite multiplicity to construct an operator 4 which factors
A = WB as in Theorem 2"’ but for which no operator D exists as in Theorem 2"'.

If U is not of weakly finite multiplicity, there is a measure 4 such that the
orthogonal direct sum of infinitely many copies of M, forms a part of U. A Zom’s
Lemma argument easily shows that U = U, @U, where U, is an orthogonal direct
sum of countably infinitely many copies of M, and where M, does not form a part
of U,. Let 3. L*(B,,) be an ordered spectral representation of U, ([1], p. 916),
ie. {B,}is a decreasing sequence of Borel sets in the plane. Finally, let p = .+ ps
be the decomposition of p relative to » so that u, < v and v | u,. Observe now
that p, cannot be zero. The reason is that if p, were zero, then we would have
4 < v and Proposition 1 would then say that M, ~ M,,. But since L*(») ~ L*(»,)®
@L*(») it would then follow that M, is a part of U,.

is the operator acting on L*>(u;), M, ; the operator acting on
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Now U has a spectral representation U ~ . L2 (&)@, L*(B,,¥). But since
L2(u) ~ L?(u,)®L*(us) we can just as well write for a spectral representation of
U, U~ 3 LHu)®Y. Lu)DL*(B,, 7). Letting M be the subspace M = Y, L2(u,)
and N the subspace N = Z L*(u)®Y. L*(B,, v), we are in a position where Prop-
osition 3 is applicable; every operator that commutes with U has M and N as reduc-
ing subspaces.

Let 4, B, and W be the following operators: A is the backward shift on M

= 3 L(uy), i.. 41 (fi,f2r ) = (f2sf3 --). (The representation of elements of
> L*(u,) as sequences should be self-explanatory.) On N, define 4 to be zero. On
M let B be the operator B: (f,f2sf3s ...) = (0, /2, /3, ...), and on N let B equal
zero. (B is an orthogonal projection.) And let W = A. Finally, let the role of H
in Theorem 2 be played here by the subspace which is the range of B.

It is straightforward to check that 4 = WB and that all conditions of the
factorization of Theorem 2" are met. But can there be an invertible operator D
that commutes with U and maps AH into H? From Proposition 3 we have seen
that such an operator D would have to map M one-to-one onto M. But AH = M
whereas H is a proper subspace of M. Thus D could not map 4H into H.
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In this paper we shall use the terminology introduced in [6]. In particular, 2(E, F)
denotes the set of all (bounded linear) operators from the Banach space E into
the Banach space F. Since we are concerned with spectral properties of operators,
all Banach spaces under consideration are supposed to be complex.

1. S¢'*-operators
Let S e 2(E, E) and put
N(4, 8) := U {x e E: (Al;—S)*x = 0}.
k=1

Here I denotes the identity map of E. If N(2, S) # {0}, then 1 e C (complex
field) is called an eigenvalue of § and
a(2, S) := dimN(4, S)
is said to be its algebraic multiplicity.
Let 0 < p < 0. An operator S e &(E, F) is of Riesz type I, if

>a(h, L)AP < o forall LeQ(F,E).
ieC .
The class of these operators will be denoted by Sls.
Remark. If S e S%(E, E), then we have
Sa(h, HIAF = Y 1AL,
. 2eC I
where (4(S): feJ) is the (countable!) family of all eigenvalues A # 0 repeated
according to their (finite!) algebraic multiplicities.
In order to check the following result we need an elementary consequence of
the spectral mapping theorem; [1], VIL.3.19.
LemMA. Let 0 <p < o0 and n=1,2, ... Then
Z alu, SM\plFn = Z a(k, S)|A?  for all S € R(E,E).

ueC ieC
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