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Now U has a spectral representation U ~ . L2 (&)@, L*(B,,¥). But since
L2(u) ~ L?(u,)®L*(us) we can just as well write for a spectral representation of
U, U~ 3 LHu)®Y. Lu)DL*(B,, 7). Letting M be the subspace M = Y, L2(u,)
and N the subspace N = Z L*(u)®Y. L*(B,, v), we are in a position where Prop-
osition 3 is applicable; every operator that commutes with U has M and N as reduc-
ing subspaces.

Let 4, B, and W be the following operators: A is the backward shift on M

= 3 L(uy), i.. 41 (fi,f2r ) = (f2sf3 --). (The representation of elements of
> L*(u,) as sequences should be self-explanatory.) On N, define 4 to be zero. On
M let B be the operator B: (f,f2sf3s ...) = (0, /2, /3, ...), and on N let B equal
zero. (B is an orthogonal projection.) And let W = A. Finally, let the role of H
in Theorem 2 be played here by the subspace which is the range of B.

It is straightforward to check that 4 = WB and that all conditions of the
factorization of Theorem 2" are met. But can there be an invertible operator D
that commutes with U and maps AH into H? From Proposition 3 we have seen
that such an operator D would have to map M one-to-one onto M. But AH = M
whereas H is a proper subspace of M. Thus D could not map 4H into H.
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In this paper we shall use the terminology introduced in [6]. In particular, 2(E, F)
denotes the set of all (bounded linear) operators from the Banach space E into
the Banach space F. Since we are concerned with spectral properties of operators,
all Banach spaces under consideration are supposed to be complex.

1. S¢'*-operators
Let S e 2(E, E) and put
N(4, 8) := U {x e E: (Al;—S)*x = 0}.
k=1

Here I denotes the identity map of E. If N(2, S) # {0}, then 1 e C (complex
field) is called an eigenvalue of § and
a(2, S) := dimN(4, S)
is said to be its algebraic multiplicity.
Let 0 < p < 0. An operator S e &(E, F) is of Riesz type I, if

>a(h, L)AP < o forall LeQ(F,E).
ieC .
The class of these operators will be denoted by Sls.
Remark. If S e S%(E, E), then we have
Sa(h, HIAF = Y 1AL,
. 2eC I
where (4(S): feJ) is the (countable!) family of all eigenvalues A # 0 repeated
according to their (finite!) algebraic multiplicities.
In order to check the following result we need an elementary consequence of
the spectral mapping theorem; [1], VIL.3.19.
LemMA. Let 0 <p < o0 and n=1,2, ... Then
Z alu, SM\plFn = Z a(k, S)|A?  for all S € R(E,E).

ueC ieC
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We are now prepared to prove

PROPOSITION 1. Let 0 < p < 0 andn = 1,2, ... Then for every operator idea:
A the inclusions W € S3'® and A = S;j% are equivalent.

Proof. Suppose that U = Sz If SeWA(E, F) and L e L(F, E), then there

exists a factorization
T, Ty

T "2
ILS: E=My->M;—~..>M,=E
such that T, e W(M,_,, My) for k=1, ...,n. Form the Cartesian product M
1= M,x ... xM, equipped with any suitable norm. Then by
T: (xls '“3xn—13xn) - (Tlxna szl’ sene T;xxn-—-l)

we define an operator T e (M, M). Observe that E can be identified with the
subspace {0} x ... x {0} xM, of M which is invariant under T". Moreover, the
restriction of T™ to E coincides with LS = T, ... T;. So, by the preceding lemma,
we have

>l IS) P < Y ala, TP = 3 a(2, TP < oo.
(3

ueC ueC ie

Therefore S e S;ii(E, F). This proves that A" = S3j%. In order to check the con-

verse implication we suppose that A" & G2k, If S e W(E, F) and L € (F, E), then
(LS)" € W"(E, E). Hence

D e, LA = o, (L)l < co.

reC rel
Therefore S € S;'*(E, F). This proves that % S S¢*,

PROPOSITION 2. If X € &(E,, E), S € G¥(E, F), and Be8(F, F,) then BSX
eig
€ Gp (Eo, Fo).

Proof. Let L, € &(F,, Ep). Then the operators L, BSX and XL, BS are related;
cf. [6], 27.3.1. Therefore we have .

D4l LBS)A = 3 41, XLBS)|AP < oo,
ieC . ieC
This proves the assertion.

Next we show that &;'® is not an operator ideal. This yields a negative answer
to a problem which has been posed in 1969; cf. [5].

PROPOSITION 3. Let 0 < p < 0. Then there are a Banach space E as well as
operators §;, S, € S;% (E, E) such that S, + S, ¢ G (E, E).

Proof. Choose a natural number » and a real number q such that 2np > 2¢q
> (2{:— 1)p > 4. Take any sequence (o) € I,y not belonging to Jzy—1), and define
the diagonal operator § € £(Z,, ,) by S(£)) := (07¢)). Furthermore, let J € £(J,, I.,)
be the canonical embedding.

.In the follgwing P, stands for the ideal of absolutely r-summing operators.
Obviously we have S e %,,(l, [,). It has been proved in [2] that B,, S Gi.
So from Proposition 1 we get Pr, S G5, Therefore S(IS)™*e Sgis,
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On the other hand, by [6], 22.4.2, we have (s, I,) = PB.,(/x, I)- This implies
that L(JS)"~1J € &} for all L e §(l, I,). Therefore (JS)"1J e S3%,

Form the Cartesian product E := [, xI, equipped with any suitable norm.
Then the operators Sy, S, € &(E, E) defined by

, Si: (x,9) > (SUSy-1y,0)
and
85 (x,9) = (0, (87y~1x)
are of Riesz type /,. It follows from
S1+8;: (0161, &) = 07" Yoy, &)

that A,(S;+S,) := of"1 is an eigenvalue of S;+S,. Now ‘

o0 00
Z M‘(SI_FSZ)IF = Z |'fi|(2""1)p = 00
i= i=

implies that S+ S, ¢ G;¥(E, E).
Remark. If p = 2 or p = 1, then the above proof can be essentially simplified.
In contrast to the preceding result it turns out that S}*(H, H) is an ideal in
the operator algebra Q(H, H) of the separable infinite-dimensional Hilbert space H.
More precisely, if S,(H, H) denotes the Schatten ideal of type ,, then we have

ProrosImION 4. Let 0 < p < co. Then S3*(H, H) = G,(H, H).

Proof. Obviously, G,(H, H) S S;®(H, H) is an immediate consequence of
Weyl’s Theorem; cf. [6], 27.4.3.

The converse inclusion can be checked in two steps. First we observe that
every operator S € GS%(H, H) is approximable. Otherwise, by [6], 5.1.1 (Lemma 3),
there would exist operators B, X € &(H, H) such that BSX = Iy. This is a con-
tradiction by Proposition 2. Now it is clear that every operator S e &;*(H, H)
admits a Schmidt factorization; cf. [6], D.3.3. In other terms, there are operators
Uef(,,H) and Ve 8(/,, H) as well as a diagonal operator S, € £(1s, /) generated
by a sequence (o)) €c¢o such that §= VS,U* and S, = V*SU. Therefore S,
e G¢%(l, ), and it follows from

o0
Z lol? = a2, SIAP < e
I= recC

that Sy € &,(l,, ). So we also have S € G,(H, H). This completes the proof.

ProrosiTION 5. If W is an operator ideal such that A< S, then A = Ps.

Proof, Suppose that § € A(E, F). Let (x;) be any weakly 2-summable sequence
in E. Choose functionals ; & F' such that {Sx;, b;) = [|Sx;i| and |1bi]| = 1. Take
(B;) € l,. Then by

X: (&)~ Zf,x,
=
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and
Biy— By, b))

we define operators X € &(/,, E) and B € Q(F, I,). By Proposition 4 it follows that
BSXeW(l,, L) € & L,,L) =6,(,,1,). Using [6], 15.4.3 we see that

N i8ISl = 1BLSxi, b = | [BSXey, €] < @
i=1 i=1 i=1

for all (8;) el,. Hence the sequence (Sx;) is absolutely 2-summable. This proves
that S e P, (E, F).
In the following M denotes the ideal of nuclear operators.

TraeoREM. Let 0 < p < oo, If U is an operator ideal such that W & G218, then
A" = N whenever n > p. .

Proof. By Proposition 1, we haye W = &¢!%. Now Proposition 5 implies that
A = P,. Therefore 2" = P2 = R; of. [6], 24.6.5.

Let us recall that R, the ideal of Gohberg operators, is the largest operator
ideal possessing the property that every S € R(E, E) is a Riesz operator; cf. [6),
26.7.2. Tt is well known that R contains all operators S € £(E, E) which have some
compact power S”.

COROLLARY. Let 0 < p < co. If W is an operator ideal such that N = S
then A = R.

2. Examples

Let Py, 5.0y With 1 < r < oo denote the ideal of absolutely (ry 2, 2)-summing oper-
ators; cf. [6], 17.1.1.

Clearly PBy,2,2) E S5% On the other hand, since PB(2.2,2) contains the iden-
tity map of /;, we have P, , 2, non € S% for 0 ‘< p < 0. These borderline cases
support Konig’s

CoNtecTURE 1. If 1 <7 <2 and 1/p = 1/r—1/2, then Py, .. S Seis,

As shown in [3] we have a somewhat weaker inclusion, namely Berz,n S S8,
for all & > 0. This, however, is enough to establish

PROPOSITION 6. If 1 <r <2 and n > 2r/(2~7), then P2, ,, & N.

Let P2y with 2 < p < oo denote the ideal of absolutely (p, 2)-summing oper-
ators; cf. [6], 17.2.1. )

For these operator ideals we now formulate Konig’s

CONIECTURE 2. If 2 < p < oo, then Py, S SE5,

) Remark. At present it seems to be unknown whether every P,.2, is contained
in some &;'®. The only result along this line is the inclusion By E G® for
g > 2p/(4~p) and 2 < p < 4 which has been recently checked by Konig. More-

over, we have PBf, ») € R for 1 > p/2, where & denotes the ideal of coinpact ope-
_ rators; cf. [4].
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Remark (added in proof). During the printing of this paper several related results have
been obtained, cf. [7]and [8]. In particular, it isnow proved that P,,,,non < Si'* but P, [t
for 2 < p < o and & > 0. Moreover, we have B2, < R for n > pj2.
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