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Let A be a linear operator defined on a finite-dimensional linear space E. Its spec-
tral radius will be denoted by }4|,. If the space E is equipped with a norm x ~ x|
and if we denote by |T| the corresponding operator norm of an operator T, we have
the well-known formula

-

1, = lim]42["2 = infl 42|,

This equality links two quantities which have — at first sight — a substantially
different character. The left-hand side in defined purely algebraically as the maxi-
mum of the moduli of the proper values of a certain matrix whereas the right-hand
side is defined in terms of an infinite process. (The equality becomes a little less
surprising if we realize the relation of the left-hand side to the fundamental the-
orem of algebra, and, in particular, its proof based on complex function theory
and radii of convergence of series; nevertheless one fact is still .worthnoticing:
the left-hand side is independent of the choice of the norm on E and the notion
itself does not require E to be normed while the process on the right-hand side
(though not its limit) depends in a significant way on the choice of the norm on E.)

In view of the finite-dimensionality of E and the finite character of the eigen-
value problem it is natural to ask whether a finite section of the sequence

4], 14212, 4315, ...

would not be sufficient to obtain significant information about the spectral radius.
This has to be explained more carefully. Of course, for a particular 4, the spectral
radius may be arbitrarily well approximated by |4"|*" if r is sufficiently large so
that we do indeed use only a finite section of the sequence; our task, however,
is a more delicate one: we ask whether there exists an r independent of A such that
|A11" contains significant information about the ‘spectral radius.

We intend to show in this paper that an adequate description of this problem
is contained in the following definition:

DErFINITION. Let E be a Banach space. We shall say that g is the critical exponent
of the space E if q is the smallest natural number which has the following property:
if 4 is a linear operator on E for which 1 = |4] = |49 then |4], = 1.
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The definition of the critical exponent in its full generality appears first in the

present author’s 1960 paper [11]. The first critical exponent to be computed

(although not described as such) was that of the n-dimensional I, space; the

result, n?—n+ 1,was obtained in 1957 by J. Maftik and the present author [7]. The

result of [11] says that an n-dimensional Hilbert space has the critical exponent .
To explain the meaning of the definition, let us recall the following theorem:

TusoreM. Let E be a finite-dimensional linear space and A a linear operator
on E. Then the following conditions are equivalent:

(i) for each y € E and each xo € E the sequence X,., = Ax.+y is convergent
(to a solution of x = Ax+Y); :

(ii) the series I+ A+A*+ ...

(iii) 4"~ 0,

(i) 4l <1,

(v) there exists a norm py on E such that pu(4) < 1 (for the corresponding
operator norm);

is convergent,

i) if p is any norm on E then there exists an m such that p(A™) < 1.

Most implications here are almost immediate. The crucial implication is based
on the Jordan canonical form: The theorem is a deep one; a careful analysis of its
proof shows that it also proves the spectral radius formula.

To return to the definition of the critical exponent, we shall restate it in another
form, from which it will become evident that the proof of the existence of the
critical exponent requires fairly delicate geometric considerations; in' particular, the
geometric properties of the unit ball of B(E), the algebra of all operators on E,
play a decisive role. Now consider a fixed norm on E. The equivalence of (iv)
and (vi) shows that for each A4 with |4], < 1 there exists an m with p(4™) < 1.
Denote by m(4) the smallest exponent with this property. It is not difficult to see
that: o :

The critical exponent of the space E is the maximum of m(d) on the set C of
all operators A on E for which |A| = 1.and |4], <'1.

The set C is far from being compact; already this superficial observation makes
it clear that the existence of ¢ is a delicate matter. Indeed, an ingenious example
of a two-dimensional space due to L. Danzer (unpublished) shows that the function
m may be unbounded on C.

The meaning of the critical exponent may be described less precisely but more
intuitively as follows. Consider an operator 4 of norm 1 and construct the sequence
4, 42, 43, ... Clearly

1Al > 147 > |43 > ...

Roughly speaking, the fact that ¢ is.the critical exponent of the space means that
the sequence A" either starts converging to zero before its gth term. or does not
converge to zero at all (in the second case |4"| = 1 for all r).
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At this point it might be useful to sketch briefly some ideas concerning general
iterative processes as proposed by the presept author at the 1968 Gatlinburg Sym-
posium.

To explain the main problem, it will be convenient to consider the following
situation. Let us first explain what we mean by an iterative process. The objects
to which we will apply the iterative process will be taken from a given complete
metric space 4. The expression iterative process will be given a slightly more gener-
al meaning than is usual. An iterative process P on 4 will be a sequence P
= {Py, Py, P3, ...} of mappings of 4 into itself which yields, for each ae 4, a
sequence

Po(a), Py(a), Py(a), ...

In applications frequently P = P, in which case the process is an iteration in the
classical sense. The first question to be considered in this context is to find condit-
ions under which, for a given a € 4, the sequence Py(a) will be convergent. In many
cases theoretical considerations enable us to -state such conditions, at least suffi-
cient conditions for convergence. The verification of the conditions may turn out,
in some cases, to be equaly difficult if not more difficult than the solution of the
problem for which the iterative process has been designed. Amother approach
which suggests itself is the following: to decide the question as to whether the pro-
cess converges for a given a € 4 on the basis of the behaviour of a certain number
of elements of the sequence Py(a), Py(a), ..., itself. It is usually possible to find
a criterion of convergence which may be verified by performing less costly and
time-consuming operations on a finite sequence Py(a), ..., Py(a) than a compli-
cated operation performed on a itself.

Thus, instead of verifying the conditions for convergence on @ we simply start
computing the sequence of iterations and apply simple criteria on its finite sections.
There are, essentially, two cases possible. Either the beginning of the sequence
shows marked convergence phenomena, which makes it possible to verify the sim-
pler criteria mentioned above, or the behaviour of the initial steps is unstable, there
are violent oscillations and the queition of the suitability of the method arises:
is it reasonable to continue, in the hope of encountering, later in the process, a con-
siderable improvement of the convergence, or is the method to be abandoned?
The main problem of course is the following: how many steps are necessary in
order to make this decision with a reasonable degree of reliability?

Clearly two problems may be formulated immediately:

1. The qualitative problem. Does there exist a number ¢ and a simple criterion
C such that P,(a) converges if and only if {Po(a), ..., Py(@)} € C?

2. The quantitative problem. Does there exist a number ¢ and a simple oper-
ation on sequences of type Po(a), ..., P,(a) which yields significant information
about the rate of convergence of P,(a)?

In both problems of course g is to be independent. of a € A.

The second question is clearly much more ambitious. It might seem surpris-
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ing at. first sight that — in the case of linear operators considered above — the
purely qualitative property of g already implies quantitative consequences. One
of the aims of this paper is to explain this in some detail.

The paper is divided into three sections. The first two contain material not
published before (although announced already at the 1968 Gatlinburg Symposium).
The third section surveys results obtained thus far and concludes with some open
questions.

1. Composition of functions

In the following sections we shall need a notion of an inverse function (in the
sense of superposition) for non-decreasing functions which might have intervals
of constancy. The present section is devoted to the discussion of what seems to
be a suitable notion; we collect here the basic properties of it. The proofs are straight-
forward — the only reason for including this section is the fact that these notions
might also be used in other investigations. As far as our applications are concerned,
in all concrete situations investigated thus far the functions considered are strictly
increasing, so that the new notions coincide with the ordinary inverse functions.
It is even conceivable that all the functions occurring in our applications will be
strictly monotonous (see Problem 7); nevertheless the proof has not been given,
so that these notions have to be used and, at the same time, they seem to have an
intrinsic interest. ’

Let T'be a completely regular topological space; let  and v be two continuous
real-valued functions on T. We shall suppose that

0<u(®)<l, 0<o() <1

for all e T. We shall assume that both # and v assume at least the two values 0
and 1. Also, it will be convenient to denote by § the segment {5; 0 < s<1}.

*
We define two functions, (%) and (%) from S into S as follows: For each pe §
*
we set

*
(3) ® = sup{e(s); u(r) < p},
(;) @) = inf{o(t); u(t) > p}.
*
*
ProrosiTION 1.1. The functions (-3) and (%) are nondecreasing on S. We have
*

()] (%L‘(P) < (%) () for all p for which u='(p) is nonvoid;
(ii) for each teT

(—g)*(u(t)) <o) < (;'})*(u(t)): |

* ©
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n

(iii) if T is compact then, for each x € S,

oo esef o)

Proof. For each pe S denote by p, the segment p, = {s; s < p} and by
p* the segment p* = {s; 5 > p}. It follows that

(%)*(p) = supo (ui(p,)), (':‘)*@) = info (W™ (7).

If p < q we have p, < gq,; hence supou~!p, < supou~iq,; at the same time
p* o g*, so that infou~'p* < infou~'q*. This proves that the functions are non-
decreasing. If u~1(p) is nonvoid, we have p € p* np, whence

/ *
v
(%) (p) = infou~1p* < infouip < supou~lp < supvu~lp, = (T[) @.
*

Now suppose T to be compact. We have

(l)* o (;z_)* (%) = inf {u(t); o(t) > supo(u~(x,))}-

v

Since u~1(xy) is compact, there exists a t, € &~ *(x,,) for whichv(to) = supv(u~'(x,)).
We thus have u(f,) < x and o(f,) > supv(u~(x,)), so that the above infimum
is < x. Similarly

(E)* . (%)*(x) = sup{e(t); u(f) < infu(0~'(:*)}. «

u

Since v=1(x*) is compact, there exists a ¢, € v~*(x*) for which u(to) = inf u(v""(x*)).
Thus v(t) > x and u(%,) < inf u(v~1(x*)), so that the above supremum is > x.

*
ProposITION 1.2. Let T be compact. Then (%) is continuous from the right
and (—1—)) is continuous from the left.
U/ n

Proof. Suppose that p < 1 and that p, €S, p, | p. It follows that
4" (Pay) 2 4™ (Pur14) and N (Bey) = 0712

*
v -
Since u~'(p,) = u" (pay) for all m, we have (—u—) (p) = supv(u 1(py)) <
o\* o\* o\ i v)* )
< supv(u“(p,,*)) = (;) (Pn) whence (7) (P) < lnf(;) (pn) = lm 7 nle
Now, T being compact, the sets u~1(p,,) are compact, so that there exist ¢,

* . . 1
€ u~*(p,,) for which (3) (ps) = v(t,). Let ; be an accumulation point of the
u

sequence ,. Since u(t,) < p,, we have u(to) < p. At the same time ©(Z,) is an ac-
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* * .
cumulation point of o(2,) = (-Z—) (pn), S0 thatv(t) = lim (%) (p»). Hence (%) )
*
= supo(u!(py)) > v(ty) = lim (%’ (p,). The proof of the other statement is
analogous.

, u\ .
‘We have seen that, for compact 7, the function (;}-) is a sort of lower inverse
* *
for (—Z—) in the sense (%) ° (g—) (x) < x for all xe S. We intend to show that
*

(%) is the greatest possible of all nondecreasing function ¢ for which
*

v *
q:((;) (x)) < x,x€S. We first prove the following simple lemma.

LemMa 1.3. Let f be a nondecreasing function mapping S into S. Define g,:
S — 8 by the formula
£0(8) = inf{x; f(x) > s}.
Let g be a nondecreasing function g: S — S. The following conditions are equivalent:
@) p < g(s) implies f(p) < s,

() g(f)) < x for all x €8,

(iii) &(p) < go(p) for all pe S.

Proof. Assume that g satisfies (i) and suppose that g(f(x)) > x for some x & S.
Setting p = x and s = f(x), we obtain f(x) = f(p) < s = f(x), which is a contra-
diction. This proves (ii). Now assume (ii). If f(s) > p, then s > g(f(s)) > 2(p),
whence inf{s; f(s) > p} > g(p). This proves (iii). Now assume (iii) and suppose
that p < g(s) and f(p) > s. It follows that go(s) = inf{z; f(z) >
P < 8(s) < go(5) < p, a contradiction. The proof is complete.

The following result together with the preceding lemma shows that, for com-

*
pact T, the function (%) is the largest of the functions g which satisfy g (( 2’ (x))
% u
< x.

s} < p, whence

LemmA 1.4. If T is compact, then
u . *
(5).0=intlz: (2) 5 5}

Proof. Let p € 8 be given. Consider the following two sets of numbers

forallpesS.

*
M, = {Z? (%) (2) = p}, M, = {u(t); v(t) > p}

and let us show that they have the same infimum. First of all we show that M,

icm
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« M;. Indeed, consider a e T such that ¢(t)> p. By Lemma l.l' we have

*
(%) (u(t)) = v(t) = p, so that u(t) € M,. This proves M, < M,, whence

inf{z; () &> | < infM, = (—:})*(p).

To prove the reverse inequality, we intend to show that for each z € M, there
exists a z' € M, for which z’ < z. Fix a ze M;. Since sup {v(t); u(t) <z} > p
and the set {teT; u(t) < z} is compact, there exists a t, & T' for which u(t,) < z
and . o(ty) = p. Set z' = u(ty). Then 2’ < zand 2’ € M,.

2. Estimates for the spectral radius

Let E be a given finite-dimensional Banach space. We shall denote by 4 the Banach
algebra of all linear operators on E equipped with the operator norm correspond-
ing to E.

NotaTioN. For each natural g we set

9|1

W@ =g

Clearly 0 < ri(@) < 1 for all a€ 4.
It is well known that the limit of the sequence r,(a) exists and that

limry(a) = infry(a) = ‘!aallg .
‘We shall write
_ lalg
r(a) = Tl
It will be useful to remember that
ry(Aa) =ra), r(la)=r(a)

for 2 #£0.
‘We now choose a natural number g and consider the pair of functions

o f (2.

£(p) = sup{r,(a); a € 4, r(@) < p},

g(p) = inf{r(a); r € 4, r,(a) > p}.
The following estimates are immediate from the definition of f and g.
For each ae 4

so that

lals

la|

o

), lal, = Ialg( d

EURAEN lalf(
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We bave to keep in mind that the functions f and g depend on the natura]
number g. The main result of this section consists in showing that — roughly speak-
ing — these estimates contain nontrivial information if and only if g is greater
than or equal to the critical exponent of E.

The results of the preceding section, together with the fact that the unit sphere
{ae4; [a] = 1} of 4 is compact (more precisely: the space AN\ {0} divided by
the equivalence relation

@y ~ a, if and only if a; = Aa, for some 1
is topologically the same as the unit sphere of d), immediately yield the following
proposition:

PrOPOSITION 2.1. The functions f and g have the following properties:

(a) both f and g are nondecreasing;

(b) f is continuous from the right, g is continuous from the left;

© g(fM) < x<flgl) for all 0K x < 1

(d) fogoef=fand gofog=g;

(e) g is the largest of all nondecreasing functions ¢ with the property that
e(f()) < x for all x€ 8.

THEOREM 2.2. Let q be a natural number and let

*
=1 I
f-(")’ g(rq)*‘
Then the following conditions are equivalent:
@) lal =1 and |a%| = 1 implies |a|, =1,
(ii) ry(a) = 1 implies r(a) = 1,
i) f(p) <1 forallp <1,

(iv) g(1) = 1.
Proof. Assume (i) and consider an ae A4, a # 0 for which ry(@) = 1. Set
a
b= T so that |b] = 1 and r,(b) = (@) = 1. It follows that |63/ = |blr () = 1
so that, by (i), we have |b|, = 1, whence r(@) = r(b) = llll,wllu = 1. This proves (ii).

Now suppose that (ii) is fulfilled, and suppose that f(p)

=1 fi . -
sider the set or some p < 1. Con

C={ac4; la| =1, |al, < p}.
It is not difficult to see that

sup{|a®s, a € C} > f(p).
Indeed, if b # 0 is such that r(®) < p, then a = b

TBr
lalr(6) < p, so that a e C. At the same time |48 = |a|r (@) = ry(b).

This establishes the above inequality. The spectral radius being continuous on

satisfies |a| = 1 and |al,
= lajr(a) =
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finite-dimensional algebras, the set C is compact. Let a, € C be the point at which
the function @ — [a%['/ assumes its maximum on C. We have by the above in-
equality

adl® = f(p) = 1,

Ial)'a

[@o]

condition (i), which says that r(a,) = 1. This proves (iii).
To prove the implication (iii) — (iv) let us suppose that f(p) < 1 for allp < 1
and that g(1) < 1. Since f(g(x)) = x for all 1 > x > 0, we have, by (iii), forp =g(1)

1<fle®) =1 <1,

so that r(ag) = 1. Since a, € C, we have r(ay) =

< p; this contradicts

a contradiction.

It remains to prove the implication (iv) — (i). Suppose that a e A satisfies
laj = 1 and |a%|*® = 1. We thus have r,(a) = 1. Since g(r,(x)) < r(») for all x,
we have, in particular,

lals = |a|r(a) > lalg (r,(a@) = lalg(l) = 1.
This proves condition (i). The proof is complete.

3. The maximum problem

In this section we summarize a part of the results obtained thus for concerning the
quantitative theory of the critical exponent in an n-dimensional Hilbert space.
In 1960 the present author established the fact that the critical exponent of a finite-
dimensional Hilbert space equals its dimension. The problem of computing the
maximum of [a"' under the conditions [4| < 1 and |4|, < p was formulated
and solved for the first time by present author in [13], [15]. The author suceeded
in describing, for éachnand each 0 < p < 1, a certain operator S,,, on the n-dimen-
sional Hilbert space, such that S, , realizes the maximum of |4"*/* under the con-
ditions |4] < 1, |4, < p. Quite recently, by a careful analysis of the proof in [15],
Z. Dost4l has been able to show that these conditions determine the operator uni-
quely up to a multiplicative constant of modulus 1 and unitary equivalence. Let us
describe briefly the operator S,,, and the method which leads to its construction.
The method adopted in [15] consists in dividing the maximum problem into two
stages.

The first maximum problem. First, consider a polynomial of degree » whose
roots lie in the interior of the unit disc and consider the class & of all operators
T on the n-dimensional Hilbert space with the properties

ITI<L, @(T)=0.
The spectra of such operators are contained in the spectrum of the pclypomial @-
Suppose we have found, for each g, an operator S, which realizes the maximum
of |T"| for T e o#,. We may then pass to.
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The second maximum problem. Consider a fixed p, 0 <p < 1. Denote by
S(p) the class of all operators T with |T'| < 1 and |T|, < p. Consider a T e (p).
If ¢ is the polynomial ¢(4) = det(A—T), we have @(T) = 0 and the roots of ®
lie in the disc

D) = {z; lz| < p}.
_It follows that .
-9!(1’) = U 'gw

the union being taken over the class F(p) of all polynomials whose roots lie in D(p).
1t follows that the maximum of |T™| on &/(p) equals the maximum of the function
@ — [S5] on the set F(p).

The solution of the second maximum problem is difficult to prove but easy
to state.

The maximum of |Sy| on the set F(p) is attained for the polynomial (%)
= (A-p)

The first maximum problem has been generalized by B. Sz-Nagy [8] to com-
pletely nonunitary contractions and functions of class H* instead of polynomials.

Let us first state the finite-dimensional case. Let ¢ be a polynomial of degree
n > 1, and denote by 7, the set of all contractions T on the n-dimensional Hilbert
space for which @(T) = 0. Let X be the Hilbert space of all sequences x = (x,,
X1, ..) with |x| = (¥|x,/2)""* and S the backward shift operator on K defined by

8(xo, X1, -.) = (%1, X2, ...).
Let K, = {x; xc K, ¢(S)x = 0}, so that K, is an n-dimensional s{xbspace of K
invariant with respect to S. Denote by S, the restriction of S to K,.Clearly S, € o#,.
We may now state the solution of the first maximum problem as follows.

Let y be any polynomial. The maximum of |y(T)| for T e oA, is attained for
T=S,. '

To state the result in its full generality, let us recall some notions and facts
from the work of B. Sz.-Nagy. A contraction T on a Hilbert space H is called
completely nonunitary if there exists no nonzero reducing subspace H, for T on
which T is unitary. For completely nonunitary contractions on H a functional cal-
culus for H* functions may be constructed [8] in the following manner. Given a
function g € H* with p(z) = ) a,7", the operator ¢(T) is defined as the limit

T)=1i T,
o(T) ,‘PJZ""*T"

This limit exists in the strong topology.

The result of B. Sz.-Nagy may be stated as follows. Let peH™, ¢ # 0 and let
us denote by o, the set of all completely nonunitary contractions T on Hil-
bert spaces for which (T) = 0. Let X be the Hilbert space of all sequences X

= (ro, %1, ...) with [x] = (3 x,2)"/* and S the (backward) shift operator on K

icm
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defined by S(Cxo, X1, -..)'= (X1, X3, ...). Let K, = {x; x e K, p(S)x = 0}, so that
K, is a subspace of K invariant with respect to S. Let S, be the restriction of S to
K,, so that S, € o/,. The solution of the maximum problem is as follows.
Let y € H®, The maximum of the norm of w(T) for T & A, is attained for T = §,.
Once the maximal operator is characterized, it remains to compute the norm
of S". Since, unfortunately, in a Hilbert space the norm of an operator T equals
the square root of the spectral radius of T*T, the task of finding |S"| involves finding
the maximal eigenvalue of an n-dimensional operator. It might therefore be ad-
visable to look for suitable estimates. Some results of this type have been obtained
by N.J. Young [17], [18]. '

4. The maximal operator

The results of [15] have received only little attention in spite (or possibly because
of) their originality. In [15] we have presented the solution of the two maximum
problems. The rest, which is sraightforward, more technical and possibly less in-
triguing from the point of view of functional analysis, was left to the reader. Most
readers seem to have missed the possibility of new interesting results. In order
to illustrate the further work to be done and one of the possible methods, we
intend to present a full description of the maximal operator in two dimensions;
we shall use the general method, although for n = 2 the result may be obtained
much more directly. Even in the case of » = 2 an interesting estimate may be
obtained.

We begin by writing down the matrix of the maximal operator in an ortho-
normal basis.

Let ¢ be the polynomial @(4) = (A—p)>. A natural basis for the space K,
are the two vectors )

bo = (1,p,p%p% p% ), by =(0,1,2p,3p% 4p% ..),
for which Sb, = pbo and Sb, = by+pb,. The matrix of S in the basis by, b, is

thus
)
1 D '

In order to orthogonalize the basis, we shall need the scalar products. It is not
difficult to compute

1
__§ 2k _ .
(bo, bo) = 4 = 1-p’

- P
(bos b4) = Z"Pz T= =’
241
(by, by) = Z("I’"—_L)2 = (lp—pz)s .
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If we write, for shortness, w for (1~p?)'/2, it is easy to see that
eo = why, € = —wpbo+w3b;

is an orthonormal System in which the matrix of S assumes the following simple

form:
(o 3
(1-p)* oI’
Its square turns out to be

? 0\ _ » 1 0
1-p?
2p(1-p*) p* 2-—]7— 1y
so that the norm of S? will be
- |82 = p*M]|,

where M is the operator given by
10
2b 1
with b = (1—p?)/p.

Now it is not difficult to see that the norm of the operator given (in an ortho-
normal basis) by the matrix
( 10
2b 1)
is b+ (14532,
To sum up:

Let H be a two-dimensional Hilbert space. Let p’be a given number, 0 < p < 1.
The operator T whose matrix with respect to an orthonormal basis is

(25
1-p* p
has the following properties:
(@) T is a contraction, |T| =1,
(b) ITIU =D,
(c) among all the operators on H with properties |T| < 1, |T], < p the oper-
ator T has the largest value of |[T%|. This maximum equals
p(1-p*+y/1-p*+p%).
It is now easy to give estimates from below for the spectral radius.
Let us denote by ¢ the function
o(@) = p(1—p*+(1-p*+p9"2).
We have shown that, for every operator 7,

1
172 _ (T,
TP S ‘P(W)

©
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Suppose we have a nondecreasing function ¢ for which p(p(p)) < p for each p,

0 <p <1 It follows that
|T2|) \T,
—| < s
‘”( [TR) S 7T

Tz
] ‘”(ITTTI) <|Tl, < | T2

so that

It is not difficult to verify that () = 1t is such a function. Even this simple choice
yields an interesting inequality, valid for all operators on a two-dimensional Hil-
bert space

1 |T% .

2 e < |22

3 T S Tl < T2
Let us mention briefly the result in the general case. The maximal operator, taken
with respect to an orthonormal basis, assumes the following form

4 0 0 0 0
1—p? P 0 0 0
~p(1—p?) 1-p? P 0 o0
r*(1-p)  —p(1-p?) 1-p> p O
-p(1-p»  p(1-p) -p(l-p) 1-p*.p
p(l-p») —p*1-p?) »
We may speak of the maximal operator since Z. Dost4l [1] has shown that all solu-
tions of the maximum problem differ only by a multiplicative constant and uni-
tary equivalence. In spite of the undeniable aesthetic qualities of the above matrix,
all this seems to indicate that it is more advisable to look for estimates.

5. Some open problems

We intend to conclude this paper by mentioning some of the vast number of ques-
tions which should be answered. We begin by restating two of the problems men-
tioned in the present author’s report at the Copenhagen Convexity Symposium
in 1965,

A deceptively simple problem which is still unsolved is the following:

Prosrem 1. Does there exist an infinite-dimensional Banach space with a finite
critical exponent?

More important problems arise of course in finite dimensions. We collect
first problems for general Banach spaces.

ProBLEM 2. Characterize Banach spaces whose critical exponent is finite.

PROBLEM 3. Determine the asymptotic behaviour of the function M(n) where
M(n) is the minimum of the critical exponents of all n-dimensional Banach spaces.
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Since for a Hilbert space the critical exponent equals its dimension, we have
M(n) < n for every n. B. Griinbaum and M. Perles have shown that M(n) can be
considerably less than n. Hence even the following weaker version of the preceding
problem is interesting.

ProsLEM 4. Is liminfM(n) infinite?

In other words, does there exist a sequence of Banach spaces E, with dimE,
tending to infinity and such that the critical exponents of all E, lie below a certain
finite bound?

A deeper investigation of the function f of section two immediately suggests
the following problems.

ProBLEM 5. Let E be a Banach space, g a natural number, p a positive number,
» < 1. Suppose a, is the operator which realizes the maximum of |a%] subject to
the constraints |¢| < 1 and |al, < p. Does it follow that |ay] = 1 and [ap|, = p?
Clearly, at least one of the two equalities must hold.

To clarify the meaning of the constraints [a| < 1, |a|, < p it would be useful
to solve

PrOBLEM 6. Let E be a Banach space. For each 0 < p < 1 give a description
of the set

C(p) = {a B(E); lal = 1, la], = p}.
Is it always nonvoid? . i
A closely related problem is

ProBLEM 7. Let E be a Banach space, g a natural number; for each positive
P <1set
J(p) = sup|a?],
the supremum being taken over all linear operators a on E subject to the con-
straints |a] < 1, |als < p. Is f a strictly increasing function of p? Is f continuous?
The critical exponent of the n-dimenional /; or I, space is n>—n-+1 [7], for
I, it equals n [11]. It remains to solve

ProBLEM 8. Determine the critical exponent of the n-dimensional 1, space.

Apart from the interesting and ingenious investigations of M. Perles [9], [10],
who proved the existence and obtained estimates for some p, little progress was
made.

The case of the Hilbert space is both interesting and important. Let us conclude
with the following intriguing ‘
ProBLEM 9. Let H be an n-dimensional Hilbert space. Let p be a positive
number, 0 < p <1, and denote by D(p) the disc{z; 2] < p}. Let y be a given
polynomial (or a function holomorphic on a neighbourhood of D(p)). Let F(p)
lt:];: the set of all polynomials whose roots lie in D(p). For each @ € F(p) we know
at

max{lp(a)l; a € B(H), |a| < 1, p(a) = O} = [y(S,)].
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Find the polynomial ¢ € F(p) which realizes the maximum of the function
@ = p(Sy)| on F(p).

The classical result of the present author says that, for ¢(z) = z" (1 being the
dimension) this maximum is attained for the polynomial ¢(z) = (z—p)™.

Added in proof. A survey of the more recent results in this area is contained in the
papers

V. Ptdk, A maximum problem for matrices, Linear Algebra and Appl. 28 (1979), 193-204.

V. Ptdk and N.J. Y oung, Functions of operators and the spectral radius, ibid. 29 (1980),
357-392.
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