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In [6] it was shown that all solutions of the first equation are finite-rank operators,
and a simpler proof of this fact was given in [5]. Here we observe that this result
can be derived as a corollary of Rosenblum’s Theorem. We also obtain a similar
theorem concerning the equation AX = XK for suitable operators A.

All operators are bounded linear transformations on complex Banach spaces;
in Corollary 1 we restrict our attention to operators on Hilbert space.

TrroreM 1 ([6]). If K is compact and S is any operator, then all solutions X of
the equation X = KXS have finite rank.

Proof. Suppose X = KXS. Choose a complex number 2 such that S+ 4 and

—1—+K are both invertible. Then

A
KX(S+2) = KXS+ AKX = (1+ AKX,
so
X(S+ )™t = (1+iK)'KX.
Choose a circle I" about 0 which does not intersect the spectrum of (1+
+ AK)~*K and whose interior does not intersect the spectrum of (S+ A)~1. Now let

P= -Z%S[z-(wm—lfq-ldz.

Ir
Then P is an idempotent which commutes with (14 AK)7'K, so
(PX)(S+ )~ = P(1+AK)'K(PX).

The spectrum of P(1+ AK)~K is inside I', and hence is disjoint from the spectrum
of (S+4)~L. It follows from Rosenblum’s theorem ([9]; [8], Corollary 0.13) that
PX = 0. Thus X = PX+ (1—P)X = (1—P)X. Since 1— P has finite rank, so does X.

The next corollary is implicit in [6] and [7] and explicit in [5] (Theorem 2),
where it is' proved for arbitrary Banach spaces.

CoroLLArY 1 ([6], [7], [5D. If K is a compact operator on a Hilbert space H#°,
if # < # is the range of some operator mapping a Hilbert space X" into H, and
if # < KM, then M is finite-dimensional.
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Proof ([5)). Let X: A" — A have range 4. Then the range of X is contained
in that of KX, so the theorem of Douglas and Halmos [2] implies that X = KX§
for some operator S. By Theorem 1, S ha_s finite rank, so . has finite dimension.

COROLLARY 2. If A is invertible and K is compact,' then all the solutions X of
KX = XA have finite rank.

Proof. From XA = KX we get X = KXA~1, so the result is an immediate
consequence of Theorem 1.

COROLLARY 3. If A is invertible and K is compact, then all the solutions X of
AX = XK have finite rank.

Proof. Taking Banach space adjoints reduces this to Corollary 2.

By using a similar proof to that of Theorem 1 and quoting the extension of
Rosenblum’s Theorem given in [1], the following generalization of Corollary 3 can
be given.

THEOREM 2. If 0 is not in the approximate point spectrum of A and K is compact,
then all the solutions X of AX = XK have finite rank.

Proof. The approximate point spectrum II(4) of the operator 4 is closed.
Thus there exists a circle I" about 0 whose interior does not intersect I7(4); in
addition, I" can be chosen so that it does not intersect the spectrum of K. Let

1
2mi
r

P= .—-.S(z—K)-ldz.

Then A(XP) = XKP = (XP)KP.
Since IT(A) does not intersect the spectrum of KP, Theorem 4 of [I] implies
that XP = 0, so X = X(1—P) has finite rank.

CoroLLARY 4. If 0 ¢11(A) and A has no point spectrum, and if K is a compact
operator, then the only solution of AX = XK is X = 0.

Proof. Suppose AX = XK. By Theorem 2, the range of X is finite dimensional.
The equation 4X = XK implies that the range of X is invariant under A. If the
range of X was not {0}, then 4 would have a finite-dimensional invariant subspace
and thus would have point spectrum. Therefore X = 0.

Remarks. (i) In [6] and {5}, Theorem 1 is used to prove certain extensions of
Lomonosov’s Theorem on invariant subspaces.

(i) Corollaries 2 and 3 above imply, in particular, that an invertible operator
is mot a quasi-affine transform (in the sense of {10]) of a compact operator. The
fact that an invertible operator cannot be quasi-similar to a compact operator is
a special case of the theorem of Fialkow [3] and Williams [11] that quasi-similar
operators have intersecting essential spectra.

(iif) The full force of the compactness of X is not required in the above results.
It suffices to assume that K is a Riesz operator; i.., that K has at most countably
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many eigenvalues which accumulate (if at all) only at 0, that 0 is in the spectrum
and that all other spectrum is point spectrum of finite multiplicity.

(iv) A number of interesting results on the equation AX—XB = Y are given
in [4].

Added in proof. S. Grabiner, in a paper Spectral consequences of the existence of in-
tertwining operators, Comm. Math. 22 (1981), 227-238, has obtained results similar to Theorem 2.
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