

SPECTRAL THEORY BANACH CENTER PUBLICATIONS, VOLUME 8 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1982

ON THE EQUATIONS X = KXS AND AX = XK

PETER ROSENTHAL

Department of Mathematics, University of Toronto, Toronto, Canada

In [6] it was shown that all solutions of the first equation are finite-rank operators, and a simpler proof of this fact was given in [5]. Here we observe that this result can be derived as a corollary of Rosenblum's Theorem. We also obtain a similar theorem concerning the equation AX = XK for suitable operators A.

All operators are bounded linear transformations on complex Banach spaces; in Corollary 1 we restrict our attention to operators on Hilbert space.

THEOREM 1 ([6]). If K is compact and S is any operator, then all solutions X of the equation X = KXS have finite rank.

Proof. Suppose X = KXS. Choose a complex number λ such that $S + \lambda$ and $\frac{1}{2} + K$ are both invertible. Then

$$KX(S+\lambda) = KXS + \lambda KX = (1 + \lambda K)X,$$

so

$$X(S+\lambda)^{-1} = (1+\lambda K)^{-1}KX.$$

Choose a circle Γ about 0 which does not intersect the spectrum of $(1 + \lambda K)^{-1}K$ and whose interior does not intersect the spectrum of $(S + \lambda)^{-1}$. Now let

$$P = \frac{1}{2\pi i} \int_{\Gamma} [z - (1 + \lambda K)^{-1} K]^{-1} dz.$$

Then P is an idempotent which commutes with $(1 + \lambda K)^{-1}K$, so

$$(PX)(S+\lambda)^{-1} = P(1+\lambda K)^{-1}K(PX).$$

The spectrum of $P(1+\lambda K)^{-1}K$ is inside Γ , and hence is disjoint from the spectrum of $(S+\lambda)^{-1}$. It follows from Rosenblum's theorem ([9]; [8], Corollary 0.13) that PX=0. Thus X=PX+(1-P)X=(1-P)X. Since 1-P has finite rank, so does X.

The next corollary is implicit in [6] and [7] and explicit in [5] (Theorem 2), where it is proved for arbitrary Banach spaces.

COROLLARY 1 ([6], [7], [5]). If K is a compact operator on a Hilbert space \mathscr{H} , if $\mathscr{M} \subset \mathscr{H}$ is the range of some operator mapping a Hilbert space \mathscr{H} into \mathscr{H} , and if $\mathscr{M} \subset K\mathscr{M}$, then \mathscr{M} is finite-dimensional.

Proof ([5]). Let $X: \mathcal{K} \to \mathcal{H}$ have range \mathcal{M} . Then the range of X is contained in that of KX, so the theorem of Douglas and Halmos [2] implies that X = KXS for some operator S. By Theorem 1, S has finite rank, so \mathcal{M} has finite dimension.

COROLLARY 2. If A is invertible and K is compact, then all the solutions X of KX = XA have finite rank.

Proof. From XA = KX we get $X = KXA^{-1}$, so the result is an immediate consequence of Theorem 1.

COROLLARY 3. If A is invertible and K is compact, then all the solutions X of AX = XK have finite rank.

Proof. Taking Banach space adjoints reduces this to Corollary 2.

By using a similar proof to that of Theorem 1 and quoting the extension of Rosenblum's Theorem given in [1], the following generalization of Corollary 3 can be given.

THEOREM 2. If 0 is not in the approximate point spectrum of A and K is compact, then all the solutions X of AX = XK have finite rank.

Proof. The approximate point spectrum $\Pi(A)$ of the operator A is closed. Thus there exists a circle Γ about 0 whose interior does not intersect $\Pi(A)$; in addition, Γ can be chosen so that it does not intersect the spectrum of K. Let

$$P = \frac{1}{2\pi i} \int_{\Gamma} (z - K)^{-1} dz.$$

Then A(XP) = XKP = (XP)KP.

Since $\Pi(A)$ does not intersect the spectrum of KP, Theorem 4 of [1] implies that XP = 0, so X = X(1-P) has finite rank.

COROLLARY 4. If $0 \notin \Pi(A)$ and A has no point spectrum, and if K is a compact operator, then the only solution of AX = XK is X = 0.

Proof. Suppose AX = XK. By Theorem 2, the range of X is finite dimensional. The equation AX = XK implies that the range of X is invariant under A. If the range of X was not $\{0\}$, then A would have a finite-dimensional invariant subspace and thus would have point spectrum. Therefore X = 0.

Remarks. (i) In [6] and [5], Theorem 1 is used to prove certain extensions of Lomonosov's Theorem on invariant subspaces.

- (ii) Corollaries 2 and 3 above imply, in particular, that an invertible operator is not a quasi-affine transform (in the sense of [10]) of a compact operator. The fact that an invertible operator cannot be quasi-similar to a compact operator is a special case of the theorem of Fialkow [3] and Williams [11] that quasi-similar operators have intersecting essential spectra.
- (iii) The full force of the compactness of K is not required in the above results. It suffices to assume that K is a Riesz operator; i.e., that K has at most countably

many eigenvalues which accumulate (if at all) only at 0, that 0 is in the spectrum and that all other spectrum is point spectrum of finite multiplicity.

(iv) A number of interesting results on the equation AX-XB = Y are given in [4].

Added in proof. S. Grabiner, in a paper Spectral consequences of the existence of intertwining operators, Comm. Math. 22 (1981), 227-238, has obtained results similar to Theorem 2.

References

- [1] Ch. Davis and Peter Rosenthal, Solving linear operator equations, Canad. J. Math. 26 (1974), 1384-1389.
- [2] R. G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-416.
- [3] L. Fialkow, A note on quasisimilarity of operators, Acta Sci. Math. (Szeged) 39 (1977), 67-85.
- [4] —, A note on the operator $X \to AX XB$. Trans. Amer. Math. Soc. 243 (1978), 147-168.
- [5] C. K. Fong, E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, Extensions of Lomonosov's invariant subspace theorem, Acta Sci. Math. (Szeged) 41 (1979), 55-62.
- [6] E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, Algebras intertwining compact operators, Acta Sci. Math. (Szeged) 39 (1977), 115-119.
- [7] M. Radjabalipour and H. Radjavi, Compact-operator ranges and transitive algebras, J. London Math. Soc., to appear.
- [8] Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Springer-Verlag, Berlin-Heidelberg-New York 1973.
- [9] M. Rosenblum, On the operator equation BX-XA=Q, Duke Math. J. 23 (1956), 263-269
- [10] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, Akadémiai Kiadó (Budapest) and North Holland (Amsterdam), 1970.
- [11] L. R. Williams, Quasisimilar operators have overlapping essential spectra, to appear.

Presented to the semester
Spectral Theory
September 23-December 16, 1977