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A PERTURBATION OF LOMONOSOV’S THEOREM
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One of the consequences of Lomonosov’s remarkable work is the following: if 4
commutes with some non-scalar operator which commutes with a non-zero compact
operator, then 4 has an invariant subspace (cf. [3], [5], [6]. In this talk I describe
a generalization of this result obtained by the committee consisting of C. K. Fong,
E. Nordgren, M. Radjabalipour, H. Radjavi, and the speaker; for details see [2]
(which also generalized [4]). A consequence of this committee-work is: if 4 com-
mutes with some non-scalar operator B which satisfies an equation of the form
BK = Kgp(B), where K is a non-zero compact operator and ¢ is an analytic func-
tion mapping some bounded open set containing ¢(B) into itself, then 4 has an
invariant subspace. The first sentence above is the case where @(2) = 2.

To describe the main theorem of [2] we need some notation. Let & be a complex
Banach space and let & be an algebra of bounded operators on £. We assume
that o is an operator range, in the sense that there is a continuous linear mapping
# from some Banach space % into the space of bounded operators on & such
that the range of .# is . Suppose also that there exist non-zero compact operators
K, and K, such that #K; = K, (i.e., for each 4 in </ there exists an 4’ in &
such that 4K, = K, A4"). .

TreoreM ([2]). Under the above hypotheses, there is a non-trivial subspace in-
variant under o and, unless s consists of multiples of the identity, there is also a non-
trivial subspace invariant under the commutant of 4.

Note that & can be non-commutative, in which case the two assertions of
the theorem are quite distinct.

COROLLARY ([2)). If BK = Kg(B), where K is a non-zero compact operator and
@ is an analytic function mapping a bounded open set containing o(B) into itself, then
B has a hyperinvariant subspace unless B is a multiple of the identity.

The Corollary follows from the Theorem by taking &/ to be

{¥(B): ¥ bounded and analytic on 23},

where 2 is the given open. set.
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The propositions of the first paragraph above are special cases of the Corollary.
As has been pointed out by Pearcy and Shields [3], it is not known if there are any
operators A which do not satisfy the hypotheses of the consequence of Lomonosov’s
work; (Cowen [1] has recently shown that the unilateral shift commutes with an
operator which commutes with a compact operator). Thus we certainly do not
know of any operators which fail to satisfy the more general criteria following
from [2].

Added in proof. There are operators that do not satisfy Lomonosov’s hypotheses;
see the paper by Haduin, E. Nordgren, H. Radjavi and P. Rosenthal in J. Funct. Anal. 38 (1980),
410-415.
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The questions fall into two areas. In both cases, full accounts will appear elsewhere
in [1], [2].

1. Invariant subspaces of finite convolution operators

A finite convolution operator is an operator on L?(0, 1) having the form

x
T: f() > { k(x—)f(0)dt,
0
where k € L1(0, 1). By-a symbol for such an operator we mean any function of
the form
1
A(z) = [ e=k(t)dt +€6(2),
' 0
where G(z) is analytic and bounded in some half-plane y > 7, where 7 is a real
number. A survey is made of recent progress on the problems of giving conditions
on symbols for the unicellularity and similarity of such operators, and, more gen-
erally, of arbitrary operators in the commutant of the integration operator

x

J: fx) - {fyde

0

on L*(0, 1). A table of known examples is given. A section of the paper lists open
problems in the theory.

2. Cayley inner functions and applications in analysis

A Cayley inner function is defined to be any analytic function &(z) satisfying £(z)
= &(z%)* for z # z* (if z = x+iy, then z* = x—iy), Imé&(z) > 0 for Imz > 0,
such that £(x) = E(x+i0) is real a.e. on the realaxis. We say that £ maps a real
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