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Borel set 4 onto an interval (c,d) of the real line if &(x) € (¢, d) for almost all
xed, and &(x) ¢ (c, d) for almost all x € R\ 4. Then

d
z—w* £~ Ew)*
v S G- 1= CS(t &) (- T4

for all nonreal numbers z and w and any function f(x) such that (1+x*)~1f(x)
e L(c, d). If also

lim&G@y)/(iy) = > 0,
Y=o
then for any f(x) € L,(c,d), 1 < p < o0, and any nonreal number z,
FE®) fi)
@ § ) 41 St £t
and
d
® §IrEm)prdr = g2 §iceyrat;
A c
furthermore, in case p = 1,
d
@ {rEm)a = g {rnar.
4 ¢

Under the stated assumptions, the integrals on the left sides of (1)-(4) converge
absolutely. Analogous formulas are proved for singular integrals. Applications are
given to approximation theory, distribution function formulas for Hilbert trans-
forms, and orthogonal expansions and isometric operators in L? spaces.
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A NOTE ON SEMICHARACTERS

Z. SLODKOWSKI and W. ZELAZKO

Institute of Mathematics of the Polish Academy of Sciences, Warszawa, Poland

We introduce here a concept of semicharacter of a complex Banach algebra. We
show that the algebra of all n xn matrices with complex entries possesses a proper
semicharacter if and only if n = 2. We prove the absence of semicharacters for
algebras B(X) of all bounded endomorphisms of some classical Banach spaces. We
also investigate relations between semicharacters and minimal subspectra and,
finally, we give the definition of a semicharacter of a locally compact group.

1. Semicharacters of Banach algebras

DErINITION 1.1, Let 4 be a complex Banach algebra. A semicharacter on 4 is
a complex-valued function ¢ defined on A4 such that for every commutative sub-
algebra of — A the restriction of ¢ to & is a multiplicative-linear functional
(= a character) on &. We do not assume that ¢ is a continuous function. In case
when A possesses the unit element e, we assume also that ¢ is not identically equal
to zero, i.e. g(e) =

If A has no unit element and 4, = A@® {Ce} is its unital extension, then every
semicharacter ¢ on A extends to a semicharacter @, on 4; given by @,(x-+1e)
= p(x)+4, xed, AeC.

Let us also remark that if a semicharacter is a linear functional on 4, then
it is multiplicative and linear, i.e. a character on 4 (cf. [1]). And so, we say that
a semicharacter is proper if it is not a character, i.. if it is not a linear functional.

We shall now describe all semicharacters of the algebras of all linear endo-
morphisms of n-dimensional Euclidean spaces, n= 2,3, ... (for n=1it is the
algebra isomorphic to the field € and it has a character — the identity map onto
itself). Since all these algebras are simple, then all possible semicharacters are
proper. If X is a Banach space, B(X) will stand for the Banach algebra of all bounded
endomorphisms of X. With this notation we have the following

THEOREM 1.2. Let A = B(C", n=1,2,
characters if n = 2 and no semicharacters lf n>
tinuum.

. Then A possesses 2° (proper) semi-
3, Here ¢ is the cardinality of con-
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Proof. We shall identify the elements of B(C") with n x n matrices with complex
entries. We shall divide our proof onto three steps.

I. Suppose first that » = 2. A direct computation gives all commutative maxi-
mal subalgebras of B(C?), in fact all of them are commutants of single matrices.
We list out all these algebras in form of parametrized' families (here e will stand

for the unit matrix ((1) (1)))

0
1° Algebras of the form & = o (x, f) = {xe+y(ﬁ T): x,yeC}, «, feC;
this is a two-parameter family consisting of continuum maximal commutative sub-
algebras of 4.

2 o =y, 8)= {xe+y(g g) x, ec}, p, 8€C, ly|+16] > 0. This is

another two-parameter family of maximal commutative subalgebras of 4.

Every maximal commutative subalgebra of A is either of the form 1° or 2°,
different values of parameters give different algebras and all these algebras are
“almost disjoint” in the sense that the intersection of any two different algebras
consists of scalar multiples of the unit matrix e.

An easy computation shows that every multiplicative-linear functional on the
algebra «/(a, §) of the form 1° is given by the formula

Sflxe+yg) = x+ys, where 5= (1+4xf)*/? and g = (/03 T)
Similarly, every multiplicative-linear functional f on the algebra &(y, 8) of the
form 2° is given by

flxe+yh) = x+yr, where r = (pd)!? and h= (2 g)
This means that &(«, 8) of the form 1°, or &/(y, &) of the form 2° has only
one character, provided af = —1/4 or 8 = 0, respectively. Otherwise these algebras
have exectly two characters £, £®, £ e Doy, te0,1], where by o, ¢
€ [0, 1], we designate the family of all algebras of the form 1° or 2° possessing
exactly two different multiplicative and linear functionals (there are continuum of
such algebras). M(s/,) stands for the two-point maximal ideal space of &, (we
identify maximal ideals with corresponding multiplicative-linear functionals). Desig-
nate also by &, 1 € [2, 3], the set of all remaining algebras in the families 1° and 2°,
so that for each 7€ [2, 3] the algebra &, possesses exactly one multiplicative and
linear functional f;.

For any subset S < [0, 1] we put

O for xed,, tes,
@ Ps(x) = (D) for xeo,, tel0, 1I\S,
fi(x) for xeof,, te2,3].
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Since for any x of the form x = Ae it is ¢ (x) = A and for x not of this form
there is exactly one te€ [0, 1JU[2, 3] with x e &, @, is a well defined complex-
valued function on 4. Moreover, ¢ |&; € PM(#,) for all ¢, so ¢, is a semicharacter
on A. On the other hand, every semicharacter on 4 must be of the form ¢y for
some S < [0, 1], and for §; # S, it is @s, # @s,. In this way we have exactly
2¢ semicharacters on 4 = B(C?), where ¢ is the cardinality of continuum.

II. Suppose that n = 3 and put 4 = B(C?). We shall show that there are no
semicharacters on A. Assume the contrary: there is a semicharacter ¢ on 4, and
try to get a contradiction. Consider the set S of all points s € C* with |s| = 1 and
with real coordinates. We can identify the set S with the unit sphere in R3, To
each s € S there corresponds an element p(s) € B(C®) which is the orthogonal pro-
jection onto the one-dimensional subspace of C* spanned by s. Whenever we have
three pairwise orthogonal elements sy, 55, 83 € S, then p(s;)-+p(s2)+p(ss) = e—
the unit element of B(C®), and p(s;)p(s;) = p(spp(s;) =0 for i,j=1,2,3, i #,
so the elements p(s;) commute pairwise. This implies that

1 = @(p(s:) +0(s2) +2(s3)) = @(p(s) + P (P (s2)) + 9( (53))-

Since p(s)* = p(s), we have @(p(s)) =0 or 1 for each seS. Together with the
previous formula this means that, given any three pairwise orthogonal points
51,52, 53 €S, one of them, say sy, satisfies @(p(s,)) = 1, while for the other two
we have p(p(s2)) = ¢(p(s2)) = 0.

This also means that if @(p(s)) =1 for some s &S, then p(p(s)) = 0 for
every s’ € S with &' L s, i.e. ¢(p(s")) = 0 for all s’ in the great circle (equator circle)
of S = R3, ortogonal to s. We put

W= {seS: p(p(s)) = 0};
from the above it follows that W contains at least two different circles of the form
Snst, se S, and together with any two points sy, 82, §; L 8,, it contains the whole
great circle passing through these points. Easy geometric considerations, which we
leave to the reader, show that the only set W with these properties is the whole
of . This gives a desired contradiction, since for some s € § it must be ¢ (p(s)) = 1.
The contradiction shows that there are no semicharacters on B(C®).

III. Suppose that n > 3 and 4 = B(C"). We will show that there is no semi-
character on A. Assume, as before, that there is one, denoted by ¢, and try to get
a contradiction. Consider the commutative subalgebra & of 4 consisting of all
diagonal matrices of the form
oy (%) 0
X = .. B .

0 ()

Such an algebra is isomorphic to the algebra of all complex valued functions
defined on a finite set consisting of n points, and so every character on o mt.lst
be a point evaluation, i.e. p(x) = o (x) for some fixed f. Without loss of generality
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we may assume that i = 1, so that (x) = o; () for all x in &/, Let X, be the matrix
(@), 1< i, j< n with ay; = 1 and a;; = 0 for i'j # 1. Then x, € & and @(x,)
= 1. Let 4, be the subalgebra of 4 consisting of all matrices (a;;) with a;; =0
for min(i,j) > 3. The algebra 4, is isomorphic to B(C?) and x, € 4,. The semi-
character @ restricted to A, is not identically equal to 0, since @(xo) = 1. This
gives a contradiction, since, by II, there are no semicharacters on .B(C3).

Remark 1.3. From the formula (1) it follows that no semicharacter on B(C?)
is continuous. Thus we pose the following

ProBLEM. Suppose that there is a continuous semicharacter ¢ on a Banach
algebra A. Does it follow that ¢ is a character on 4?7 i

We shall now consider the problem of existence of proper semicharacters on
the algebras of the form B(X) where X is an infinite-dimensional complex Banach
space.

PRrOPOSITION 1.4, If a Banach space X can be decomposed into a direct sum
(2) X=X1@X2@X33
with Xy, X, X, isomorphic to each other, then the algebra B(X) has no semicharacter.

Proof. Let p;; be the isomorphism of X; onto X;, with p,; being the identity
map of X;, choosen in such a way that

iD= Pu> 1<i,j,k<3.

(If we identify X; with X;, we can choose as p;; the identity map.) If a = (ay),
1< i,j < 3, is a numerical matrix with complex entries, then it defines an operator

on X given by
3

3 3
Tx) = Tn((xlx X2 xs)) = (Zaupu’cn Zazipztxu Za:itp:ﬂxl)
i= i=1 i=1
where x = (x;, X5, ¥;) €X and x;eX;.

We have Ty, = T, Ty, T. = I— the identity map of X, and so a—» T, is a
unital isomorphism of B(C3) into B(X). If @ is a semicharacter on B(X), then the
formula

p(a) = &(T,)
would give a semicharacter on B(C?), which, in view of Theorem 1.2, is impossible.
Thus there are no semicharacters on B(X).

There are many Banach spaces admitting decomposition of the form (2) with
summands isomorphic to each other. This holds, in particular, for spaces isomorphic
to their squares (as e.g. infinite-dimensional Hilbert spaces, or /, spaces). On the
other hand, there are infinite-dimensional Banach spaces X for which the algebra
B(X) possesses not only semicharacters but even characters. An example of such
a space is the famous James space, which we shall denote by J. Using these spaces

we shall obtain infinite-dimensional Banach spaces X for which the algebras B(X)
possess proper semicharacters.
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PROPOSITION 1.5. Let Y be a Banach space such that the algebra B(Y) possesses
a (non-zero) character ®. Put X = Y®Y. Then B(X) possesses proper semicharacters,
and each semicharacter of B(X) is proper.

Proof. Let x€X, x = (y,,y2), »€¥, and let TeB(X). Put T(y;,0)

= (T11(J’1), Tz1(y1)): T, y,) = (Tu(J’z), Tzz(J’z))- Here Ty is an element of
B(Y). Let @ be a character on B(Y) and write

_(9(Th,0) ¢(T1,z))
(0= (o) o)
It is easy to see that m is a unital homomorphism of B(X) onto B(C?). Taking any
semicharacter @, on B(C?) (see formula (1)), we obtain a semicharacter
P5(T) = ps(m(TH)

on B(X).

On the other hand, similarly as in Proposition 1.4, we see that there are no
characters on B(X), since there exists a unital imbedding of B(C?) into B(X).

CoROLLARY 1.6. If X = J@J, then there are proper semicharacters on B(X).

2. Semicharacters and minimal subspectra

In this section we explain relations between the concept of semicharacter and
previously introduced concept of a subspectrum [2]. Theorem 2.4 obtained here
is in fact the source of the concept of a semicharacter.

Let 4 be a complex Banach algebra. Designate by ¢(4) the family of all non-
void subsets of A conmsisting of pairwise commuting elements. Suppose that for
each x; = (x;)er € c(4), there corresponds a non-void compact subset &(x;) = C”.
We say that the map &: x; — &(x) is a subspectrum on A if

1° §(xy) = [1o(x) = C*, where o(x;) is the usual spectrum of an element
ter

x;€A;

2° For any system p;(t;), j€J, of complex polynomials in indeterminates
tr = (t,)ier (each polynomial depending only upon a finite number of indeterminates
t;) we have the following relation, called spectral mapping property:

Py (5(?01)) = (PJ(xI)):
where p, on the left-hand is understood as a map from C” into C” given by oy —»
— ps(o), and on the right side p,(¥;) is the family (p;(x)Yer € c(4).

The following Propositions 2.1 and 2.2 are proved in [2].

PROPOSITION 2.1. Let & be a subspectrum on A, and let m(A) designate the
Samily of all commutative maximal subalgebras of A. Then to each sf & m(A) there
corresponds a non-void compact subset A(sf) of the maximal ideal space ()
such that for any xr € c(A) with x; = o e m(4) it is

) = {(fx))er € C*: fe M)}

If &,, &, are two subspectra on 4, we write &, < &, when &,(x;) = G,(xz) for

every xy € c(4). A subspectrum &, is called minimal if & < &, imiplies & = Go.

26 Banach Center t. VIII
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PROPOSITION 2.2. Any Banach algebra possesses minimal subspectra.

DEFINITION 2.3. A subspectrum & on A is called a single point subspectrum
(shortly an sp-subspectrum) if for each x; € ¢(4) the set &(x;) consists of a single
point. Clearly, any sp-subspectrum is minimal.

THEOREM 2.4. Let A be a complex Banach algebra. There is a one-to-one cor-
respondence between sp-subspectra of A and semicharacters of A, given by the rela-

tion
G(xp) = {(‘P(xt))isl} e,

where & is an sp-subspectrum and @ the corresponding semicharacter.

An easy proof of this theorem follows immediately from Proposition 2.1.

COROLLARY 2.5. If X is a Hilbert space, dimX > 2, or if X is any Banach space
with a decomposition of the form (2), then the algebra B(X) has no sp-subspectra.

Since any commutative Banach algebra 4 possesses an sp-subspectrum, we
have the following

Remark 2.6. Generally speaking, a sp-subspectrum defined on a subalgebra
cannot be extended to a sp-subspectrum defined on the whole algebra.

3. Semicharacters on groups

In this section we remark shortly that the definition and some results of Section 1
have their analogues in the theory of locally compact groups. We give no proof
of the theorem formulated here, since it is the same as in Section 1.

DermurTioN 3.1. Let G be a locally compact group. A semicharacter on G is
a complex valued function ¢ on G, with @(s)| = 1, such that ¢ restricted to any
commutative subgroup of G is a character.

THEOREM 3.2. The group Sl(n, C) of all non-singular nxn matrices with com-
Dlex entries and determinant equal to one possesses semicharacters if and only if
n < 2, and proper semicharacters if and only if n = 2.

‘We pose also a problem, analogous to that formulated in Section 1.

PrOBLEM. Let G be a connected l.c. group and ¢ a continuous semicharacter
on G. Does it follow that ¢ is a character?

For disconnected groups the answer is in negative, e.g. for G1(2, C) with discrete
topology.
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FREDHOLM THEORY IN BANACH ALGEBRAS
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1. Introduction

The classical Fredholm theory of bounded linear operators on a Banach space is
familiar to many mathematicians. The thesis of this paper is that to every 2-sided
ideal in the pre-socle of a general Banach algebra there corresponds a sensible
Fredholm theory. It is a consequence of Atkinson’s theorem [1] and the fact that
the finite rank operators constitute the pre-socle of the Banach algebra of all bounded
linear operators on a Banach space, that our theory includes the classical theory
as a special case. Progress in the case of semisimple Banach algebras has already
been made by Barnes [2] using the socle as his basic ideal, and our work is an
extension of this.

Inessential, Riesz and Fredholm elements are defined in § 3 and some of their
elementary properties are developed. This is general Fredholm theory (i.e. there
is no reference to the pre-socle) nevertheless several of the results are important.
In particular, the Fredholm elements form an open multiplicative semigroup and
the inessential elements and Fredholm perturbations coincide. In § 4 we define
the nullity, defect and index of a Fredholm element, prove the punctured neigh-
bourhood theorem and establish the well-known continuity, stability and multi-
plicative properties of the index. In § 5 we apply these results to deduce that every
Riesz point is 2 Fredholm point of index zero, and every Fredholm point in the
boundary of the spectrum is a Riesz point; results which lead to a Ruston-type
characterization of Riesz elements. We also show that if the algebra is commutative,
then the sets of Riesz and Fredholm points of any given element are equal, and
this enables us to derive spectral mapping theorems for the essential spectra of
Wolf and Browder. The index function of a Fredholm element is defined in § 6,
and in § 7 this is applied in order to extend important results of Schechter and
Stampfli concerning the Weyl spectrum. For an up to data account of other gen-
eralizations of Fredholm theory the reader is referred to Chapter VI of [4].
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