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PROPOSITION 2.2. Any Banach algebra possesses minimal subspectra.

DEFINITION 2.3. A subspectrum & on A is called a single point subspectrum
(shortly an sp-subspectrum) if for each x; € ¢(4) the set &(x;) consists of a single
point. Clearly, any sp-subspectrum is minimal.

THEOREM 2.4. Let A be a complex Banach algebra. There is a one-to-one cor-
respondence between sp-subspectra of A and semicharacters of A, given by the rela-

tion
G(xp) = {(‘P(xt))isl} e,

where & is an sp-subspectrum and @ the corresponding semicharacter.

An easy proof of this theorem follows immediately from Proposition 2.1.

COROLLARY 2.5. If X is a Hilbert space, dimX > 2, or if X is any Banach space
with a decomposition of the form (2), then the algebra B(X) has no sp-subspectra.

Since any commutative Banach algebra 4 possesses an sp-subspectrum, we
have the following

Remark 2.6. Generally speaking, a sp-subspectrum defined on a subalgebra
cannot be extended to a sp-subspectrum defined on the whole algebra.

3. Semicharacters on groups

In this section we remark shortly that the definition and some results of Section 1
have their analogues in the theory of locally compact groups. We give no proof
of the theorem formulated here, since it is the same as in Section 1.

DermurTioN 3.1. Let G be a locally compact group. A semicharacter on G is
a complex valued function ¢ on G, with @(s)| = 1, such that ¢ restricted to any
commutative subgroup of G is a character.

THEOREM 3.2. The group Sl(n, C) of all non-singular nxn matrices with com-
Dlex entries and determinant equal to one possesses semicharacters if and only if
n < 2, and proper semicharacters if and only if n = 2.

‘We pose also a problem, analogous to that formulated in Section 1.

PrOBLEM. Let G be a connected l.c. group and ¢ a continuous semicharacter
on G. Does it follow that ¢ is a character?

For disconnected groups the answer is in negative, e.g. for G1(2, C) with discrete
topology.
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FREDHOLM THEORY IN BANACH ALGEBRAS

M.R.F. SMYTH

Computer Centre, Queen’s University, Belfast -

1. Introduction

The classical Fredholm theory of bounded linear operators on a Banach space is
familiar to many mathematicians. The thesis of this paper is that to every 2-sided
ideal in the pre-socle of a general Banach algebra there corresponds a sensible
Fredholm theory. It is a consequence of Atkinson’s theorem [1] and the fact that
the finite rank operators constitute the pre-socle of the Banach algebra of all bounded
linear operators on a Banach space, that our theory includes the classical theory
as a special case. Progress in the case of semisimple Banach algebras has already
been made by Barnes [2] using the socle as his basic ideal, and our work is an
extension of this.

Inessential, Riesz and Fredholm elements are defined in § 3 and some of their
elementary properties are developed. This is general Fredholm theory (i.e. there
is no reference to the pre-socle) nevertheless several of the results are important.
In particular, the Fredholm elements form an open multiplicative semigroup and
the inessential elements and Fredholm perturbations coincide. In § 4 we define
the nullity, defect and index of a Fredholm element, prove the punctured neigh-
bourhood theorem and establish the well-known continuity, stability and multi-
plicative properties of the index. In § 5 we apply these results to deduce that every
Riesz point is 2 Fredholm point of index zero, and every Fredholm point in the
boundary of the spectrum is a Riesz point; results which lead to a Ruston-type
characterization of Riesz elements. We also show that if the algebra is commutative,
then the sets of Riesz and Fredholm points of any given element are equal, and
this enables us to derive spectral mapping theorems for the essential spectra of
Wolf and Browder. The index function of a Fredholm element is defined in § 6,
and in § 7 this is applied in order to extend important results of Schechter and
Stampfli concerning the Weyl spectrum. For an up to data account of other gen-
eralizations of Fredholm theory the reader is referred to Chapter VI of [4].
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2. Preliminaries

Throughout this paper all algebras and vectors spaces will be over the field of com-
plex numbers C. IT will denote the structure space of the algebra 4 and the radical
and socle of 4 (if it exists) will be denoted by rad(4) and soc(d) respectively. If
£ cIland S = 4 we write k(2) and A(S) to denote the kernel of £2 and the hull
of S. For x € A we denote the spectrum and resolvent set of x by o(x) and g(x)
respectively, and the left and right annihilators of x by lan(x) and ran(x). The
circle operation o is defined by
xoy=x+y—xy forall x,yeA.

An element x € 4 is quasi-invertible if there exist u,v € 4 such that yox = xo9
= 0, and nearly-nilpotent if Ax is quasi-invertible for all 1e C.

Considerable use will be made of the quotient algebra 4/rad(4). We denote
by x" the image of x € 4 under the canonical mapping 4 — 4/rad(4), and for
S <4 we write §"= {x'; xe€S}. It is well known that 4’ is semisimple and
a(x) = o(x’) for all xe 4. Also the socle of A’ exists and we define psoc(d)
= {x € 4; x' es0c(4")} and call psoc(4) the pre-socle of 4. For the elementary
properties of the pre-socle see [8].

Finally suppose that A4 is semisimple. If J is an ideal of finite order of 4 (see
[2] for the definition and details) then we write 6(J) to denote the order of J. If
6(4x) = n then by [2], 1.1, there exist minimal idempotents p,, ..., P» such that
X = Xpi+ ... +xp, hence x4 < xp; A+ ... +xp,A. If p = p;+ ... +p, then Ax
= A4p s0 A(x—xp) = 0; hence [x—xp] is a left ideal whose square is zero. There-
fore x = xp. It follows from [3], 30.7, that 0(x4) < n, and hence by symmetry
6(x4) = n. This common value is called the rank of x and is denoted by 0(x).

3. General Fredholm theory
In this section A will denote an algebra and F will be any fixed 2-sided ideal of A.
The following definitions will be made relative to this fixed ideal F.

DEeFINITION 3.1. The members of F are called finite elements of A. We write
I = k(h(F)) and call the members of I inessential elements of A. An element x € A
is said to be quasi-Fredholm if there exist u, v € 4 such that yo x € F and xov & F.
The set of quasi-Fredholm elements is denoted by V. If Cx = ¥ we say that x
is a Riesz element of A and we denote the set of Riesz elements by R.

If A has an identity we say that x is a Fredholm element of A if 1—x & W. The
set of Fredholm elements is denoted by ®. 1e C is said to be a Fredholm point
of x if —x & @. If Ais a Fredholm point of x which is not an accumulation point
of o(x) then we say that 1 is a Riesz point of x,

As an example take X to be a Banach space and A to be the Banach ‘algebra
of all bounded linear operators on X. Take F to be the 2-sided ideal of finite rank
operators of A. Then the sets of inessential, Riesz and Fredholm elements of 4

are precisely the sets of inessential, Riesz and Fredholm operators on X (see [4]
for definitions).
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The results in the next theorem are standard and we state them without proof.

THEOREM 3.2. Let J be a 2-sided ideal of A such that F = J = V. Then
(i) x e W <« J+x is quasi-invertible in A]J.
(ii) x € R« J+x is a nearly-nilpotent element of A/J.
(iii) x € I <« J-+x lies in the radical of A]J.
(iv) FcJcIcRc V.
V) h(F) = h(J) = k().
(vi) A}J is semisimple <> J = I.
(vii) Every idempotent of ¥ lies in F.
(viii) I is the largest ideal which lies in W,

COROLLARY 3.3. Any onme of the sets h(F), I, R, ¥ uniquely determines each of
the others.

Proof. By 3.2 (iv) and (viii) any one of the above sets uniquely determines I.
By 3.2 (i), (ii) and (v), I uniquely determines each of the others.

The key to the development of Fredholm index theory will prove to be con-
sideration of the semisimple algebra A’. F’ is a 2-sided ideal of A’ and it will be
understood that the inessential, quasi-Fredholm and Riesz elements of 4’ are
always computed relative to F'. The proof of the next result is straightforward
and is omitted. .

THEOREM 3.4. The sets of inessential, Riesz and quasi-Fredholm elements of
A’ are given by I', R', 'V, respectively. ‘

Now suppose that 4 is a Banach algebra with identity. Certain observations
can immedijately be made. Iis a closed 2-sided ideal of 4, and x € @ if and only
if there exist #, v € 4 such that ux—1 € F and xv—1 e F. Also if F is proper, then
A/ is a Banach algebra with identity, and x € @ if and only if I+ x is invertible
in A/I. The continuity of the canonical mapping A — A4/I and the fact that the
group of invertible elements of a Banach algebra is open, lead to the important
conclusion that @ is an open multiplicative semigroup of 4. These results are so
fundamental to the theory that we shall make frequent implicit use of them.

The following result illustrates why inessential elements are sometimes called
Fredholm perturbations.

THEOREM 3.5. Let A be a Banach algebra with identity. Then
I= {xed;ut+xed for all ued}.
Proof. Let J denote the right-hand side of this equation. Clearly, I = J = ¥.
‘We shall show that J is an ideal of 4 and the result will then follow from 3.2 (viii).

Obviously, J is a subspace of 4 so it is sufficient to show that yx € J for xe J and
v € A. But there exists A € C such that (y—1)* € 4 and then for # € & we have

ut(y—Nx=Q-N{@-Hutx}ed

since both (y—4) and (y— 1)~*u belong to . Therefore (y—A)x € J and since J
is a subspace, yx € J as required. o
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The sets of Fredholm and Riesz points of an element x in a Banach algebra
A are both open subsets of C, and by 3.4 they are equal to the corresponding sets
for x'. The Riesz points may be characterized as follows.

THEOREM 3.6. Let A be a Banach algebra with identity. Then 2 is a Riesz point
of x € Aifand only if one of the following two mutually exclusive conditions is satisfied:

(@) ieo),

(i) A is isolated in o(x) and the corresponding spectral idempotent lies in F.

Proof. The result is trivial if F = A so we shall assume that F is proper. Sup-
pose that 0 is a Riesz point of x € 4 and that 0 € o(x). Then by definition 0 is
isolated in o(x) and x € @. Let p be the spectral idempotent of x at 0. Now there
exists w € A such that (I+x)([+u) = (I+u)(I+x) = I+1 and also |[px"||*" - 0
as n— oo. Therefore, ||[I+p]] < [[T+px"||* |[I+u"]] < |lpx"|]- [lu]]" = 0 as n— oo
and hence p € I. Now by 3.2 (vii) pe F.

Conversely suppose that O is isolated in o(x) and the corresponding spectral
idemotent p lies in F. Then x—xp+p is invertible and since xp—p eI it follows
that 24 x is invertible in A/I. Hence x € @ and by definition 0 must be a Riesz
point of x.

This result shows that Riesz points of the spectrum are a generalization of the
concept of poles of finite rank of a bounded linear operator on a Banach space.
Tt should be stressed that they are not normally poles, unless F happens to be a
2-sided ideal of algebraic elements of 4. (See [7] for details.)

4. Fredholm index theory
From now on A4 will be a Banach algebra with identity and F will be a 2-sided
ideal in the pre-socle of A. The theory developed within this framework will be
called a Fredholm index theory. By 3.3 it seems reasonable to say that two Fred-
holm theories (in the same algebra) are identical if the ideals of inessential elements
in each theory are equal. We now calculate the number of Fredholm index theories
of 4. :

THEOREM 4.1. There exists a one-to-one mapping from the class of Fredholm
index theories of A onto the powerset of IT\\h(psoc(4)).

Proof. There is a one-to-one correspondence between the powerset of
IP\h(psoc(4)) and the class of sets {S; h(psoc(d)) < S = IT}. For each ideal of
finite elements F, h(F) is in this class, so by 3.3 it only remains to show that a given
set S in the class is equal to A(F) for some 2-sided ideal F < psoc(4). Write F
= psoc(A)nk(S). Clearly S = h(F). If Pell\S then P ¢ h(psoc(4)) and an
argument similar to that of [8], Theorem 3, shows that there exists u & psoc(4)
such that A(x) is the complement of {P} in II. Then S < A(4) hence u € F and we
conclude that P ¢ h(F). Therefore S = A(F) as required.

As an example suppose that 4 is primitive. Then JI* = IT\ {0} and therefore

by [8], Theorem 3, IT\ 4 (psoc(4)) = {0} so by 4.1 there exists at most one non-
trivial Fredholm index theory in such an algebra.

icm
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Now suppose that 4 is semisimple and consider the Fredholm elements relative
to the socle of 4. These are precisely the Fredholm elements considered by Barnes,
and we shall assume that the reader is familiar with their properties as given in
[2]. We shall call such elements B-Fredholm in order to distinguish them from our
rather more general Fredholm elements. The following lemma is a direct con-
sequence of 3.4.

LeMMA 4.2, If x € D then x' is a B-Fredholm element of A'.

DEFINITION 4.3. Let x € ©. We define the nullity of x to be 6(ran(x")), the
defect of x to be 8(lan(x")), and the index of x to be 0(ran(x"))—0(lan(x")). We
denote the nullity, defect and index of x by n(x), d(x) and i(x) respectively.

It follows from 4.2 and [2], 2.3, that the nullity, defect and index of a Fred-
holm element are all finite. It is important to emphasise that these functions are
only defined on @. This is because, although apparently well-defined at points not
in @, the defect may break away from the classical concept of defect at such points.
Two see this take T to be the compact linear operator on /2 defined by Te, = n~le,
for the usual orthonormal basis {e,}? of /2. This has apparently nullity and defect
both zero, but the classical defect of T is co. However if x is a Fredholm element
of A with nullity and defect zero then by [2], 2.3, x’4’ = 4'x’ = A’ and therefore
x' and a fortiori x is invertible. We state this formally as follows.

THEOREM 4.4. x is invertible <> x € @ and n(x) = d(x) = 0.

We now give the main index theorem. The following results are known as the
multiplicative property, the continuity, and the stability of the index respectively.
The proof is an easy application of 4.2 and [2], 3.2 and 4.1.

THEOREM 4.5. (1) i(xy) = i(x)+i(y) for all x,y € D.

(ii) i is continuous in ¢ — Z.

(iii) i(x+u) = i(x) for all xe D, uecl.

The remainder of this section is devoted to the proof of the following im-
portant result, which is known as the punctured neighbourhood theorem.

THEOREM 4.6. Suppose that x € ®. Then for some & >0, n(x— 1) is constent
for 0 < |A| < &, and this constant is less than or equal to n(x). A similar result
holds for defect.

Proof. We shall only give the proof for nullity, the proof for defect being
similar. Furthermore, by 4.2 it is sufficient to prove the result for the case of 4
a semisimple Banach algebra with identity and x a B-Fredholm element of 4. Sup-
pose then that this is the case. There exists 8 > 0 such that || < & implies x—1
is B-Fredholm, thus by [2], 2.3, we may write 4 (x—2) = A(1—g;) for some idem-
potents g, & soc(d) whenever |A| < 4. Clearly n(x—2) = 6(g,).

Now x" is B-Fredholm for all n, hence by [2], 2.3, x"4 is closed for all n and

therefore M = ﬁ x"A4 is a closed right ideal of 4. Now Mngodisa rigpt ideal of
1
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finite order, hence by [2), 1.1, MngoA = ed for some idempotent e €soc(4).
Also ee M thus M = eM®(1—e) M and (1—e)M is closed. Clearly 8(e) < 6(go).
Now let ¥ denote left multiplication on M by x. Let y € M and consider g, 4 N x"4
for n e Z*. This is a decreasing sequence of right ideals of finite order, hence the
sequence is ultimately constant and therefore there exists meZ* such that
godAnx"d = goAn M. Now there exists {w}F such that x"*¥u = y. Let o,
= x"u, —x"* 1y fork € Z*. Then xm, = 0 so v, € o Anx"4 = M and therefore
XMy, = vy X"t ly, e x™tk-14 for all keZ*. Hence x™u, € M and because
x(x"u;) = y it now follows that £M = M. Also % is zero on eM = ed and one-to-
one on (I—e)M, therefore by the Closed Graph Theorem there exists a bounded
linear operator T on M whose range is (1—e) M such that XT'is the identity on M
and T% is the identity on (1—e)M.

The proof now splits into two parts — in the first we show that for some
& >0 we have 6(g;) < 6(e) for 0 < |4] < &, and in the second we show that 0(e)
< 0(gy) for |A] <e.

Now for ye(l—e)M we have |[|y||=|{Txy||< ||T||-]|lxy|| and hence
1lxyll = |TI=*[|]|. Choose & > 0 such that & < inf{8, } [[T1|"*}. Then ||(x— 2)y||
> |||xyll—M[- [[y]]|> gl|y|| for |A] < e We therefore have g;An(l—e)M = 0.
Now suppose that weg; An(1—e)4. Since for all 1 # 0 we have x"q; = i"g,
it follows that g, M for 4 # 0. Hence ;4 « M. Now w = (1—e)wand we M
hence w € (1 —e) M and therefore w = 0, thatis ;An(l—e)4d = 0for 0 < |4 < e.
But 4 = eA®(1—e)4 and applying [2], 1.2 we have 0(q;) < 0(e) < 6(go) for
0<i <e.

For the proof of the second part we return to our bounded linear operator
T on M. Now for [A| <& and ye M we have (x—2) (1~AT)"*y = xy hence
(1—-AT)"*(ed) = q:4. But the range of T'is (1—e)M hence eT = 0 and therefore
e(1—AT)~! is the identity on ed. Hence ed = e((1—AT)"*(e4)) < eq, A and there-
fore 0(e) = b(ed) < O(eqs ) = O(eqs) = 0(deq;) < 0(dqy) = 0(gp) for | <e.

Combining these two parts we have 8(q;) = 0(e) < 8(go) for 0 < |A| <&
which completes the proof of the theorem.

5. Spectral theory

In this section we derive fundamental relationships between Riesz points and Fred-
holm points. By 4.4 and 4.5 every Riesz point is a Fredholm point of index zero.
A partial converse is that every Fredholm point in the boundary of the spectrum
is a Riesz point. This follows immediately from the next theorem.

TaeoREM 5.1. If S is a connected open set of Fredholm points of x € A and
x — A is invertible for some A€ S, then every point of S is a Riesz point of x and in
particular a(x)N S is a countable discrete set.

Proof. Let D be the set of discontinuities of the function g — n(x— ) defined
on S. Then by 4.6, D is a countable discrete set and since x— A is invertible for some

icm°®
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A€ § we have n(x~p) = 0 for u € S\D. Also by 4.5 i(x~—u) = 0 for 4 € S, hence
d(x—p) = 0 for u e S\D and therefore by 4.4, x—pu is invertible for u e S\D.
It now follows that each point of S is a Riesz point of x, and ¢(x)S = D.

COROLLARY 5.2. x & R <> every non-zero point of C is a Fredholm point of
x <> every non-zero point of C is a Riesz point of x.

This result shows that the spectrum of a Riesz element is countable with zero
as the only possible accumulation point. In particular the resolvent set of an ines-
sential elément is connected; a fact which is of considerable significance when
dealing with the connected components of the set of Fredholm elements and the
group of invertible elements of 4/I. See for example [4], 6.2.5.

THEOREM 5.3. If A is commutative then the sets of Fredholm points and Riesz
points of a given element are equal.

Proof. Suppose x € D, 0 € o(x), and let I7# be the set of accumulation points
of IT in the Gelfand topology. Then there exists u € A such that uk—1=teF
and then #% = 147 But by [8], Theorem 4, (P) = 0 for all P €IT*. Now IT*
is closed hence compact in II, thus for some & > 0 we have |X(P)| > 26 for all
P ell*. By continuity there exists an open set 2, IT* < @ < IT such that [x(P)]
> 6 for all Pe . But II\ 2 is a closed hence compact set with no accumulation
points. Thus {P e Q; |%(P)| < 6} is a finite set and therefore {1 € o(x); |4 < 6}
is a finite set. Hence 0 is an isolated point of o(x) and is therefore a Riesz point
of x.

We conclude this section with a brief discussion of essential spectra. We shall
consider two such types — the Wolf essential spectrum or Fredholm spectrum defin-
ed by w(x) = {1 €C; 1is not a Fredholm point of x}, and the Browder essential
spectrum or Riesz spectrum defined by f(x) = {A € C; 2 is not a Riesz point of x}
for all x € A4 (see [5]). Clearly o(x) = o(I+x) whenever F is proper. We remark
that w(x) and f(x) are compact subsets of C such that w(x) = f(x) < o(x) and
0B(x) = do(x). From 5.1 we see that 9f(x) = dw(x). If 4 is commutative then
by 5.2 we have w(x) = (x), however even if A is non-commutative w(x) and
B(x) may still be linked by the following extension of a method of Gramsch and
Lay [5]. Let Z be the bicommutant of any element of 4. Then Z is a commutative
Banach algebra with identity and F n Z is a 2-sided ideal of Z. By [8], Corollary
6, we have Fn Z < psoc(Z) and we may therefore take F Z to be the set of finite
elements of Z. For x € Z write wz(x) and fz(x) to denote the Fredholm and Riesz
spectra of x relative to F Z. Since all of the spectral idempotents of x must lie
in Z it is now easy to see that f(x) = fz(x) = wz(x) for all x € Z. Applying the
spectral mapping theorem in /I, and using this result with Z equal to the bicom-
mutant of x, we may derive the following spectral mapping theorem for essential
spectra. '

THEOREM 5.4. Suppose x € A and f is analytic on an open set containing a(x).

Then o(f(x)) = f(w(x)) and B(f(x)) = F(B()).
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6. Index function theory

The main shortcoming of the theory which we have developed is the fact, as pointed
out by Pearlman in § 1 of [6], that if x € @ and i(x) = 0 then x+u can fail to be
invertible for all u € I. The reason for this failure is that the definition of the index
is not sharp enough. We propose to remedy this by defining new concepts of nullity,
defect and index on @. Instead of being integer-valued functions these will be map-
pings of @ into the ring of integer-valued functions on I which have finite support
and are zero on h(psoc(A)). Note that by [8], Theorem 3, each point of the support
must be an isolated point of I7, and if A is primitive then this support consists of
at most one point. The new nullity, defect and index reduce to the corresponding
previously defined integer-valued concepts in this case.

LemMA 6.1. For all P ell the primitive Banach algebras A[P and A'|P' are
isomorphic under the mapping P+x — P’ +x' for all x € A.

We remark that by Johnson’s Theorem [3], 25.9, 4/P and A’/P’ are actually
norm equivalent. Now if x e @ then by 4.2, x' is B-Fredholm, therefore P’+x’
is B-Fredholm. An application of 6.1 now gives

LemMA 6.2. If x € @ then P+x is B-Frédholm for all P eII.

LemmA 6.3. Let A be semisimple and x be a B-Fredholm element of A with
xA = (1—p)A and Ax = A(1—q) for idempotents p, q €soc(4) as in 2.3 of [2].
Then for all P €Il we have

@) n(P+x) =0<wqeP.

(ii) d(P+x) =0<«peP.

(iii) P+x is invertible <> p, g€ P.

@iv) II\A(p) and IT\h(q) are finite sets.

Proof. (i) If geP then (4/P)(P+x)= (4/P) hence n(P+x)= 0. Con-
versely if n(P+x) = 0 then (4/P)(P+x) = (4/P) and therefore (4/P) = (4/P) x
X (P+1—gq), hence there exists u € 4 such that u(1—g¢)—1 e P. Multiplying through
on the right by g we see that g € P. (iv) Suppose that §(g) = n and let Py, ..., P,y
be distinct elements of I1. Let g, ..., ¢, be a set of minimal idempotents such that
gAdc g A+ ... +g,4. Now by [8], Lemma 2, each q;, 1 <i<n, lies in at least n
of the elements {P;}1**, hence for some k, 1 < k < n+1, P, contains each ¢,
1 < i< n. Then g€ P, and therefore II'\A(g) contains at most n points.

DEFINITION 64. Let x € @. We define the nullity function, defect function,
index function of x which are denoted by »(x), 8(x), ¢(x) respectively and are all
functions from IT into Z as follows. »(x)(P) = n(P+x) and 8(x)(P) = d(P+x)
for all Pell. «(x) = »(x)— d(x).

Now if x € @ then by 4.2 x’ is B-Fredholm and an application of 6.1 gives
the following result. *

LemMA 6.5. The fimctions v(x'), 3(x") and «(x') are given by »(x")(P") = »(x)(P),
GNP = 6(x)(P) and «x"}(P") = «x)(P) for all xe &, P ell.

icm
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We now give the five main results of this section. For convenience we shall
only give the proofs for the case of A semisimple and leave the extensions to the
non-semisimple case to the reader, using the semisimple Banach algebra 4’ and the
lemmas at the beginning of this section.

THEOREM 6.6. Let x € D. Then
@) n(x) = 2, 9(P),

Per

(i) n(x) = 0 = »(x) = 0,

(iti) »(x) has finite support and is zero on h(psoc(4)).

Similar results hold for the defect function.

Proof. Assume A is semisimple. Then x is a B-Fredholm element of 4 and
by [2], 2.3 we may write 4x = A(1—g) for some idempotent g € soc(4). Suppose
6(g) = n. Then by [2], 1.1 we have g4 = g A+ ... +¢,4 for some orthogonal
minimal idempotents ¢, ..., g,. Now for Pell, (4/P)(P+x) = (4/P)(P+1—q)
hence »(x)(P) = n(P+x) = 0((P+¢)(4/P)). But (P+¢)(4/P) = (P+q,)(4/P)+
+ ... +(P+¢,)(4/P) hence it follows that »(x)(P) = 8((P+4q)(4/P)) = {g ¢ P;
1< k < n}. From [8], Lemma 2, we see that each idempotent ¢, ..., g, is counted
precisely once in the summation Pan(x)(l’) and thereforengv(x)(P) =n. The

€.

rest of the proof is easy.

COROLLARY 6.7. x € A is invertible <> x € ® and v(x) = d(x) = 0.

Note that if the index function is zero then the index is zero but not converse-
ly. Herein lies the importance of the extra sharpness in the -definition of the index
function. The vital result where the index function scores heavily over the index
is the following.

THEOREM 6.8. If x € @ and «(x) = O then there exists ue F such that x+ Au
is invertible for all A€ C\ {0}.

Proof. If A is semisimple then x is B-Fredholm and by [2], 2.3, there exist
idempotents p, g € 4 such that x4 = (1—p)4 and Ax = A(1—g). It is a trivia]
extension of [6], 1.4, that there exists u € pAg such that x+ u is invertible for all
2 e C\ {0}. Now there exist v, w € 4 such that xv—1 & F and x = (1—p)w, hence
(1—p)we—1 € F. Multiplying through on the left by p we have p € F and hence
uelF,

The final two results in this section are extensions of the index theorem 4.5 and
the punctured neighbourhood theorem 4.6. The proof of 6.9 is trivial.

THEOREM 6.9. (i) «(xy) = ux)+u(y) for all x,y € D.
(ii) If x and y lie in the same connected component of ® then 1(x) = u(»).
(iii) e(x+u) = o(x) for all xe D, uel.

THEOREM 6.10, Ifx € @ then there exists ¢ > 0 .such that v(x— 1) is indepen-
dent of A for 0 < |A| < &, and is bounded above by v(x).
A similar result holds for the defect function.
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Proof. Suppose A is semisimple and x is a B-Fredholm element of 4. By [2],
23, xA = (1-p)4 and A4x = A(1—¢q) for some idempotents p, g € soc(4). Let
J =k(h({p, q})) which is a closed 2-sided ideal of 4. Since p, g eJ we have
(A[NT+x) = (A7) and (J+x)(4/J) = (4]J) therefore J+x is invertible in 4/J.
Hence J+x—2 is invertible for |A| < & = [[(J+x)7*||™%. But if Peh({p,q})
then J < P, hence P+x— A is invertible and therefore »(x— A)(P) = O for |i| < 5,
and P e h({p, q}). But by 6.3 (iv), I\A({p, ¢}) is a finite set P;, ..., P,say, and by
4.6 there exist ¢, , ..., &, such that »(x— A)(P;) = n(P;+x— 1) is constant <n(P;+x)
for 0 < |A] < g. Write &= inf{e,, ..., &}.  Then »(x—2) is independent of 1
for 0 < |A| < ¢, and is bounded above by »(x).

7. The Weyl spectrum

In this section we illustrate the use of the index function by extending a result of
Stampfli, [9], Theorem 4. Our result is 7.3. For x € 4 we define W(x) = (M) o(x+u)

uel

and we call W(x) the Weyl spectrum of x. This is a compact subset of C which is

non-empty if and only if F is proper. Clearly W(x) = W(x+u) for all uel, and

from 6.8 we have the following extension of a well-known theorem of Schechter.
THEOREM 7.1. W(x) = [ o(x+u) = c(x)\{AeC; x—AeD and i(x—2)
ueF
= 0} '

This result shows that in terms of the Fredholm spectrum w(x), and Riesz
spectrum B(x), defined in § 5 we have w(x) € W(x) < f(x) and 98(x) = dW(x)
< dw(x).

We shall show that in a B* algebra there exists u € I such that W(x) = o(x+u).
The proof is in two stages. First we find u € I such that o(x+u)\ W(x) is countable.

THEOREM 7.2. Given x € A there exists ue F such that o(x+w)\W() is a
countable set whose accumulation points lie in W(x).

Proof. Let S= {1eC; x—Ae® and «(x— 1) = 0}. This is an open subset
of C and 'we may write S = (_) §, where each S, is a connected component of S.
Let & = 1 and construct inductive sequences {4}7 = C, {m}F < 4, {&}? = R*

n
as follows. Choose 4, € S,, then u, € F such that |ju,| < 1e,_, and x+ 3 #— 4,
T
n
is invertible (this is possible by 6.8), and finally ¢, < 2e,.y suchthat x+ Y. we— A+
T

0
is invertible for |[yl] < e,. It will be seen that u = 31 is a well-defined element
1

of F, and 4, € p(x+u) for alln € Z+. Now x+u—~ 2y 1s invertible and A, € S,,, hence
by 5.1, S, o(x+u) is a countable set of Riesz points of x+u. Hence o(x+u)\
W) =) (S,.na(x+u)) is a countable set of Riesz points of x-+u, whose
accumulation points lie in W(x).
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We remark that this result is best possible in the sense that o(x+u)\W(x)
may be countably infinite for all u € F. This is illustrated by considering the example
preceding [7], 4.6. However if 4 isa B* algebra then J = F and the result may be
sharpened in the following manner.

TrEOREM 7.3. If A is a B* algebra and x € A then there exists u € I such that
o(x+u) = W(x).

We shall only give a sketch of the proof. First of all by 7.2 we may assume that
a(x)\ W (x) is a countable set of Riesz points of x. If this is a finite set the proof is
trivial, so we assume that o(x)\W(x) is a countably infinite sequence {2s}7 such
that dist(4,, W(x)) = dist(4,,.;, W(x)) for all ne2Z*, There exists a sequence
{#}¥ = W(x) such that |4,—a,| < 2dist(4,, W(x)) for all n. Note that ,—a, — 0
as n = c0. We define p, = 0 and let p, be the spectral idempotent of x at 4,. Clearly

n
P € F for all n. We write s, = . p; and by [7], 6.1, there exists a sequence {g,}
[

of self-adjoint idempotents of 4 such that g,s, = s, and s,g, = g, for all n. Clearly
4o = 0 and g, € F for all n. Following the argument of [7], 6.3, 6.4, 6.5 we see that

o

u= 2 (%~ A)(qe—gk-1) is 2 well-defined element of I. We shall show that
1

o(x-+u) = W(x). Suppose on the contrary that A € o(x+u)\ W(x). Then x+u—
—Ae®and «(x+u— 1) = 0, hence i(x+u—1) = 0. It follows that d(x+u—A)# 0,
hence by [2], 2.3, there exists a non-zero element w e A such that w(x+u—2)
=0. Let T'be the image of x+u— A under the left regular representation of 4. Now
for each n, g,4 = 5,4, hence q,4 is invariant under T and we claim that T|q,4
is one-to-one. This is trivially true for » = 0. As an inductive hypothesis assume
it is true for 0,1, ..., n~1. Suppose y € g,4 and Ty = 0. Then

D (eI @)y = .
1

Multiplication through this equation on the left by p, gives

%Pay+ (0= A)PaY = ADwY,
hence if p,y # 0 it will be an eigenvector of x corresponding to the eigenvalue
A—ot,+ A, # A, since 1 ¢ W(x). But this is impossible since all such eigenvectors
lie in (1—p,)4, and hence p,y = 0. Now

V=Y = SuGn) = S0y = 801V = G181V EGr1 A

hence by the induction hypothesis y = 0 and therefore T'|g, 4 is one-to-one for all n.
Therefore g,A4g, (a finite-dimensional space by [7], 3.1 (i) is invariant under T'
and T|g,Aq, is one-to-one, hence T'|g,A4q, is an invertible operator. It follows that
gy € (x+u—2)A and therefore wg, = 0 for all n. Hence w(x—A) = 0, therefore
A = A, for some n and we have w € Ap,. Hence w = ws, = wq,s, = 0 and this
Contradiction completes the proof.
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This paper surveys some results concerning the representation problem for the
unitary group U(co). It is based on the results of the papers [7], [15], [16], [17],
(18], [19], [21), [22].

For groups which are not locally compact, the representation theory, as in the
case of canonical commutation and anticommutation relations of mathematical
physics, deals with special classes of representations and with a global study based
on the use of some associated C*-algebras.

The methods developed are, applicable, as well, to the related groups 0(c0),
Sp(e), SO(c0), SU(cc) and, moreover, some of the results presented below are
sufficiently general to include also these other groups.

A survey on infinite-dimensional spin groups was given by R.J. Plymen [12].

0. Notations

Let H be a complex separable infinite-dimensional Hilbert space, L(H) the algebra
of all bounded linear operators on H, K(H) the ideal of compact operators, Cy (H)
the Banach space of nuclear operators endowed with the norm |X]|; = Tr(|X])
and C,(H) the Hilbert space of Hilbert-Schmidt operators endowed with the norm
[1X1|2 = Tr(X*X)!>.

* Talk given at the Semester on “Spectral Theory” at the Stefan Banach International Math-
ematical Center, Warsaw, November 1977. -

[415]


GUEST




