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This paper surveys some results concerning the representation problem for the
unitary group U(co). It is based on the results of the papers [7], [15], [16], [17],
(18], [19], [21), [22].

For groups which are not locally compact, the representation theory, as in the
case of canonical commutation and anticommutation relations of mathematical
physics, deals with special classes of representations and with a global study based
on the use of some associated C*-algebras.

The methods developed are, applicable, as well, to the related groups 0(c0),
Sp(e), SO(c0), SU(cc) and, moreover, some of the results presented below are
sufficiently general to include also these other groups.

A survey on infinite-dimensional spin groups was given by R.J. Plymen [12].

0. Notations

Let H be a complex separable infinite-dimensional Hilbert space, L(H) the algebra
of all bounded linear operators on H, K(H) the ideal of compact operators, Cy (H)
the Banach space of nuclear operators endowed with the norm |X]|; = Tr(|X])
and C,(H) the Hilbert space of Hilbert-Schmidt operators endowed with the norm
[1X1|2 = Tr(X*X)!>.

* Talk given at the Semester on “Spectral Theory” at the Stefan Banach International Math-
ematical Center, Warsaw, November 1977. -
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416 S. STRATILA AND D. VOICULESCU

Let U(H) be the group of unitary operators endowed with the strong-operator

topology, U,(H)= {V e UH); V—-Ie K(H)} with the norm topology, U,(H)

= {(VeUH); V-I1eCi(H)} with the metric d(V, V") = |[V'=V"||, and

Uy(H) = {V e UH); V—IeCy(H)} with the metric do(V', V") = (V" ~V"||,.
We consider also the topological group U(co) defined as the direct limit of the

classical unitary groups U(n) with respect to the inclusions

Vo
U(n)> VH( )eU(n+1).

0 I
There are different realizations of U(co) as a subgroup of U(H). If {e,}nen is any
Srthonormal basis of H and H, denotes the linear span of {ej, ..., €,}, then we can
identify U(co) with

{ve UH); VIHOH, = I|HOH, for some neN}.

Then U(eo) < Uy(H) < Up(H) = U(H) and U(co) is dense in all these groups
relative to their respective topologies.

Similarly, starting with the classical groups O(n), Sp(n), SO(n) or SU(n),
one can define the direct limit groups O(c0), Sp(c0), SO(w) or SU(w), respect-
ively. Also, the group S(co) of finite permutations of N can be viewed as the direct
limit of the symmetric groups S(z) of all permutations of {1, ..., n}.

By a representation of a topological group we shall always mean a continuous
unitary representation on a Hilbert space.

1. Segal-Kirillov representations

- The classical theorem of H. Weyl [23] shows that all irreducible representations
of U(n) are realized in spaces of tensors of determined symmetry types classified
by decreasing n-tuples of integers m; > m, > ... > m, called “signatures”.

In the infinite-dimensional case a similar result holds for the group U,(H).
1.1. For a positive signature my = m, > ... 2 m, > 0 consider the “Young
diagram”

the rows of which have lengths m,, ..
the numbers 1, 2, ..., m, where

., my,, respectively, and insert in squares

m=m;+ ... +m,,

filling first the first column, then the second one and so on. Let P and Q be the sub-
groups of the symmetric group S(m) consisting of those permutations which pre-
serve the rows of the Young diagram, and, respectively, its columns (horizontal
and vertical permutations). Let &(o) denote the sign of o & S(m).

icm
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Consider the representation § of U(H) on H™ =

given by

HQ® ... ®H (m times),

VeU(H),

and the representation z of S(m) on H™ given by

EN(®E) = @V
J=1 J=1

A (@)= Qi 7 EStm,

and define the linear map R: H" - H™ by
Z &(q)7(qp).

(p,@)EPXQ
Then R(H™) is an invariant subspace for the g(V), V e U(H), and the restric-
tion o of B to R(H™) is an irreducible representation of U(H) ([23], [7], [15]).

1.2, The same construction applied to H, instead of H with respect to the
signature my > ... 2 my = 0 (m; = 0 for j > n), yields an irreducible represen-
tation g, of U(H,) and it is apparent that o|U(o0) is the natural direct limit of the
0K’S.

1.3. The representations ¢ of U(H) described in 1.1, were first considered by
I, B. Segal ([15]), who proved that these are the only irreducible representations of
U(H) which, when restricted to any U(H,), decompose only in irreducible represen-
tations of U(H,) corresponding to positive signatures. In Segal’s terminology these
are called “physical representations”.

R =

1.4. A slight modification of the construction in 1.1 is possible in order to asso-
ciate an irreducible representation of Uy(H) with an arbitrary (not necessarily posi-
tive) signature and A. A. Kirillov ({7]) showed that any irreducible representation
of Uy(H) is obtained in this way. However, the general construction involves mixed
tensors (tensor products like H® ... ®HRHA® ... ®H) and. the argument is no
longer a straightforward extension of the finite-dimensional case (see [7], Lemma 1).

15. A A, Kirillov ([7]) also shows that every representation of Uy(H) is
a discrete direct sum of irreducible representations. A similar statement is proved
by I E. Segal ([15]) for physical representations of U(H).

1.6. For U(co), however, there are many other irreducible representations,
for instance arbitrary direct limits of irreducible representations of the U(H,)’s

Let, for each n € N, g, be an irreducible representation of U(H,) and assume
that g, < Ons1, i-€y Ons1]U(H,) contains g,. If g, corresponds to the signature
mP > ... > miP, then

0n < Ong1 MDY > m2, > md (1< j<ntl),

and in this case the multiplicity [o,+1:0a] Of @ In gn41 is eXactly one ([23])
Since @, < @n+1, there are isometric imbeddings .

i: Hy, = H,

[
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such that (u44|U(H,))oiy = incg, and, moreover, since [one1i0a] = 1, the i,’s
are unique up to a scalar factor of modulus 1. On the completion H, of the direct
limit of the H,’s along the i,’s there is a natural representation 0 of U(co), which
is independent of the choice of the i,’s.

The representation ¢ ~ (01 < @z < ...) 18 irreducible and two such represen-
tations ¢ ~ (01 < 02 < ...} and o' ~ (g1 < g3 < ...) are equivalent if and only
if o, is equivalent to g, for all sufficiently large n’s (§. Stritild, D. Voiculescu, [17],
1IL2).

1.7. Later on (§ 5) we shall associate a C*-algebra A(U(c0)) with the factor
representations of U(co) and (§ 6) we shall characterize its primitive ideal space.
Since A(U(oo)) is not of type I, there appear all the pathologies known for this
case. Let us mention that already A. A. Kirillov ([7]) pointed out that U(0) is not
of type I.

1.8. Results similar to those presented above for U(co) are valid for the groups
O(®), Sp(w), SO(w), SU(e0) ([7], [17))

2. Infinite tensor product representations

In the situation considered in 1.1, a theorem of H. Weyl ([23]; for infinite-dimensional
H see A. A. Kirillov [7]) asserts that the commutant of §(U(H)) is the linear span
of #(S(m)). A similar result holds for infinite tensor products. However, the repre-
sentations of Uy(H) arising in this way are factorial of type II., as we shall see.

2.1. Consider an arbitrary orhonormal system o in H,
0= (a1, 02, e 8y --),

and define the Hilbert space #* as the von Neumann infinite tensor product of
a sequence of copies of H along the sequence « ( (L. There are natural represen-
tations g* of U;(H) and a* of S(c0) on 5 such that

9“(V)§§ E)= év&,; Ve U,(H),
7*(a) (é EJ) = g S ys ' g € S(c0),
J=1 J=1

: ©
for all decomposable vectors @ &; € .
=1

Note that o* is the representation of U,(H) associated with the function of
positive type . '

-]
g =[] (ae); veuv@).
J=1
2.2. Teeorem (§. Stratili, D. Voiculescu, [17], V). The representation o® of

U,(H) on 5t* is a factor representation of type I1,, and the commutant of (U ()
is the von Neumanh algebra generated by n"(S(oo)).
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2.3. The proof of this theorem goes as follows (cf. [17]).

First one considers the case « < {e;}nen Where {en}nen is the orthonormal
basis by means of which one realizes U(c0) < U(H) and one defines o*(V) only
for ¥ e U(e0), which is clearly legitimate. In this case one proves, by an approxima-
tion argument using the commutation theorem of H. Weyl, that the commutant of
¢*(U(e0)) is generated by a*(S(c0)). It is well known that the left regular repre-
sentation of S(co) is factorial of type II, and from this one infers that n“‘(S(oo))
generates a type II, factor, hence ¢* is a type II factor representation of U(c0).
By constructing an infinite family of mutually orthogonal and equivalent projec-
tions in g*(U(c0))"', one shows that ¢ is actually of type II,,. Moreover, by a direct
computation one shows that the function of positive type ¢* is uniformly continuous
with respect to the metric of U,(H) and hence g* extends to a representation of
Uy (H).

The general case now follows owing to the fact that every unitary W e U(H)
defines an automorphism Vi W*VW of U,(H).

2.4. Now, given two orthonormal systems o = {a,}, f = {b,} in H, it is
natural to ask for necessary and sufficient conditions in order that the representa-
tions ¢* and gf be equivalent.

A reasonable conjecture might be that this is the case if and only if there exist
a permutation ¢ of N, an operator U e U,(H) (or, maybe, Ue U,(H)?) and 0,
€C, |6,] = 1 such that Ub, = 6,4, (n€N). We were able to prove only the
following fact:

ProposiTioN (. Stritild, D. Voiculescu, [17], V). If o* and ¢ are equivalent
then there are finite sets F, = N, Fy c N and a bijective map o: N\Fs -+ N\F,
such that

1im ||by— B, @aemll = O for suitable 6,€C, (6, = 1.
n N

Let us also mention that if @, = e,, b, = €;,, where {e,}sen is an ortho-
normal basis of H, and {k,}, {j,} are strictly increasing sequences of positive
integers, then ([17], V.1.7)

0% =~ o® <+ 3ng € N such that k, = j, Vn = no.

3. The characters

For U(n) the determination of all irreducible representations is equivalent to the
determination of all its characters, that is, of all indecomposable central functions
% of positive type on U(n) with (1) = 1. The explicit formula of characters of
U(n) is due to H. Weyl ([23). ‘
For U(co), the determination of all its characters means the classification not
of irreducible but of finite factor representations (types I, and II,). As we shall

27
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see, in the infinite-dimensional case there are similarities with the case of com-
mutative groups due to the fact that U(co) is stable under the direct sum operation.,

3.1. More generally, let G be a group and let I' be the set of classes of
conjugate elements in G. For ge G let g eI denote its conjugacy class and for
a central function y on G let ¥ denote the corresponding function on I'. Any homo-
morphism @: GXG — G defines an operation “®” on I

8198, = ‘P(gl’gz)ﬂ-
In what follows we shall assume the existence of a homomorphism @ such that the
operation “®” on I' is commutative, associative and with neutral element é (where
e € G is the neutral element of G). Then there are homomorphisms ¢,: G" - G

such that @81, s g2 = £:® ... @&y, and > @)* = (™" is an auto-
morphism of I

3.2. TaroreM (D. Voiculescu, [21]). Let y be a central function of positive type
on G with y(e) = 1. Then y is the character of a finite factor representation of G
if and only if

T0®y) = Jy)ia); v r2el.

The simple proof of this theorem will be given in 3.8. In some particular cases
this result was found, with rather complicated proofs, by E. Thoma ([19], [20])
and D. Voiculescu ([22]).

The following corollaries are obvious:

3.3, CoroLLARY (D. Voiculescu, [21]). The tensor product of two finite factor
representations of G is still a finite factor representation.

3.4. CoroLLARY (D. Voiculescu, [21]). Let G, G’ be two groups satisfying the
hypotheses in 3.1, and w: G' - G a homomorphism such that @ o (0 X®) = we ¢'.
If ¢ is a finite factor representation of G, then ¢ o w is a finite factor representation
of G'. ’

Below we consider some examples.

3.5. If G is commutative, then I' = G and we can take p as the group oper-
ation in G. Thus, Theorem 3.2 implies the well known characterization of characters
of commutative groups.

3.6. If G = U(c0), then the conjugacy class ¥ of Ve U(n) is determined by
the eigenvalues 4,, ..., 4, of ¥ together with their multiplicities. We shall therefore
write:

V= (s oy dn 1,1, ).

The group U(o0) can be as well realized on H®H with respect to the orthonormal
basis {e;, e1,...}® {er, €5, ...}. If ¥, V, € U(w) = U(H), then V,®V, € U(w)
c U(H@H). The map

@2 U(0)x U(0) 3 (Vy, V3) = @V, € U(eo)
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is a homomorphism which induces on I” the operation

(llg---n Jl,,,l,...)@(m,...,y,,,, B )-—(}q, ,.,ﬂl,. .,,u,,,,l,..,)

satisfying all the requirements in 3.1.
Thus, by Theorem 3.2, a continuous central function y of positive type on
U(co) with z(1) = 1, is a continuous character of U(w) if and only if

Ty ooy Ay 1,00 = 2(4)) ... 4(A)
for all (4, -.., A, 1, 1, ...) € I'. Thus %, and hence g, is determined by p = 4|U(D):

m x(V) = detp(V); Ve U(c).
Since p is a continuous function on U(1), we have a Fourier expansion
@ (@)= ) 7",
P
where ¢, = 0 and Z;c,. = 1, because p is of positive type and p(1) = 1. Moreover
ne,

21U(n) is of positive type, which is equivalent to the fact that the coeﬂicxents in its
development with respect to the characters of U(n) are all positive. These coef-
ficients can be computed and we are led to the following condition (cf. [22]):

3) det ((Cmpr g—in)1<i,1¢n) = 0
for all integers m; > ... > m,.

The series (2) with ¢, = 0 for n < 0, ¢, = 1 and satisfying the conditions (3)
were studied by E. Thoma ([19]) in connection with the characters ‘of the group
S(c0). In this case, the result of E. Thoma shows that p(z) is of the form

I I R I E=— || i”,;’fe“'-*»,

© L3
1

with me Z, m> 0; 0< ai<1§_,a,<+oo B >0, Zb,<+oo iz

The formulas (1) and (4) determine the characters of all finite factor representa-
tions of U(co) which, when restricted to the U(n)’s, decompose only in irreducible
representations of U(n) with positive signatures.

3.7. Similar characterizations hold for the groups 0(00), Sp(0), SO(),
8U(c0) or for the group GL(w, k) over a finite field k considered by E. Thoma
([20]). Owing to Corollary 3.4, one obtains characters of 0(00), Sp(oo), etc., by
restricting the above determined characters of U(co).

In case G = S(0), the conjugacy class & of o'e S(c0) is determined by the
decomposition of ¢ into cycles. If oy, ¢, are two finite permutations of N, then
they determine a finite permutation o;U40, of the disjoint union Nu,N identified
with N, and this procedure yields the direct sum operation on the corresponding
I'. Actually, all the characters of S(co) were determined by E. Thoma ([19]).
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3.8. Proof of Theorem 3.2.

Necessity of the multiplicativity condition. Let ¢ be a finite factor representa-
tion of G and assume y(g) = Tro(g), where Tr is the normalized trace, TrJ = 1.
Write

0(8) = e(p(g, 9),  0:(8) = e(#(e, 8))
and let F, A, B denote the von Neumann algebras generated by ¢(G), 0,(G), 02(G),
respectively. The restriction of the trace of F to 4 and B yields faithful traces on 4
and B. Since 2@¢ = é®g = 2, we have Tr(e,(g)) = Tr(e2(2)) = Tr(e()). We
hence infer that F, 4, B are isomorphic, in particular 4 and B are also factors.
Since A and B are commuting subfactors of F, it follows that

i@x@ﬁz) = X(‘P(gx ) gz)) =Tr (@1(21)92(8’2))

=Tr (91(8'1))T1' (@z(gz)) = F(@)HZE2).

Sufficiency of the multiplicativity condition. Consider the set K of central func-
tions y: G — C of positive type such that y(¢) = 1. We show that for y e K. p,eI"
and a; € C (1 < i< n), we have
®» Y s f @y > 0

1gljgn
Indeed, for me N let
Cmip = iafm  (O<k<n—-1,1<p<m
and g;€ G (1 << mn) be such that
Bomir=Vir1 O<k<n-1,1<p<m).
Then defining v
gl’nn-v-p = (pmn(e: ey €, ghm+m €, .y e)

(With Sim+p OD the (km-+p)ith place), we have

(g (&, 1) {ykl@}'k, it (ky,p1) # (kzy P2),
amt Bhmens) it (kg py) = (K2, pa).
Since yx is of positive type, this gives

0< 2 (g™

158, j<mn

<
? 8,0, 7(7,®7;) +—,,!;Zlaalz(l—-i(yn®7/?))-
) !<pq<n ket
Lettlng m — + 0, we obtain (5).

Since I' is a semigroup with an involutive automorphism y s p*, [*(I") has
the structure of an involutive Banach algebra and the set P of functions fe/*°(I")
such that f(€) = 1 and

Z a8 fy@y) > 0

1<ijsn

:
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forallneN, ay, ..., 4, €C, ¥4, ..., yp €I, is the set of states of /*(I"). Thus, rela-
tion (5) together with the boundedness of functions of positive type on G, shows
that x> ¥ is an injective affine map K — P,

Now, if ¥ is multiplicative on I', then the corresponding representation of
I*(I") is one-dimensional and hence irreducible. Using 2.5.4, 2.5.5 in [3], we see
that 7 is an extreme point of K, and hence y is then a fortiori an extreme point
of K, that is the character of a finite factor representation.

3.9. In the above proof of necessity we saw that every finite representation of
G generates a factor, which contains two commuting subfactors isomorphic to
itself. This implies that for G as above, a finite factor representation is either of
type I, or of type I, (cf. [22]).

3.10. Using a desintegration procedure, D. Voiculescu ( [22]) showed that every
central function of positive type on U(co) can be extended by continuity to U, (H).

4. KMS-functions of positive type

In this section we introduce KMS-functions of positive type on topological groups
endowed with a one-parameter automorphism group, by a straightforward analogy
to KMS-states on C*-dynamical systems. This will be applied to a certain class of
functions- of positive type on U, (H) derived from the character formula 3.6.¢4) by
replacing a scalar by a positive operator. This notion proves useful, since in general
we do not dispose of any correspondmg C*-dynamlcal system, and, moreover, it
leads to easy computations. o :

4.1. Let G be a topological group and R t+> «, € Aut(G) a one-parameter
automorphism group such that for every g € G the map R St x(g) G is con-
tinuous.

A continuous function 8: G — C of positive type is called KMS with respect
to (a)rer if for every g, h € G there is a bounded continuous function Fg, defined
on the strip § = {z € C; 0 < Rez < 1} with complex values, which is analytic in
the interior of S and such that, for all t€ R,

Foa(it) = 0(go(h)),  Fou(l+it) = B(dz(h)g)

Using the Kaplansky density theorem and the Phragmén-Lindeldf princiyle, it
is easy to prove the following result: )

PROPOSITION, Let 0 be a continuous function of positive type on G, KMS with
respect to the conti one-pa ter automorphism group (& )er of G. Let o be
the cyclic representation of G, with cyclic vector m, associated to 0. Then the repre-
sentation g is in standard form, that is, 7 is also a separating vector for the von Neu-
mann algebra o(G)" and, denoting by (0fn)wx the modular automorphtsm graup of
o(G)" associated to the vector state w,, we have ‘

@ (e(@) = e(%(@); feR, geG.
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4.2, Recall that the characters of U(co) corresponding to positive signatures
are given by the formulas 3.6 (1) and (4). For a fixed p as in 3.6 (4), let

R= (sulpai)‘Jl > 1.
Then p(z) is an analytic function in the open disk {z € C; |z| < R} and p,(z) # 0

on some neighbourhood of the segment [0, +o0).
For every Be L(H), ||Blf <R, B> 0, one defines a function 8 =0, ; on

U, (H) by
0,,5(Vy = det(V™)det (po(BV)po(B)Y™'); Ve Uy(H).

Moreover, if KerB = 0, we have a continuous one-parameter group {o,}rer
of automorphisms of U,(H) defined by

‘a,(V)= B*VB~"; VeU/(H).

The main result presented in this section is the following theorem:

4.3. THEOREM (§. Stritild, D. Voiculescu, [18], § 4). For every P as in 3.6 (4)
and every B e L(H), ||B]] <R, B> 0,0,y is a continuous function of positive type
on Uy (H). If, moreover, KerB = 0, then 0,,,,5 is KMS with respect to the automor-
phism group {o}er.

4.4. The proof of the fact that 8 = 8, 5 is of positive type consists in ap-
proximating the operator :B by diagonable operators and thus reducing the problem
to the finite-dimensional case.

If H = H, is finite-dimensional, then

Tt U(Hy) 2 Vi detp(V)
is a central function of positive type on U(H,) and

(V) = Zcpz,;(v); Ve U(H,),

where i runs over all the positive s1gnatures me=..zm
for Ve U(H,) we have

det(p(B))B(V) = 7,(BV) = ‘g Cutu(BY) = ;c,ﬁrr(eu(m (")),
which shows that § is of positive type on U(H,):

> 0 and ¢, > 0. Then,

4:5: To see that 6 =0, 5 is KMS with respect to {0 }er, consider V, W
€ U,;(H) such that ¥—1I, W—I are of finite rank and define

Fy w(2) = det(V™ W™)det (po(VB* WB*~*)po(B)~%).

Then Fy wis-a well-defined bounded continuous function on the strip § = {z€C;
< Rez < 1}, analytic in the interior .of S and

Fyw(it) = 0(Va,(W)),  Fyy(l+it) = 0(x (W) V).

icm
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5. The associated C*-algebra and applications

In this section we associate a C*-algebra to a direct limit of compact groups, which
reflects the factor representations of the direct limit group. This C*-algebra turns
out to be approximately finite-dimensional (AF-algebra) and for such algebras we
give a diagonalization that reduces their study to dynamical systems of a particular
nature. The ideals of the AF-algebra and some classes of representations can be
easily handled by using the associated dynamical system.

5.1. Let G be the direct limit of compact separable groups
fe}=GicG,c..c6,cGpyy ...

such that G, is Haar negligible in Gn:,.l. We denote by 4(G) the envelopping C*-
"

algebra of the involutive normed algebra defined as the direct limit of . L1(G;)
J=1

< M(G,) along the isometric imbeddings induced by M(G,) = M(G,,,). Then:

THEOREM (S. Stritild, D. Voiculescu, [17], IL1). 4(G) is a C*-algebra whose
Sactor representations are in bijection with the factor representations of G and those
of the Gy’s. This bijection preserves the type and the equivalence of representations.

5.2. The C*-algebra A4 = 4(G) is an AF-algebra, that is, there is an ascend-
ing sequence {A,}nso Of finite-dimensional C*-subalgebras in 4 with

8] 4=T4,

For an arbitrary AF-algebra (1) we have a diagonalization method in the
sense of the following theorem.

THEOREM (§. Stritild, D. Voiculescu, [17], 1.1). For an AF-algebra A there
exists

(2) a maximal abelian *-subalgebra C in A;

(b) a conditional expectation P: A — C;

(©) a subgroup U of the unitary group of A;
such that e

(i) u*Cu = C for all ueU;

(ii) P(u*xu) = w*P(x)u for all ue U, xe A;

(iii) 4 = c1lm.(UC) = c.l.m.(CU).

Moreover, let 2 be the Gelfand spectrum of C and I' be the group of homeo-
morphisms of 2 induced by U.

Consider the Hilbert space /2(£2) with orthonormal basis {¢; € 2} and denote
by (-|-) the scalar product. Each fe C(£2) defines a “multiplication operator”
Ty on I2(2) by

T,(h) = fh;  heP@)
and each element p € I" defines a “permutation operator” V¥, on I2(£) by

V() () = h(y2(0)); e, hel(Q).
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Let

1 ~4@,T)

be the C*-algebra generated in L(1*(2)) by the operators T, and ¥, (fe C(Q),
yel).

Then there exists a *-isomorphism

A~ A@R, D)
such that
P)(t) = (xti2); tef, xed.

5.3. The diagonalization of 4 presented in 5.2 is not at all canonical; among
other things it depends on the expression (1) of 4 as an AF-algebra.

However, as shown subsequently by W. Krieger ([9]), any two dynamical
systems (2, I, (2, I") arising from the same 4 by such a diagonalization are
isomorphic.

5.4. In the case 4 = A(G), the dynamical system (2(G), I'(G)) can be de-
scribed as follows:

The points of £ are the symbols’

t= (eolt) = .- = @noy (1) =2 0,(1) ~ ...),

where 1< 71 < 1ig(t) € + 00, 0(t) € Gy and 1 < ku(t) < [ou(t):0n_ ()] # 0. If
tef and w = L, then ¢ €@ if and only if either

(@) teow
or

(b) no(t) = +co and for every m € N there is s €0 with

. @l8) = (1), kals) = Ki(t); Vn<m

or

(©) no(?) < +oo and the set

{Onp+1(5); 5 € ©, 0a(8) = (1), Kuls) = Kn(t), V1< mo(t)} -
is infinite.
For a permutation ¢ of the set
{t EQ; "o(t) =m, Q,,,(t) = Qm},
(me N, gm € Gy), let y = y(m, gn, 0) be the transformation of Q such that

y(t) = ¢ if either no(t) < m or gu(t) # om
and
P = (a(eo) L .. B0 o (1)) EnesD g (1) )
in the opposite case. The transformation group I'(G) is generated by these

y(n, gm; 0)-
For details see [17], IL.2.

5.5. As regards the ideals of an AF-algebra 4, we record the following result:
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THEOREM (S. Stritild, D. Voiculescu, [17), 1.2). The primitive ideals of A are
in bijection with the closures of the orbits of I" in Q.

5.6. Let p be a I-quasi-invariant probability measure on £. Then x can be
regarded as a state of the commutative C*-algebra C = C(2) and therefore

Pu=po P
is a state of 4. Let m, be the cyclic representation of 4 associated to ¢,. Then 7,
is a standard representation and, in fact, z, coincides with the representation given
by the Krieger construction ([8]) applied to the dynamical system (2, I, ).

m, is a factor representation if and only if u is I ergodic.

7, is a finite representation if and only if u is equivalent to some J-invariant
probability measure on £. Moreover, every finite representation of A is quasi-
equivalent to some 7,. ‘

@, is semi-finite if and only if the transformation group I' is u-measurable,
i.e., there exists a I-invariant sigma-finite positive measure on £2, equivalent to u.

For details and more precise characterizations of the type of 7, see [17], 13.

5.7. For p asin 5.6, there is a unique *-representation g, of A(Q, I') on L*>(2, )
such that

0.(Tph = fh;  heL*Q, p), feC(Q)

and
@) = @wd (DR (y11); 12, heLXQ,p), y el
Then : L '
o, is irreducible < u is ergodic cares it
and

@4, is equivalent to gﬂz' < fiy 18 equivaleﬁt to ,u',,‘ J

(see [17], L.3).

6. The primitive ideal space of A(U(cc))

For the group U(n), the determination of characters, the determination of irreducible
representations and the determination of primitive ideals of C*(U(n)) amount to
the same thing. Of course, this is no longer true for a non-type I group, in particu-
lar for U(co). .

Here we give a complete description of the primitive ideal space of the C*-
algebra 4(U(o0)) associated to U(c0) as in § 5.

6.1. Let 2 and I" be a compact space and its group of transformations provided
by the diagonalization of the AF-algebra 4(U(0)). By 5.4, the points of £ are
of the form

- t= (0 <2< .. <0< .2),

where g, is an irreducible representation of U(n) (note that if @, < @41, then
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[0a+1:04 = 1). According to the description with signatures of the g,’s and of the
relations g, < 0441 (see 1.6), it follows that the points of £ are the symbols
t= {(MP())1cjen}ten<nyms

where

Sno(t) < +oo, mP(t)eZ and m{(t) = miP() = m(t).

Therefore, a point of 2 looks like the picture below, where @ — b means a < b:

i

The description of the topology on £2 and the description of the transformation
group I follow obviously from Section 5.4. Roughly speaking, a point ¢ € 2 with
no(1) = + oo is adherent to a set » < R if for every “horizontal line” in the picture
of ¢ one can find a point in w with the same “beginning” until that line. Also, the
generators of I' change these beginnings among themselves, leaving fixed the rest
of the picture.

6.2. We recall from 5.5 that the primitive ideals of A(U(oo)) correspond in
a canonical way to the closures of the orbits of I In the next lemma we determine
these sets. First, some notations. For e and 1 < j < no(t) we define
Li(t) = sup{m®P(t); j < n < no()} € Zu{+w0},
M,(t) = inf{m®,/,(t); j<n < n(t)} e Zu{~ ).
These' definitions can be easily visualised on the picture of t.

It is clear that {L;(r)}; is decreasing, {M(t)} is increasing and L,(t) >
for all j, k.

Lemma. Consider t, € Q, L; = Li(to), M; = M(to) and denote by = T{to)
the closure of the ty-orbit of I in Q. Then:

L If no(to) < + o0, then
o = {te; no(t) = ny(ty), m<"°<‘>-1)(r) =L;; 1<] <ne(n)}.
2. Ifno(to) = 400, then
on{tef; nyt) = + o0}
= {tef; ny(t) =+, L; > mi(t) = M,

M ()

et 1S < n < o0},
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wn{teQ; ny(t) < + o0}
{t e; no(t) < 40, LJ §")(t) n—.H-l: 1<jsn< "o(t)}-
if Li~M; =
6.3. The next lemma answers a natural converse question.
LemMa. For any given Lye Zu{+w}, Mje ZU{—-w0} (jeN), such that
LizL,>..2L>..2M>..2M>M > -0
there exists a point t, € 2 with ny(to) = +00 such that
Ly = Lit), M;=M,to); jeN.
6.4. Using the above remarks and lemmas, one obtains the following result:

TueoreM ($. Stritild, D. Voiculescu, [17], IIL1). The primitive spectrum of
the C*-algebra A(U(0)) can be identified with the set of all the symbols

= {Ly(8), M)} 1< <npie>
+ o0 and, Sor all 1 € j < +o0, we have

Zo{+0}a Li(®) > Ly (§) > Myu(&) = M(&) e Zu{-x},
or no(&) € N and, for all 1 < j < ny(£), we have
Z3 My, 2y-1(8) = L(§) = Ly41(8) = Myyy—y-1(8).

Namely, if ¢ is a factor representation of U(co) (or of some U(k)), then the
kernel of ¢ corresponds to the symbol

L sup {sup{m{”; n = j}},
= inf{inf {m®;.1;n > j}},
where the first sup and the first inf are taken over all signatures (m{™, vees M)
€ lf(\n) which appear in o|U(n).

The points & & Prim(4(U(w))) with n4(£) = + oo correspond to factor rep-
resentations of U(co), while the points & with n,(&) = n, € N correspond to factor
representations of U(ny—1).

The topology of the space Prim(4(U(c0))) can also be described (see: [17],
II.1.5). For instance, the one point set {£,} < Prlm(A(U(oo))) Where LJ(E,,)

= 400, M;(¢,) = —oo for all j, is everywhere dense.

For e an(A(U(oo))) {Li(®}; will 'be called the upper signature of & and:
{M;(®)}, will be called the lower signature of &. 4

6.5. In 1.6 we have associated with every point ¢ = (g; < .... < @n<.2..) Of
£ an irreducible representation ¢, of U(co) which is the direct limit of the g,’s.

On the other hand, let x be a completely atomic I-quasi-invariant probability
measure concentrated on the I-orbit I'(¢). Then, for all y €I we have

u(fr®}) >0
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and, for all Borel sets B — £, we have

pB = > wlis).
sel(H)nB

Clearly, pis I'ergodic and therefore the representation g, is irreducible (see 5.7),

Moreover, Kerg, corresponds to I(t) and the representations ou and g, are
equivalent (S. Stritild, D. Voiculescu, [17], IIL2).

Thus, every primitive ideal of A(U(co)) which corresponds to afactor representa-
tion of U(c0) is the kernel of an irreducible representation of U(co), which is a direct
limit of irreducible representations of the U(n)’s.

6.6. The following result shows that the representations of U(co) correspond-
ing to bounded signatures can be extended to norm-continuous representations of
U,(H) (while, usually, only the strong continuity is required).

ProposITION (§. Stritild, D. Voiculescu, [18], 2.8). Let ¢ be a continuous rep-
resentation of U(w) such that, for any ne N, o|U(H,) contains only irreducible
representations of signatures (my > ... = my) with |my| < M < +oo. Then

o(P)=a (V) < MIV'=V"ll;; - V', V" € U(c0).

6.7. Consider a primitive ideal J of 4(U(c0)) corresponding to a bounded
upper and lower signature, and let 4/J = A(U(oo))/]. Using the above proposi-
tion one obtains the following

COROLLARY (§. Stritild, D. Voiculescu, [18], 2.9). There is a canonical narm-
continuous representation

oy Us(H) - Al

and, for every unitary W e U(H) there exists a unique *-automorphism oy of AlJ
such that

aw(g,(V)) = o,( WYW*); Ve U,(H).
The mapping : )
U(H)> W ay € Aut(4/))

is a representation, continuous with respect to the strong-operator topology on U(H)
and the point-norm topology on Aut(4/J).

Since for arbitrary signatures a similar result does not hold, we had to replace
in § 4 the C*-algebra KMS condition by a group-theoretic KMS condition.

6.8. For the finite-dimensional group U(n) it is known that the signatures
classify the symmetry types of tensors over H,. For instance, the signatures of the
form (1,1, ...,1,0,. ., 0) correspond to antisymmetric tensors while the signa-
tures ‘of the form (m,O, ..., 0) correspond to symmetric tensors.

For the infinite-dimensional case, we can say that the upper and lower signa-
tures correspond to symmetry types of tensors over H, or that the primitive ideal
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spectrum of A(U(c0)) is described in terms of symmetry types of tensors over H.
In fact, we shall see later that the representations of U(o0) corresponding to upper
signature L; = 1 (j e N) and lower signature M; = 0 (j € N) are realized in spaces
of antisymmetric tensors over H.

7. Representations in antisymmetric tensors

In this section we consider a particular class of KMS-functions of positive type
on U, (H), among those presented in § 4, for which we give a complete classification
according to type and quasi-equivalence, and also we show how the co;'responding
representations can be realized in spaces of antisymmetric tensors over H. All these
representations, when restricted to U(0), correspond to the upper signature L; = 1
and to the lower signature M; = 0 (jeN).

Also, these representations are related to the restrictions of the gauge-invariant
generalized free states ([13]) of the CAR-algebra to the subalgebra of gauge-in-
variant elements. In fact, the main result presented in this section can be viewed
as the classification according to type and quasi-equivalence of these restrictions.

7.1. Let Ae L(H), 0 < 4 <1, and define
p (V) = det((I—A)+ AV); Ve U(H).
Then v, is a continuous function of positive type on U, (H). Actually, v, cor-
responds, as in § 4, to the character given by p(z) = (1+2z)/2 and to B = A(I—A)~*.
Let g, be the associated cyclic representation of U(co). We shall also consider
W, = A1/2+1(I —A)!? e U(H).. ‘ .

For T € L(H) let o(T) and ¢..(T) be the spectrum and: thc essentlal spectrum
of T, respectively.

For two projections P, Q € L(H) such that P— —Q is a compact operator, we

denote by cd(P, Q) the relative codimension of Q in P, i.e., the index of the Fred-
holm operator QP: PH — QH, or, equivalently,

cd(P, Q) = dim(P—s(PQP))-dim(Q~s(OPQ)),

where s(T) denotes the support projection of T.
The main result is the following theorem.

7.2. TueoreM (S. Stritili, D. Voiculescu, [18], 3.1). Let 4, B eL(H),0< 4
<L, 0< B< L Then:

1. w4 is of type 1 <> A(I—A) € C,(H). In this case g4 is a direct sum of ir-
reducible representations.

2. 4 is factorial and of type 1 <> A is a projection. In this case g, is irreducible.

3. y, is factorial but not of type I <> A(I- A) ¢ C.(H). In this case:

(8) w4 is of type 11, < A—pI € C,(H) for some pe (0, 1); - -

(b) v, is of type I, < A(I-—A)(A—pI)2 e C(H) for some pe (0, 1) and
{0, 1}no.(4) + ;
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©(6) yau is of type Il < A(I— AY(A—pI)? ¢ C,(H) for all p € (0, 1).
4. If A, B are projections, then yy ~ yp <> A—Be C,(H) and cd(d, B) = 0 <«
< there exists V e U,(H) such that VAV* = B.
5. If A(—A) ¢ C,(H), B~ B) ¢ Cy(H), then pu~ Yy <> Wa—Wge Cy(H).
In the above statement the sign “~” stands for the quasi-equivalence of the
associated cyclic representations.
In what follows we sketch the main ideas of the proof.

13, Let 2 = Q(U(e0)), I'= I'(U(0)) and & < @ the I-invariant subset of
Q corresponding to the primitive ideal J of A(U(oo)) with upper signature L; = |
and lower signature M, = 0 (jeN). Let G denote the restriction of I' to w. Then
the C*-algebra A(U(c0))/J is *-isomorphic to the AF-algebra A(w, G) constructed
as in 5.2 from the couple (v, G). By 6.7, we may consider U, (H) = 4(w, G) and
then the function of positive type y, extends to a state g, of A(w, G), the type
problem and the quasi-equivalence problem being thus transferred to ¢,.

7.4. After identiﬁca;;ions, we get @ = {0, 1}* and G consists of transform-
ations Yn,e» _
'}’n,u(ala ey Oy Oni1s "') = (0'('115 sy “n)a Ont1s ))
where n € N, and o is a bijection of the set {0, 1}" which preserves the sum of the
components:
a,Be{0,1), ol@) =B =0+ ..+ =P+ ... +f.

7.5. If A is diagonable, with eigenvalues {A,}nen, and A(T—A4) is injective,
then we can define the measure u = u, on w as the product of the measures u,
on {0,1} defined by p.({0}) = pu = 1— 4, us({1}) = ¢ = 4,. Note that in this
case p is a I-quasi-invariant probability measure.

Moreover, in this case the state ¢, on A(w, G) is of the form

‘ Qa=pig°P
where P: A(w, G) - C(w) is the conditional expectation. Therefore (see 5.6), the

factor and type problems for ¢, are reduced to the G-ergodicity of u and to the
p-measurability of G, respectively. The corresponding results are:

THEOREM (S. Stritild, D. Voiculescu, [17], IV.4). u is G-ergodic if and only if
gpn(l—pn) = +o0.

THEOREM ($. Stritild, D. Voiculescu, [18], 1.2). G is u-measurable if and only
if gpn(l —P) (Pa—p)* < +0 for some p e (0, 1).

7.6. On the other hand, let G’ be the group of transformations on w consisting
of all finite permutations of the coordinates of a point « & {0, 1}%, i.e., the direct
sum of the permutation groups on each {0, 1}. The AF-algebra A(w, G’) is *-iso-
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morphic to the so-called CAR-algebra, associated to the canonical anticommuta-
tion relations.

Since G < G, we have 4(0, () < A(w, @), namely A(w, G) identifies with
the subalgebra of “gauge-invariant” elements of the CAR-algebra. Moreover, the
states g4 are exactly the restrictions of the “gauge-invariant generalized free states”
of the CAR-algebra (see [13]).

By use of the methods and the results of R. T. Powers and E. Stermer ([13])
for the classification of gauge-invariant generalized free states of the CAR-algebra,
the problem for ¢, is also reducible to the case of 4 diagonale (see [18] § 3).

Let us mention that every g, is quasi-equivalent to a similar state with 4
diagonable.

7.7. Note that Theorem 7.2 solves also the classification problem, according
to type and quasi-equivalence, for the restrictions of gauge-invariant generalized
free states of the CAR-algebra, to the gauge-invariant subalgebra. This is different
from the classification of non-restricted states given in [13].

7.8. For A diagonable, say de, = Aye,, 0 < A, < 1, 2. (1= 2,) < + o0, the
n
representation g4 can be realized as follows on a space of antisymmetric tensors.
n
Consider X, = @ (A*H,®A*H,); then, with the convention (a®b)A (c®d)
k=0

= (@A®(bAd),
Jot Xu 13 E EA((L— ) P1Q1 + a*e,®e,) € X,
and we have the representation
¢» = (natural representation)®1
of U(n) on X,.
Then g, is unitarily equivalent to the direct limit of the g,’s along the J;’s
(see [17], IV).

7.9. For an arbitrary 4 € L(H), 0 < 4 < I, with Ker4 = Ker(/—4) = 0, let
B = A(I- A)-. By 6.7, the automorphism group {B*:-B~*}, of U (H) extends
to a x-automorphism group {a.}; of A(w, G). For the states ¢, one can prove
something more than was asserted in 4.3, namely ¢, satisfies the C*.KMS-condi-
tions with respect to {o:}ier (see [18], 4.7).
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1. Introduction

In this paper we shall continue the study of prediction theory of a stationary process
considered as time evolution in a correlated action, which was began in [4]. As
in the precedent paper, we shall follow the line of Wiener and Masani prediction
schema for (finite) multivariate stationary process [7], [8].

The notion of completion of a correlated action, which we shall introduce in
Section 2, will allow us to give a precise meaning to the predictible part of the
process and, consequently, to formulate more precisely the prediction problems
(Section 3). Since some results from [4] are used here in a slightly different context,
we prefer to outline their proofs. In Section 4, under the supplementary condition
of boundedness imposed on the spectral distribution of the process, similar to
Wiener-Masani boundedness condition [8], we shall determine the predictible part
of the process by means of a linear (infinite) Wiener filter. The solution of predic-
tion problems are given in terms of Taylor coefficients of the maximal outer func-
tion which factorizes the spectral distribution of the process (see [3]).

The reader will certainly note that we permanently use the ideas from the
Sz.-Nagy and C. Foias model for contraction [6] to give an operator or functional
model for prediction. Our model is based on an operator valued positive definite
map (on the integers), which corresponds to an infinite variate (discrete) stationary
process.

2. Complete correlated actions

The notion of correlated action was introduced in [4] as the triplet {¢,5¢,1},
where & is a Hilbert space (the space of the parameters), # is a right #(£)-module
(the state space), and I': 3 x o — Z(8) is an Z(£)-valued map (the correlation)
with the properties:

@ Tlh, k>0, TTh, il = 0= h=0.

28+ [435]
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