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Let S be an involution semigroup (or a *-semigroup). We do not assume that S
has a unit. Let H be a complex Hilbert space. Denote by B(H) the algebra of all
bounded linear operators on H. A function @: S — B(H) is said to be positive
definite (in short PD) if for all sy, ...,5,€ S and fi, ..., fo € H,

> @t 5) > 0

An involution preserving semigroup homomorphism @: S — B(K), K another
Hilbert space, is called a dilation of o if
P(s) = V*P(¥, seS,
where V is a bounded linear operator from H to K.
Recall the Sz.-Nagy general dilation theorem [10}: a PD ¢ has a dilation if
and only if it satisfies the following boundedness condition:

(®C) X (lsrutus)fnf) < @ Z (350 1)

for c(u) independeut of §y, .00y Sy in S and f, ...,ﬁ, in H; S has a unit.

We wish to say a few words about the role played by (BC) in the above. Sup-
pose for a moment that we do not know whether @(s)’s are bounded operators
or not. Since positive definiteness and (BC) still keep a sense, we easily find out
that if a PD ¢ satisfies (BC), then all ®(s)’s are bounded operators and also ¢(s)’s
must necessarily be bounded provided so is @(1). On the other hand, if g hasa dila-
tion @ and B(s)’s are bounded operators, then @ must satisfy (BC) and again
@(s)’s are bounded operators. This explains how (BC) is responsible for the bound-
edness of p(s)’s as well as of &(s)'s and justifies the term we have used for it.

2

Now we list some known instances of dilatable functions looking upon kow (BC)
pertains to them.

(2) Let T be a contraction in H. Define S = the group of integers and ¢(n)
= T"if n> 0 and (%" for n < 0. Then ¢ is PD [10] and, because (BC) is

29 Banach Center t. VIIL ) [449]
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redundant (n* = —n), it is dilatable. More generally, every PD definite function
on a group has a dilation.

(b) Suppose E: # — B(H), % being a o-field of sets, is a semispectral measure,
that is, for every f (E(:)f,f)is a positive scalar measure of total mass || f|[2. % can
be regarded as a *-semigroup with intersection as a semigroup multiplication and
the identity mapping as involution. Then [10] E is a PD function on B. This means

thatz (E(aincmo'j) [ ﬁ) is a positive measure in o, and this implies immediately
kN
(BC). Thus we come to the Naimark dilation .theorem.

(c) Suppose 4 is a C*-algebra with a unit, which with the algebra multiplica-
tion forms a *-semigroup. The Stinespring theorem [4] asserts that a completely
positive linear map ¢: 4 — B(H) can be dilated to a *-representation of 4. We
can look at this theorem as a dilation theorem for the PD function ¢ on 4. Here
the boundedness condition (BC) is due to some intimate properties of C*-algebras.
More generally, let 4 be a Banach *-algebra with a unit. Also in this case (BC)
is ensured (cf. [5]) by an appropriate inequality for positive linear functionals on
4 ([2], Lemma 6(iv), p. 197).

These instances can suggest that positive definiteness must force (BC). We
shall show by an example (postponed to the end of this paper) that this is not the
case.

3

In later discussion we shall need handier forms of the boundedness condition than
(BC). We itemize carefully all the possibilities which help us to see what is going on.

ProposITION 1. Suppose ¢ is a PD fimction on S (no unit in S is required).
Then the following conditions are equivalent:

(1) ¢ satisfies (BC),

@ (pG*u*us)f, 1)< ew) (p(s*s)f.f) for fe H and s €8S,

) lp(s*u*us)ll < C(s) (), where ¢ is a submultiplicative fimction of u,

“@ li}(n inf (121 (tp(s,-*(u*u)"‘s,)fj, fi))z“ is finite and does not depend on f;'s and
S8, ‘

‘We put the proof in the following order: (1) = 2) = (3)= (4) = (1). Only
two of these implications need some short comments.

The best choice of ¢(x) in (2), when combined with a double use of (2), implies

that o = ¢ in (3) is submultiplicative. Next, (1) follows from (4) via the following
inequality:

Z(q’(#u*usf)fhﬂ (Z (‘P(-"J‘])f}’f})) (Z (ol @ us)f, 7))

(for more detail we refer to [6]).
‘The next step is to assume a little bit more about ¢.
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PROPOSITION 2. Suppose ¢: S — B(H) satisfies

" - 2 wsfef) > o[F gt s

with ¢ > 0 independent of sy, ...,s, in S and fy, ..., f, in H. Then the following
conditions are equivalent:

@, @, )

3) llp)l| < CE '@, #,s€8, o is submultiplicative,

and (4).

For the proof of implication (3) = (3) use () and set C'(s) = ¢~1C(s)!2.

It is easy to see (cf. [S]) that if S has a unit, every PD ¢ satisfies (+). In this
case (39 yields .

3 llp@l] < C"(Na'(W), ue S, « submultiplicative.

Since (3”) implies (4), we have

PROPOSITION 3. Suppose S has a unit and @: S — B(H) is PD. The following
conditions are equivalent: (1), (2), (3), (3), (3") and (4).

Remark. We can by-pass (4) and prove the implication (3”) = (1) in the
following way: Define /*(S, ) as the set of all complex functions £ on S such that
ES[E(S)[oc(s) < + 0. This forms a Banach *-algebra (cf. [2], ex. 23, p. 8); involu-
€,

tion on I'(S, @) comes naturally from that on S. Define p: I1(S, ) - B(H) by
(&) = Ef(s) @(s). Thus @ is linear and PD and consequently ([2], Lemma 6(iv),

p. 197; cf. also case (c)) it must satisfy (BC). Then ¢ satisfies (BC), too (take £
= 0, to check this). Unfortunately, this way is not elementary (Ford’s square
root lemma is involved) but ours (via (4)) is.

Some more comment. The condition (4) and its equivalence to (BC) have
been proposed in [6]. Moreover, examples of applications (cf. cases (d) and (f)
below) have been considered in [6] and [7]. Condition (3") and its applications
(see case (¢) below) have been isolated in [8]. Then Masani ([3], cf. also [9]) has
produced (2) using the very same method as that in [6].

4

Now we are able to continue our discussion.

(d) Suppose ¢ is a PD function on a *-semigroup, which is norm bounded,
that is, sup|le(s)|] < +oo. v

Then it satisfies (BC) owing to the implication (3) = (1). Thus it is dilatable
(Arveson, see [6]).

(¢) Here our concern is rather with Proposition 3 than in dilation (read: nor-

mal extension) itself. More precisely, let 4 € B(H) be such that Y, (4f;, 4°f}) = 0
i 4 %]

20+
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for fi, ..., f, in H. Bram has proved, using the Heinz-Kato inequality, that such
an A must satisfy

3 (A, AP < LA Z (Al 477;)

i,J
(in other words: A is subnormal). We can prove this elementarily using just the
implication (3') = (1) (for more detail see [3]).

(f) Now the problem is in extension of a PD function ¢ on S to a dilatable
one on the unitization of S (recall: the dilation theorem requires S to have a unit).
It S has no unit, adjoin 1, set 1* = 1 and define the resulting *-semigroup by ;.
If S, already has a unit, set §; = S. Call S, the unitization of S. We have shown
[5] that ¢: S — B(H) can be extended to a PD function, say ¢, on Sy, if and only
if it satisfies () and @(s*) = @(s)*,s € S. @,(1) can be defined as p(1) = 4 with
A > c the identity operator in H (here ¢ is as in (x)). We also have shown in [7],
using (4), that g, satisfies (BC) if so does @. Here we do the same using (2). The only
thing we have to check is that

(%(“'“)fsf) < by(w) (‘Px (Dfsf):

(p*0)f, ) = (p*n)f.f) < llpw*w)l|(f.f)

< e Hip@uru){[(Af, f) = b1 (1 (DS, f)
where b; (1) = max {b(u), c~{|p*u)l}.

() Here we present an opportunity to apply (4). Suppose S is an inverse-
semigroup, that is, for every s € S there is precisely one s* such that ss*s = s and
s*ss* = s* (we refer to [1] for this matter). Then (s*s)” = s*s for every non-nega-
tive integer 7 and this shows that a PD function on an inverse-semigroup, like in
a group case, always satisfies (4) and consequently (BC) with c(w) = 1. :

u#l.
Indeed,

5

ExampLE. The example(*) we are going to present shows that there is a PD
function, which does not satisfy (BC). Let S be the algebra of all real or complex
polynomials in a real variable. Take the usual involution (conjugation in complex

case). Then S becomes a *-semigroup (even more, a *-algebra). Let w be in S and
define

+0o0
p(w) = S w(t)exp(—t)dt.
» 0
Take wo(f) = ¢. Then we have
¢(wg) = n!

(") This example is due to Professor C. Ryll-Nardzewski. The author would like to thank
Professor Ryll-Nardzewski for letting him present the example here.
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for n=0,1, ... Suppose ¢ satisfies (BC). Then it must satisfy (3”') with some
submultiplicative «. Thus we have

= lpWg)i < Ca(wg) < Co(wo)",

and consequently a(wo) = CH"(n!)*" for n =0, 1, ..., which is impossible.
Notice that ¢ is in fact a linear positive functional of a *-algebra.

Addedin the proof, December 1981. The theme of the present paper has been reset-
tied in a recent one by J. Stochel and the author “Boundedness of linear and related nonlinear
maps” to appear in Expositiones Math.
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