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In the theory of integral representation of points in compact convex sets (Choquet
theory), there are two fundamental theorems, which assert that the maximal Radon
probability measures on such (sub) sets (of Hausdorff locally convex topological
real vector spaces) are pseudoconcentrated on their sets of extreme points. Maxi-
mality is meant here either in the sense of the Bishop-de Leeuw preorder relation,
to which the Bishop-de Leeuw theorem belongs (see [3], Theorem 5.3), or in the
sense of the Choquet order relation, to which the Choquet theorem belongs (see
[5]; [7], Theorem T32; [8], Ch. 4). An immediate consequence of these two theorems
is the Choquet-Bishop-de Leeuw theorem, which yields the representability of any
point in the given compact convex set by a boundary integral (see [8], Ch. 4).

Chronologically, Choquet first proved a theorem of this kind, for metrizable
compact convex sets, in 1956 (see [4]). In 1959 Bishop and de Leeuw, by using
a certain preorder relation (which will be recalled in what follows) in the set of
all Radon probability measures, on arbitrary compact convex subsets of Hausdorff
locally convex topological real vector spaces, proved that any measure which is
maximal for the preorder relation in question is pseudoconcentrated on the set of
all extreme points of the given compact convex set.

By establishing the existence of such maximal measures, they thus obtained
an extension of Choquet’s theorem (see [3], Theorem 5.6).

In 1960, Choquet, by using another order relation, showed that any maximal
measure (with respect to his order relation) is pseudoconcentrated on the set of
all extreme points of the given compact convex set. Again, by proving the existence
of such maximal measures, Choquet obtained another proof of Bishop’s and -de
Leeuw’s extension of Choquet’s theorem, to the effect that any point of the given
compact convex set K is represented by a Radon probability measure, which is
pseudoconcentrated on the set of all extreme points of K. This result is known as
the Choquet-Bishop-de Leeuw theorem (see [8], Ch. 4).

Of course, both the Bishop-de Leeuw theorem and the Choquet theorem are
stronger than the Choquet-Bishop-de Leeuw theorem, in that they assert that any
maximal measure, either with respect to the Bishop-de Leeuw preorder relation,
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or with respect to the Choquet order relation, is pseudoconcentrated on the set
of extreme points.

Since the two (pre) order relatlons are, in general, different (see [9], p. 289),
these two theorems are different.

The Bishop—de Leeuw preorder relation is very useful in connection with the
central and irreducible disintegration of the representations of C*-algebras (see
[9], [10], {11}, [12]). However, for the orthogonal Radon probability measures,
defined on the state space of a C*-algebra, the two order relations coincide (see
[9], Theorem 13).

The aim of this note is to give a generalization of the theorems of Choquet
and Bishop-de Leeuw. In this manner we shall obtain a new and unitary proof
for both the theorems of Bishop-de Leeuw and Choquet. This will be achieved by
means of a slight extension of H. Bauer’s Minimum Principle. The exposition is
almost self-contained.

1

Let E be a Hausdorff locally convex topological real vector space and X < E a com-
pact convex subset of E.

By C(K; R) we shall denote the algebra of all contmuous real functions defined
on K; by A(K; R) we shall denote the real vector space of all continuous affine
real functions defined on X; by S(K; R) we denote the convex sup-cone of all convex
continuous real functions which are defined on X. It is well known that S(K; R)—
S(K; R) is a vector sublattice of C(K; R), uniformly dense in virtue of the Stone
approximation theorem (see [8], Ch, 4). It is obvious that e A(K; R) = h?
€ S(X; R).

Let #7(K) be the convex set of all Radon probability measures on X; for any
u € ML(K) there exists a uniquely determined b(u) € K such that

h(b() = Sh(x)d,u(x), Vh e A(K; R);

b(p) is called the barycenter of u (see [8], Ch. 1).
Two measures u,7 € #4(K) are said to be equivalent if b(u) = b(v) One
denotes this relation by 4 ~ ». A point x € K is said to be represented by u € M1 (K)

if x = b(y). It is obvious that any x € K is represented by the Dirac measure &
at x.

The fundamental theorems of Choquet and Bishop-de Leeuw give existential
solutions to the following problem: given x & K, represent it by a measure u & A L(K)

whose support is as close to exK as possible (here exK denotes the set of all extreme
points of K).

We. consider the following relations on #1(K):
@) p < iff u(f) <»(f), for any fe S(K; B);
() u <y iff u(h?) < v(h?), for any A € A(K; R).
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The first is due to Choquet (see [5], [7], [8]), and the second to Bishop and
de Leeuw (see [3]).

Obviously, # < v implies 4 <v for any u,» € #%(K). Both relations are
reflexive and transitive; the first is also atisymmetric, hence an order relation; this
follows from the fact that “u < v and ¥ < &” implies u(f) = »(f) for any f € S(X; R).
Consequently, the same equality holds for any fe S(X; R)—S(K;R). Stone’s
approximation theorem now jmplies that u = .

Since A(K; R) = —A(K; R) = S(K; R), it is easy to see that u < v =y ~ ».
Since + 1€ A(K; R), an elementary argument shows that u < » =y ~ .

An element u € #3(K) is maximal for the Choquet order relation if » € #L(K)
and u < vimplies 4 = . Similarly, an element u € .42 (K) is maximal for the Bishop-
de Leeuw preorder relation if » € #1(K) and u <» implies u(h?) = v(h?), Vh
e A(K; R).

In order to get the generalization of the theorems of Choquet and Bishop—
de Leeuw which we have in view, we shall consider an arbitrary subset S = S(X; R)
such that

{h*;he AK; R)} <= 5.

We shall define a preorder relation in #1(K) by defining

paveu(f) <u(f), VfeS, Vuve#i(K).

Of course, the relation is reflexive and transitive, and u < »= u 4», p4v =
=p <€y, Vu, ve#i(K). It follows that uav=>pu~v, Vpu, ve#L(K). A
measure u € .#%(K) is maximal for the preorder relation «iffv € .#1(X) and
uayv=u(f) =v(f), Vfe S. In this case we shall say that u is (€)-maximal.

»

2

Let #(K) be the c-algebra of all Borel measurable subsets of X and #,(K) the o-
algebra of all Baire measurable subsets of K. We recall that #(K) is the g-algebra
generated by all open (or, equivalently, closed) subsets of K, whereas %o(K) is
the smallest c-algebra of subsets of K such that all functions fe C(K; R) are
measurable. Obviously, one has the inclusion #,(K) = #(K). If K is metrizable,
then the equality holds.

A measure € #1(K) is said to be pseudoconcentrated on exK if

w(U) = 0 for any U € #o(K) such that Un(exK) = &

Let ofo(exK) be the o-algebra of all subsets of exK which are traces on exX
of the Baire measurable subsets of K

A o(exK) = {Un(exK); U € B4(K)}.

If the measure u € #3(K) is pseudoconcentrated on exK, then one can define
a probability measure 2 on of,(exK) by the formula

2(Un(exK)) = p(U), VU eBo(K).

()
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Property (+) ensures the correctness of the definition.

It is easy to prove now that if f: X — R is a Baire measurable function (i.e., if
it is %#,(K)-measurable), then flexK is of,(exK)-measurable. The importance of
measures which are pseudoconcentrated on exX is shown by the following:

LemMA 1. Let p e #L(K) be pseudoconcentrated onexKandf: K - R a bound-
ed Baire measurable function. Then

§fdu = § sap.
K exK
Proof. For any & > 0 one can find a partition {Uy, U,, ..., U,} of X consist-
ing of Baire measurable subsets of K, and real numbers ;e R, i=1,2,..,n,
such that

lf(x)-— iazxv‘(x)l <e Vxek.
=

We then have

|$u~ ] < e

an_d

n

| § raii— Y aji(UnExK)| < e.
exK i=1
By taking into account the definition of j, we now Easily get

(§rdu— § saif < 2e,
¢ exK
for any & > 0. The lemma is proved.

A simple compactness argument shows that the (@-ordered set ,II+(K) is
inductive. Hence Zorn’s lemma implies that for any € ML(K) there exists a («)-
maximal measure » € .#1(K) such that u «v. In particular, this is true for the order
relation < (see [8], Ch. 4), as well as for the preorder relation < (see [3], p. 307).

3

The following lemma is a slight extension of Proposition 4.2 from [8] (which is
identical with part (b) of the lemma). The proof is adapted from that of Proposi-
tion 4.2 from [8].

We first recall that for any f e C(K; R) one defines its upper semicontinuous
concave hull f by

)= inf h(x).
heA(K;R)
h>f
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It is easy to prove that (see [8], Ch. 3):

(a) fis concave, bounded and upper semicontinuous for any fe C(K; R);
(b)f<faudf S« fis concave, erC(K R);

© if /,ge C(K; R), then (f+g)” <f+Z and |f~zI<|If—gll; (f+g)

= f+g, for g c A(K; R); (tf)~ = rf, for any r €R, and fe C(X; R);
(d) if £ < f, where f’ is concave and upper semicontinuous, then < f".
LemMA 2. (@) If pe #L(K) is any (€)-maximal measure, then u(f)= pu(f)
Sfor any f& S; in particular, p((#?)") = u(h?), Vhe A(K; R).
®) If pe #L(K) is any (<)-maximal measure, then w(H) = u(f), for any
fe C(K; B).

Proof. Let f, € C(K; R). We define a real linear functional L: Rf, - R by
the formula

L(afo) = au(Fy), aeR.

We also define a positively homogeneous sublinear functional p: C(K; R)— R
by the formula

() =u(H, feCK;R).
For ae R, a> 0, we obviously have L(afy) = p(afy). For a < 0, from
0 = (afo—afo)™ < (afo)” +(—afo)” = (afo)™ —afo.,
we infer that
Liafo) = ap(fo) = plafo) < u((afo)) = plafy).
The Hahn-Banach theorem now implies that there exists a linear functional
L': C(K; R) - R such that
L'|Rfo=L
IfgeC(K; R), g <

and  L'(D<p(f), VfeCE;R.
0, we have & < 0 and, therefore,

L@<ple=pn@®<0

This shows that L’ > 0 as a linear functlonal on C(X; R) and, therefore, there

exists a positive Radon measure » on K such that
L'() =+(f), VYfeCK;R).

If fe C(K; R) is convex, then —f is concave and, therefore, (—f)~ = —f; it
follows that

4N = —p(=f) = —p(=N") = =p(=-N < =L'(~N) = L'(N = (),
and, consequently, we have u < v; hence we also have p 4, ie., u(f) <»(f),
Vfes.

(@) If uis («)-maximal, we infer that u(f) = »(f), V feS. In pasticular, we
have (if £, € S):

#(fo) = v(fo) = L'(fo) = L(fo) = l‘(fo)
(b) If p is (<)-maximal, then u = ». It follows that

#(fo) = ¥(fo) = L'(fo) = L{fo) = p(fo)-
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The lemma is proved.

For any fe C(K; R) let us denote S; = {x e K; f(x) = J(x)3}. ObVlously, Sy is
a Gj-subset of K.

ProrosiTION 1 (H. Bauer). For any x € K we have

x € exK <> there is a unique p € ML(K) such that b(u) = x.

Proof (see {8], Ch. 1). If x e exK and u € #}(K) is such that b(u) = x, we
have suppp = {x}. Indeed, it is sufficient to prove that u(D) = 0 for any compact
set D = K\ {x}. If this is not true, then there exists a compact set D < EN &}
and a point y € D such that u(DnU) > 0 for any neighbourhood U of y. Let us
choose a compact convex set U, such that x ¢ U and define K, = ¢6(D U). Then
x ¢ Ko and u(K,) > 0. Let us define u; = (pu(Ko))~* (yx,4). We obviously have
b(p) €Ky, If u(Ko) =1, then py; = u, hence x = b(u) = b(u,) € Ky, a contra-
diction. Consequently, we have u(Ko) < 1. Let u» = (1—e(Ky))™* (¥cx, ). Then
b(uz) e K and p = p(K;)py + (1— p(Ky))p2; this implies that

% = b(p) = p(K)b(p) +(1—u(K1))b(us),
where b(g;) # x, a contradiction. Consequently, u = &,.

Conversely, if x € K\ ex X, then there exist x,, x, € K such that x = L(x+xy)
and x;, x, # x. We then have

& ~ (e, +e,) and
The proposition is proved.

PROPOSITION 2 (see [8], Proposition 3.1). For any fe C(K; R) and any x €K
we have

& # 36, +55,).

769 = sup {{f00) dp); o ~ &)
K

In particular, if x € exK, then f(x) = f(x).
Proof. Let us define f'(x) = sup {éf(x)d,u(x); B~ 8,}. Then we obwiously

have f(x) < f'(x), x €K, and f” is easily shown to be concave. In order to prove

that it is upper semicontinuous, let € R and let (Xs)xez be a convergent net in X,

X = hx:;x, such that f"(x,) > r, Va €I, Forany ¢ > 0 and any « € I we can choose
-3

a p, € A(K) such that p, ~ &, and r—e < f'(x)—& < p(f), Vo €I Since the
set #3(K) is compact for the vague topology, we can choose a convergent subnet
(apy)pess hm,uuw) #. We obviously have b(i) = x and r—e < p(f) < F'(x), for

any ¢ > 0; h.ence, r < f'(x), and this shows_f.hat~ [ is upper semicontinuous. Conse-
quently, the inequality f< f* implies that f< f = f". On the other hand, we have
(for any pe #L(K), p ~ &),

Jeaut) < Sf(x)d#(x)<f(x),

and this 1mphes that £ (x) < f(), xek
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COoROLLARY 1. (a) For any fe C(K; Rj we have Sy o exK.
(b) If H < A(K; R) is a total set, then

ﬂ Spz = exK.

(c) If K is metrizable, then there exists a sequence (h,,),,;o, h, € A(K; R),
|1kl €1, ¥n =0, such that

o0
(N Siz = exk.
n=0

Consequently, if K is metrizable, then exK is a Gs-subset of K.
Proof. (a) is an immediate consequence of Proposition 2.
(b) Let us remark that if H is a total subset of A(K; R), then H separates the

points of K. Now let x € ) S;2. If x ¢ ex K, then there exist x,, x €K, x1,%, # X,
heH

such that x = £(x;+x,). Since the set H separates the points of K, there exists
a hy € H such that hy(x;) # ho(x). Then, for any h € A(K; R), we have

2 hg = h(x) > [ho(e) —ho(x)* +h3(x).

Consequently, we have A3(x) = [lg () — ho(%)|2 -+ B3(X) > h3(x), and this implies
that x ¢ Spz.

(c) If K is metrizable, then C(K; R) is separable. Consequently, 4(X; R) is
separable and, therefore, in {# € A(X; R); ||h|| < 1} there exists a countable, dense
subset H, which, obviously, is total in 4(X; R). Since any S;.is a Gs-subset in K,

in this case exK is also a Gj-subset.

COROLLARY 2. (a) For any («)-maximal measure ypc AL(K), and any fe S
we have u(Sy) = 1; in particular, u(Sy2) = 1, Vhe A(K; R).

(b) If K is metrizable, and ue€ #1(K) is any («Q)-maximal measure, then
B(exK) =

Proof. Assertion (a) is an immediate consequence of Lemma 2 and of the
definition of the set Sy, fe C(K; R). Assertion (b) is an immediate consequence of
assertion (a) and of Corollary 1.

4

An important result in Convex Analysis is the following “Minimum Principle” of
H. Bauer (see [2], Lemma 1).
THEOREM 1 (H. Bauer). Let f1,f2: K — R be semicontinuous functions, with f;
convex and f, concave. Then
fi(®) < fo(x), Vx eexK = £,(x) < f2(x), Yx € K.
(Here any kind of semicontinuity is allowed for the two functions; moreover, one

does not assume that they have the same kind of semicontinuity, i.e., any combina-
tion is allowed.)
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‘We refer to [2] for the proof of this theorem. We shall need a slight, but partial,
extension of this theorem, which will play the main role in our generalization of
Choquet’s and Bishop’s de Leeuw’s theorems.

TaEOREM 2. Let f: K — R be a concave semicontinuous function. Then

f(x) > 0,Vx eexK =f(x) > 0,VxeK.
Proof. (2) Let us assume that f is lower semicontinuous. Then m = inf f(x) is
attained on K, i.e., there exists an x, € K such that f(x,) = m. Let K, = {xeK;
f(x) = m}. Since f is lower semicontinuous, Ko is a (non-empty) compact subset
‘of K. Let K; = co(K,). Milman’s theorem implies that exK; < K,. Let x; e exK;;
then f(x;) = m. If x’, x” € K are such that x', " # x;, %; = ;(x"+x"), then,
since f is concave, we have
m = f(x1) = $(fx)+f(x") = m,
and, therefore, f(x") = f(x") = m. Hence X', x”” € K, < K,. Consequently, since
x; €exK;, we have x’ = x' = x,. This shows that x; eexK, and m = f(x;) > 0;
therefore, we have f(x) > m > 0, for any x e K.
(b") Let us now assume that f is upper semicontinuous, and let x, & X. Then
we have f = f and, therefore, we have
f(xo) = ;nf h(xo).
heA(;k; R)
For any n € N* we can choose a A, € A(K; R) such that 4, > f on K and
JE)+1/n > hy(xe), n>=1. .
Let fo = inf h,. Then f,: K> R is a Baire measurable, concave, upper semi-
nz1
continuous function such that
fo®) = f(x) >0 for any x eexK
and
Sol%o) = flxo). )
(b") For any r € R let us define
K@ = {xeK; folx) <71}.

For any r € R, the set K(r) is Baire measurable and, therefore, there exists a count-

able subset H, = A(K; R) such that K(r) belongs to the smallest o-algebra 2, of
subsets of K such that all functions in H, are Z,-measurable.

Let H = UQH,. Then H is a countable subset of 4(K; R). Let X be the smal-
TE
lest g-algebra of subsets of K such that all functions in H are Z-measurable. Then

we have X, < X, Vre @, and, therefore, K(r) e X, Vre Q. }
For any r € R and any sequence (,),50 such that r, € @, r,1 r, we have

K(r) = U K(rl s
n>0
and this implies that K(r) e X for any re R.

©
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Consequently, the function f; is Z-measurable.
Let (gu)s>0 be an enumeration of the functions in H.

(b""). Let us now define a continuous affine mapping g: X - RV by the for-
mula '
800 = (8(X))nz0, xEK.

Then g(K) = RN is a metrizable compact convex subset of RV. Let us now

prove that if x,y &€ K and g(x) = g(»), then fo(x) = fo(3).
Indeed, let us define

L) = {zeK; fol2) = fol)}-

Then L(x) € Z. Since X is the smallest g-algebra of subset of X such that all
the functions g,, # = 0, be measurable, we have

z; €K, zo € L(x), gu(z1) = 8(20), V1 2> 0 =z, € L(x).

Consequently, since x € L(x), we have y € L(x), ie., fo(3) = fo(x).
(b%) From (b"’) we conclude that by the formula

k(g(x) = fo(x), xeK,
we correctly define a function k: g(K) — R.
It is obvious that this function is concave on g(K).

Now let y; eexg(K). Then there exists an x; e exK such that g(x,) =y,
and, therefore, we have

k(y:) = k(g(x)) = fo(x;) >0, Vy; eexg(K).
From

{y e g(K); k() = r} = {g(x); x €K, fo(x) > r}
=g({x; xeK, fo(x) > r}), VreR,
and from the fact that the mapping g is closed we infer that the function % is upper
semicontinuous on b(X).
(b") Now let pq € .#1(g(K)) be any (<)-maximal or (<)-maximal measure

which represents the point g(x,). We then have (by taking into account Corollary 2
to Proposition 2, and also Lemma 1)

Jolto) = k(g(eo)) = § k0due®) = § k()duo() > 0.
8(X) exg(K)

The theorem is proved.

5

In this section we shall give our generalization of the Bishop—de Leeuw and Choquet
theorems. i

* Let D « K be a Baire measurable subset; it is easy to prove that there exists
a sequence (Ap)nen, hn € A(K; R), n€ N, such that ||4,]| <1, VreN, and xe D,
yeK, h(x) = h()), YneN=>ypeD.
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Let us define Do = D ([ Sig)-
n=0

PROPOSITION 3. For any x, € Do\ (exK) there exist x;, X, € Dy such that x,
# Xo # X5 and X = 5 (x;+X,).
Proof. Since x, ¢ exK, there exdst x,, x, € K such that x; # x; # x, and x,
= 1 (x,+x,). Let us prove that x,, x, € Dy.
Indeed, we have .
h2(xo) = h2(xo), VneN,
and _
B2 (Axy + (1= D)x,) = B2 (Axi+ (1~ 2)x2)
for any ne_N, and any 2 € [0, 1].
Since A2 is concave and A2 is convex, we infer that
(%) E(lx1+(1—l)x2) = h2(Ax,+(1—=2)x,)
for any n € N and any 4 €[0, 1]. We then infer that the mapping
A h2(Ax+(1=Dx,), 1e€[0,1],

is affine for any » e N. Since it is the square of an affine function, we deduce that
the function

Ao b (x +(1-2Dx,), Ael0,1],
is constant on [0, 1] for any n € N. Consequently, we have

hn(xl) = hn(xo) = hn(xz)a VneN,
and this implies that

X1, X3 €D,
On the other hand, from (+) we infer that

<«
X1, %5 € ﬂoS,,a.
e

The proposition is proved.
THEOREM 3. (a) Any («)-maximal measure u <€ MHL(K) is pseudoconcentrated
on exK. In particular, we have

(b) (Choquet) Any (<)-maximal measure p € M1(K) is pseudoconcentrated on
exK.

(c) (Bishop-de Leeuw) Any (<)-maximal measure ue #:(K) is pseudo-
concentrated on exK.
Proof. (a) It will be sufficient to prove that for any compact, Baire measurable
set D c K such- that
Dn(exK) = G,
we have u(D) = 0. Indeed, let us consider the set D, from the preceding proposi-
tion. We shall prove that D, = @, i.e.,

De '.C:Jo (CSw).
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Corollary 2 to Proposition 2 will then imply that u(D) = 0.
Let us assume that D, # &. From the equality
co(Dy) = E(50)’
and from the Milman theorem we then infer that
ex(@6(Dg)) = D, < D,

because D is compact. Let us consider the function

= N 1 2 _h2
= o (-1,

n=0

where h,, n € N, are the functions already used in Proposition 3. It is obvious that ¢
is concave, finite and upper semicontinuous on X, hence on €6(D,).

If g(x) > 0 for any x eex (EB(DO)), then, by Theorem 2, we would infer that
@(x) >0 for any xe Dy, a contradiction. Consequently, there exists an x,
e ex(c0(Dy)) such that ¢(x,) = O; hence, we have

Xo €Dy € D.
From Dn (exK) = @ we infer that
Xo ¢ exK;
Proposition 3 now implies that there exist x,, x, € D, < co6(D,) such that
Xy # Xo # X, and  Xo = 3(X;+X5),
thus contradicting the extremality of x, in To(D,).
The theorem is proved.

Added in proof. N. Boboc informed the author that Theorem 2 first appeared in
N. Boboc and Gh. Bucur, Conuri de fungtii inue pe spatii compacte, Ed. Aca-
demiei R.S.R., Bucarest 1976, whereas Theorem 3 first appeared in N. Boboc andA. Cornea,
Convex cones of lower semicontinuous functions on compact spaces, Rev. Roumaine Math. pures
et appl. 12 (1967), 471-525. The proofs given to them here are, however, new.

@
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1

Let I" be an additive and dense subgroup of the real axis R. We shall consider that
I is equipped with the discrete topology. Let G = 1 be the compact group of
characters of I, i.e. the group of multiplicative functions y on I" with |y} = 1.
According to the Pontrjagin duality theorem, the character group of G equipped
with the sup-norm topology is isomorphic and homeomorphic to I', and we shall
always identify I' = {a}ser with the group G = {(a}aer-

By the generalized complex plane we mean in the following the space Cg
= Gx[0, ©)/Gx {0} with factor-topology. By * we denote the image of Gx {0}
in Cs. We extend the characters 7, of G on Cs as 7.(4,8) = 2°%(8), if 1 #0,
a+#0; 7,(x) =0, a # 0;and 3,(4, g) = 1if yo = 1. Let K be a compact setin Cs.
By Ps(K) [Re(K)], we denote the closure in C(K) (with sup-norm) of the [ratios
of the] finite linear combinations of the extensions %,, a > 0, of the characters y,,
and by 44(K) the closure in C(K) of the ratios of functions from Pg(K). Note that
in the case when K is the set dg = Gx [0, 1]/Gx {0} = C, the algebra Pg(K)
coincides with the algebra A4; of so called generalized analytic functions on G,
introduced by Arens and Singer [1]. We use the term generalized analytic functions
to denote the elements of 45(K). It is easy to see, that if I” consists of rational num-
bers, then Rs(K) = A(K). In this paper we show that algebras Pg(K), Re(K) and
Ag(K), when K < C;, preserve most of the properties of classical algebras P(K),
R(K) and A(K), K = C".

2

Let K be a bounded set in C;. The (generalized) polynomial hull K of K we call as
usual the set of these (4, g) € Cg, for which

IP(2,8)l < sup IP(4, 8)l,

where P is any finite linear combination Pf functions 7,, @3> 0. A bounded set
K < Cq is called polynomially convex, if K = K.
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