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Let I" be an additive and dense subgroup of the real axis R. We shall consider that
I is equipped with the discrete topology. Let G = 1 be the compact group of
characters of I, i.e. the group of multiplicative functions y on I" with |y} = 1.
According to the Pontrjagin duality theorem, the character group of G equipped
with the sup-norm topology is isomorphic and homeomorphic to I', and we shall
always identify I' = {a}ser with the group G = {(a}aer-

By the generalized complex plane we mean in the following the space Cg
= Gx[0, ©)/Gx {0} with factor-topology. By * we denote the image of Gx {0}
in Cs. We extend the characters 7, of G on Cs as 7.(4,8) = 2°%(8), if 1 #0,
a+#0; 7,(x) =0, a # 0;and 3,(4, g) = 1if yo = 1. Let K be a compact setin Cs.
By Ps(K) [Re(K)], we denote the closure in C(K) (with sup-norm) of the [ratios
of the] finite linear combinations of the extensions %,, a > 0, of the characters y,,
and by 44(K) the closure in C(K) of the ratios of functions from Pg(K). Note that
in the case when K is the set dg = Gx [0, 1]/Gx {0} = C, the algebra Pg(K)
coincides with the algebra A4; of so called generalized analytic functions on G,
introduced by Arens and Singer [1]. We use the term generalized analytic functions
to denote the elements of 45(K). It is easy to see, that if I” consists of rational num-
bers, then Rs(K) = A(K). In this paper we show that algebras Pg(K), Re(K) and
Ag(K), when K < C;, preserve most of the properties of classical algebras P(K),
R(K) and A(K), K = C".

2

Let K be a bounded set in C;. The (generalized) polynomial hull K of K we call as
usual the set of these (4, g) € Cg, for which

IP(2,8)l < sup IP(4, 8)l,

where P is any finite linear combination Pf functions 7,, @3> 0. A bounded set
K < Cq is called polynomially convex, if K = K.

30t [467]
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ToEOREM 1. Let K be a compact xubset of Cs. The spectrum spPs(K) of algebra
P4(K) coincides with the polynomial hull KoK

Proof. Because 1{P|lz < [|1Pallg for every finite linear combination of functions
Ya» a2 0, X < spPg(K). Let pespPs(K). ¢ coincides with g, — the linear multi-
plicative functional corresponding to the point * & Ce, if @(7z) = 0 for alla > 0,
ael' (note that @(3) = @(1) = 1). Otherwise ¢(%,) 0 for all a from I',
= I'n[0, ). As a matter of fact, let ¢(%s) # O andletcel'y, ¢ #b. Let m> 0
be such an integer, for which mb—c¢ > 0, or equivalently, for which ym_. €I,
Since Ymp-e = x?ica X Xmb—c = (Zb)'"’ from where /‘?c’im{a—c = (Zb)m' Thus [‘p(%b)]m
= 9(%0)* P(Ymb—o)- Hence (%) is equal to zero simultaneously with @(%;). The
function 6(a) = log|@(%.)! is nonpositive on I, and satisfies the equality 8(a+b)
= 0(a)+0(b). As a monotone and additive function on a dense subset in R, 6 is
extendable on the whole real axis R as a continuous linear function. Thus on I”
6(x) = tx for some t< 0, i.e. |p(¥.)| = . Consequently [p(¥,)| = 45, where A,
=¢' < 1,and ael',. Let us define

ael,,
ae—TI,.

15 9(7a)»
Ao(X-a,
As a character on the group I, g, corresponds to some element g, € G, such that
Zo(%a) = 1a(go) for all a e I'. Now

P(Za) = A580(1) = A83:(80) = Zelho, £0)» 0<l< 1.
Hence on {7, }, the functional @ coincides with “the value at the point (4, go) € C5”-
If P is a finite linear coglbination of %4, @ > 0, then [P(%, g0)| = [@(P)| < [|P||x,
from where (4o, go) € K. The theorem is proved.

A simple example of polynomially convex set is the set
Ag(o) = {(2,8)eCsl 0<

Hence the polynomial hull of any set K = A (), such that G x {a} = K, coincides
with Ag(a).

Zolt) = {

where

1< o, o—some real number, g € G}.

3

We call the rational hull r(K) of a bounded set K = C;, the set of these (4,g)
€ Cg, for which

IR(Z, )| < sup {R(4, 2)I,

where R < C(K) is any generalized rational function (= ratio of finite linear combi-
nations of functions %,, a > 0). A bounded set K = Cj is called rationally convex,
if it coincides with its rational hull.

TrEOREM 2. If K is a compact subset of Cy, then spRe(K) coincides with the
rational hull r(K) of K.

The proof is the same as the proof of Theorem 1.
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PROPOSITION 1. Let I' consists only of rational numbers and let K be a compact
set in Cg. The point (1, g) € C; belongs to the rational hull r(K) of K iff P(A, )
€ P(K) for every finite linear combination P of Fum, njm > 0.

Proof. Let P be a finite linear combination of %,, a> 0, for which P2, 9
¢ P(K). Then 1/(P—P(2, g)) is a generalized rational function on X, and obviously
the rational hull (X) of X does not contain the point (4, g). If (4, go) does not
belong to the rational hull of X, there exists a generalized rational function R, such
that [R(4o, o)l > ||R|x. Because I'y < Rat[0, co), there exists a rational function
r(z) on f1m(K) < C for an integer m > 0, such that r(ill,,,(lo,go)) > flr(Fym)liz .
Now

1/(r—7'(i1/m(209 go))) =pe Zl/m/q ° il/m:

where p and ¢ are polynomials without common zeros. Hence the (generalized)
polynomial g(%sm) does not take the value 0 = 9(%1m(%0, g0)) on K, and conse-
quently g(%1m(4o, 80)) € 4(Z1m(K)).

In particular, Proposition 1 shows that if K, is a compact subset of Rat,,

then the set K = {(1,8) € Cs| g € G, 1 € K,} is rationally convex. Hence, we have
the following

CorOLLARY 1. If K, is a compact subset of Rat,, and K= {(1,8) e Cs| A
€ Ky, g € G}, then spRs(K) = K.

THEOREM 3. Let K < Ag. Then br(K) is a boundary for the algebra Rs(K).

Proof. It is known [2], that if (1, g) € dg, there exists an imbedding j of C’
= {z] Imz > 0} to a dense subset in A through (4, g), such that for every fe A¢,
feoj~t is an analytic function on C'. Let (4, g) be an inner point of 7(X), belonging
to the Silov boundary dRs(K) of algebra Ry(K), let Us (4, g) be a neighbourhood
of (4, g) and let f e R;(K) be such that mle’xx]f[ =1, |fl ;Ul. If g =foj~1, where

jis the imbedding of {Imz > 0} in 4, through (4, g), then g is an analytic function,
reaching jts max| | in an inner point of j~*(K). Hence g = const on the connected
component of j ‘1(r(K)), containing the point (4, g). Consequently f reach its max| |
on br(K), i.e. br(K) o dRs(K).

COROLLARY 2. Let I'< Rat and K= {(A,8)eCs| 0 <a< A< B,geG}.
The Silov boundary 8Rs(K) of algebra Rs(K) coincides with the topological boundary
of K.

Proof. Here K = r(K). According to the previous theorem, dR¢(K) = br(K) =bK.
Now G x {#} = 8Rs(K), because 4¢(K) = Rq(K),and 04(K) = G x {8}; similarly
Gx {a} = dRG(K), so that dR(K) = (G x {a}) U (G x {B}) = br(K) = bK.

THEOREM 4. Let I, contains only rational numbers. If K is a compact set in
Ce, such that for every aeI', dxdy(7.(K)) = 0, then Rs(K) = C(K).

Proof. Let ¢ >0, feC(K), and let g = Ao Zym»2 ke C(7ym(K)), meZ,,
are such that max|f—g| < &/2. By the Hartogs-Rosentahl’s theorem (see [2]),
X
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h is uniformly approximable on %;a(K) by rational functions of z because
dxdy(Fym(K)) = 0. If 7 €R(%yn(K)), such that ~l'na.z( lh~#'| < €2, then
Zyym
mﬂx'f—h’ o ZIIMI < &, so that fE .RG(K).
po ;

In particular every set X < G is rationally convex. Every such set is also poly-
nomially convex (note that if g, € G\K, the function

W) = D s (140,80 (1 2))
n=1

admits the following conditions:

hedg, h(Ao,g) =1 and [h < 1.
G\ g}
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1. Preliminaries

The aim of this work is to introduce a notion of joint spectrum for finite commuting
systems of elements of (not necessarily commutative) C*-algebras and to present
some significant relevant results. Our definition originates in a characterization of
the joint spectrum (in the sense of J. L. Taylor [9]), which can be stated for com-
muting systems of operators in Hilbert spaces [11]. The present notion of joint
spectrum is intrinsically connected to a given C*-algebra but its general properties
can be easily derived from suitable representations on Hilbert spaces. ‘We intend
to carry out the whole programme of J. L. Taylor concerning the properties of the
joint spectrum and the construction of the analytic functional calculus [9], [10].
Since we work with more restrictive conditions, there occur considerable simpli-
fications of most of the proofs, in comparison with those of Taylor’s. However,
the analytic functional calculus will be given by a canonical formula, extending the
classical formula of Martinelli for analytic functions in several variables [6], [7].
The results related to the commuting systems of operators on Hilbert spaces, which
form the basic part of this work, are exposed from [11], [14] and [13]. The termi-
nology and facts concerning C*-algebras can be found in [4] and [8].

From now on § = (sy, ..., s,) will denote a fixed system of indeterminates
(nevertheless, the index n may vary). Let A [s] be the exterior algebra over the complex
field generated by sy, ..., S,. For any integer p, 0< p < n, we denote by A7[s]
the space of all homogeneous exterior p-forms in sy, ..., s,. Of course, A°[s] is
identified with the complex field C. Every space AP[s] has a natural Hilbert space
structure, in whichthe elements

S A e ASy A<ji<..<jp<n)

1

form an orthogonal basis. The Hilbert space structure of A[s] is induced by the
formula

A@ = @ 4715
p=0
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