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h is uniformly approximable on %;a(K) by rational functions of z because
dxdy(Fym(K)) = 0. If 7 €R(%yn(K)), such that ~l'na.z( lh~#'| < €2, then
Zyym
mﬂx'f—h’ o ZIIMI < &, so that fE .RG(K).
po ;

In particular every set X < G is rationally convex. Every such set is also poly-
nomially convex (note that if g, € G\K, the function

W) = D s (140,80 (1 2))
n=1

admits the following conditions:

hedg, h(Ao,g) =1 and [h < 1.
G\ g}
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1. Preliminaries

The aim of this work is to introduce a notion of joint spectrum for finite commuting
systems of elements of (not necessarily commutative) C*-algebras and to present
some significant relevant results. Our definition originates in a characterization of
the joint spectrum (in the sense of J. L. Taylor [9]), which can be stated for com-
muting systems of operators in Hilbert spaces [11]. The present notion of joint
spectrum is intrinsically connected to a given C*-algebra but its general properties
can be easily derived from suitable representations on Hilbert spaces. ‘We intend
to carry out the whole programme of J. L. Taylor concerning the properties of the
joint spectrum and the construction of the analytic functional calculus [9], [10].
Since we work with more restrictive conditions, there occur considerable simpli-
fications of most of the proofs, in comparison with those of Taylor’s. However,
the analytic functional calculus will be given by a canonical formula, extending the
classical formula of Martinelli for analytic functions in several variables [6], [7].
The results related to the commuting systems of operators on Hilbert spaces, which
form the basic part of this work, are exposed from [11], [14] and [13]. The termi-
nology and facts concerning C*-algebras can be found in [4] and [8].

From now on § = (sy, ..., s,) will denote a fixed system of indeterminates
(nevertheless, the index n may vary). Let A [s] be the exterior algebra over the complex
field generated by sy, ..., S,. For any integer p, 0< p < n, we denote by A7[s]
the space of all homogeneous exterior p-forms in sy, ..., s,. Of course, A°[s] is
identified with the complex field C. Every space AP[s] has a natural Hilbert space
structure, in whichthe elements

S A e ASy A<ji<..<jp<n)

1

form an orthogonal basis. The Hilbert space structure of A[s] is induced by the
formula

A@ = @ 4715
p=0

[471]
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Consider now the operators
1.1) Sié=s08 (§eds];j=1,..,n).

The anticommuting system o = (S, ..., S,) will play an important role in the
sequel. Notice that the adjoint of (1.1) is given by
1.2) ST +s;n &) = &
where &-+5; A £ is the canonical decomposition of an arbitrary element £ e A[s],
with & and £} not containing s;.

From (1.1) and (1.2) we obtain readily the relations
0’ j % k’
1, j=k.

The next result is well known in theoretical physics.

LemMA 1.1. Define T; = S; for 1<j<n and T; = S}, for n+1<j< 2.
Then the set of monomials of the form

Tf e Tfp

1

(=1,..,n,

1.3) S,S¥+S:S, = {

] (<< <jp<on).
and the identity form a basis for the space of all linear operators on Als].

Proof. Notice that the dimension of the space A[s] is 2" and we have exactly
22" monomials of the prescribed form. Thus it will be sufficient to prove that these
monomials generate the space. We use induction with respect to n. If n = 1, the
system (1, 5,) is a basis in A[s]. Then we have

s 00 p 01 " 00
1= 1 0)’ 1=(0 0)5 S151 = (0 1)9

with respect to (1, 5,). It is clear that every 2 x2 matrix is a linear combination of
S1, 5%, Sy Sf and the identity, hence the assertion is true in this case.

Assume now that the assertion is true up to the order . If s* = (S15 -ons Sy Sngt)s
we have

Al = Als1® Sy 1 Afs].

Note that P =S, 8,,, is the projection of Als] onto A[s] and that Q = 1P
= Spsr18%1, by (1.3). If V is an arbitrary operator on A[s’], then ¥ = PVP+
+QVP+PVQ+QVQ and each term of this sum may be represented as desired, by
the induction hypothesis.

Let us denote by M[s] the set of all linear operators on the space A[s]. We
then have the following

COROLLARY 1.2. The C*-algebra with identity generated by the system o
= (S, ..., Sy) is equal to MTs].

Let us now take a C*-algebra B with identity, always denoted by 1. Then the
tensor product

Mls, B] = BQM[s]
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can be endowed with a cross-norm, which is a C*-norm, making it a C*-algebra
[8]. We identify the algebra B with the subalgebra B®1 of Ms, B] and the algebra
M([s] with the subalgebra 1@ M[s]. The symbol “®” will be also omitted when
representing elements of M[s, B].

Consider a commuting system b = (b, ..
ed with the element

a4
with the property

.» b,) = B. This system can be associat-

0p = by Si+ ... +b,S,€Ml[s, B]

8 =Y (Bbi—bib)S,S; = 0,
J<k
by,

DeFINITION 1.3. The commuting system b = (b, ..., b,) in B is said to be
nonsingular if the element

(1.5

is invertible in M[s, B]. Otherwise, the system b will be called singular.

The set of all points z = (zy, ..., z,) € C" such that z—b = (z;—by, ..., Z,—by)
is singular will be called the (joint) spectrum of b and will be denoted by og(b).

‘We now show that Definition 1.3 is a reasonable extension of the one-dimensional
case.

on account of the commutativity of (b, ...

i

R(b) = 8,+ 5

ProOPOSITION 1.4. If b is the singleton (b,) then b is nonsingular if and-only if b,
is invertible. ’

Proof. If by is invertible then b¥~'S, +571Sf is the inverse of b,S, +b*S¥,
hence b is nonsingular.

Conversely, by Lemma 1.1 the system (1, S;, ST, S;S}) is 2 basis in M[s],
where 5 = (5,). If the element

ao+a, Sy +a; S*+a,S, St € M[s, B]

is the inverse of the self-adjoint element b, S, + b*S¥, then a, = a*, a/* = 4} and
a} = a,. Moreover, we must have b;a, = 0, b*¥(go+a,) =0, b¥a, = 1, b,a}
= bYa, and a, b} = a¥b,, with a; = a}, whence a* = b7? and a, = a, = 0. In
particular, b, is invertible in B. )

Note that from Proposition 1.4 one infers that o5(b) = ap(b,), where the last
symbol denotes the usual spectrum of the element b, € B.

The next sections will present some other reasons indicating that the above
definition of the joint spectrum is legitimate.

2. The elementary properties of the joint spectrum

In this section B will be a fixed C*-algebra with identity. All *-representations
(*-bomomorphisms) will be supposed to preserve the identity.
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LeMMA 2.1. If B’ is another C*-algebra with identity and @: B — B’ is a *-homo-
morphism, then for any commuting system b = (by, ..., b,) in B we have the inclusion

asp®) < os(b).
If g is a *-isomorphism, then this inclusion is an equality.

Proof. The assertion follows easily from the fact that p®1 is a *-homomorphism
of Mls, B] into M[s, B'].

For an arbitrary Hilbert space X we denote by £ (X) the algebra of all bounded
linear operators acting on X.

‘We recall that for the C*-algebra B there exists, by the Gelfand-Naimark
representation theorem [4], [8], a Hilbert space X and an isometric *-isomorphism
@ of B into #(X). Then the map ¢®1 is a *-isomorphism of M[s, B] onto
Mls, p(B)] = ZL(Als, X]), where Als, X] = X®A[s] (this notation will be kept for
arbitrary systems of indeterminates and linear spaces). Although the space X is not
uniquely determined by B, Lemma 2.1 implies that the commuting systems in B
have equal spectra with the corresponding commuting systems in @(B). Therefore
there is no essential loss of generality in supposing that B « #(X), where X is
a fixed Hilbert space.

If b= (by, ..., by) = B is a commuting system, then the map J,, defined on
Als, X], has the property d7 = 0, whence %#(8,) = X#'(8;), where # and o stand
for the range and the kernel, respectively.

PROPOSITION 2.2. Assume that b= (b, ...,b,) = B < ¥(X) is a commuting
system. The system b is nonsingular if and only if R(8y) is equal to A (8y).
Proof. This assertion will follow from a more general statement.

Lemma 2.3. If ae #(X) has the property a® = 0, then a+a* is invertible in
ZL(X) if and only if R(a) = A (a).

Proof of Lemma 2.3. Suppose that a+a* is invertible and denote by p the projec-
tion of X onto X'(a). If y € A#'(a) is arbitrary, we have

y = py = (a+a*)(a+a*)"'y = a(l-p)a+a*)'y;
since 1—p is the projection onto #(a¥), we see that R(a) = A (a).

Conversely, the equality #(a) = & (a) implies the equality #(a*) = o' (a*);
thus, from the decomposition X = A4 (a)®%(a*) we obtain that a maps ' (a*)
isomorphically onto #'(¢) and a* maps '(a) isomorphically onto ¢ (a*). We
hence derive that a+a* has a continuous inverse in Z(X).

The proof of Proposition 2.2 follows from Lemma 2.3, applied to 8, on A[s, X].
The only thing to be noted is that if d,+ 8} is invertible in #(A[s, X]), then it is
invertible in MTs, B] as well, since any C*-algebra of this type is inverse-closed [4].

Remark 2.4. Proposition 2.2 remains true if we take instead of X a finite direct
sum of copies of X, which is again a left B-module, in 2 natural way.

For. commuting systems a = (ay, ..., a,) = Z(X) we denote by o(a, X) the
set 04(a), where 4 is the C*-algebra with unit generated in £(X) by ay,.., an.

* ©
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This set can be defined only in terms of X, as one can see from Proposition 2.2;
such being the original definition for the joint spectrum of commuting systems of
operators [9], [11].

Lemma 2.5. Consider a commuting system b= (by, ..., b)) € B <= 2(X). If a
= (@4, .- » @) s a System in the commutant of b in ¥ (X) with the property a, b, + ...
... +a,b, = 1, then b is nonsingular.

Proof. Notice that

n

2.1) 0070 +0308, = D byay(S;SF+S5:8H) = > ab, =1,
( vl d .

=1
where we have used the relations (1.3).

Now take 5 € A[s, X] with the property 6,5 = 0. Then we get from (2.1)
that 8,879 = ; hence by Proposition 2.2 the system & is nonsingular.

PROPOSITION 2.6. Suppose that the algebra B is commutative. Then a system
b= (by, ..., by) = B is nonsingular if and only if there is a system a = (ay, ..., a,)
in B such that

a1 b+ ... +ab, = 1. )

Proof. If such a system @ = (a, ..., a,) exists, then b is nonsingular by Lemma
2.5.

Conversely, suppose that b is nonsingular. Then the operator

R = 8,83 +878,= ) bb}

=

is invertible, where the calculation is similar with (2.1). If we define

a; = b* (; ) =1,

then the system a = {4y, ..., a,) has the required property.

Proposition 2.6 shows that Definition 1.3 coincides with the classical definition
of the joint spectrum in the commutative case (see, for instance [2]).

Another consequence of Lemma 2.5 is the following

COROLLARY 2.7. If b = (by, ..., b,) is a commuting system, then

op(b) < ap(by) % ... Xop(by).

LemMA 2.8. Assume that b’ = (by, ..., by busyy ---» bw) IS @ commuting system
in B. If b =(by , ..., b,) is nonsingular, then b’ is nonsingular.

Proof. We may suppose that m = 1 and an induction argument can be easily
applied in order to yield the general result. As in the proof of Lemma 1.1, if s
= (slx vy Spy sn+1) then

A[SI’X] = A[S3X]®Sn+1A[s’X1'
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Take 5 € A[s', X] such that 6,5 = 0. If %' +S,,, 7" is the canonical decomposition
of 7, we must have d,%" = 0 and B,,, %’ = &7". Since b is nonsingular, we can
write 5’ = 0,&’, where & e A[s, X]. Then 8(b,y1&—7%"") = 0, therefore by &~
—n" = §,&", with & e A[s, X]. It is easily seen that the form & = E4S,, &
is a solution of the equation d,,& = #; hence &’ is nonsingular, by Proposition 2.2.

COROLLARY 2.9. If b = (by, ...
that (b, c) is commuting, then

(] ((b: c)) < o5(b) % 05(c),

where (b,¢) = (Bys s Buy Cryvves Cr).

THEOREM 2.10. If b = (by, ...
that (b, c) is commuting, then

sby) and ¢ = (cy, ..., &) are systems in B such

»by) and ¢ = (cy, ..., cn) are systems in B such

705((b, ¢)) = op(b),
where 7 is the projection of C**™ onto the first n coordinates.
Proof. The inclusion nog((d, ¢)) < ap(®) follows from Corollary 2.9. The
other inclusion will be obtained from some technical results.

LemmA 2.11. Assume that a = (ay, ...,a,) € L(X)isa commuting system with
R(0,) not closed in Als, X1. If b e 2(X) is in the commutant of a, p is the projection
of Als, X] onto #(4,) and

e =pb—wrp+8p (weO),
then there is a wq € C such that the equation d,, ¢, = p hasno solutions in & (Als, XD.

Proof of Lemma 2.11. Some arguments are inspired from [3]. Since %(4,) is
not closed, 2(5}) is not closed, either. Then we can find a sequence & € %(4,) such
that ||&]| = 1 and 67%, — 0 as k — 0. Let us define the vector states

el) = ubi, &> (e LA, X]); k=1,2,3,..).

By passing to a subsequence, we may suppose that there is a state ¢ on L(A[s, X])
such that

o) = lim uty, £ (u € L(A[s, XD).

Let @, L(Als, X)) » Z(X,) be the s-representation associated with 0, with the
cyclic vector £, [4]. If ¥, is the kernel of ¢,(8%), then ¥, 5 £,; hence Y, # {0}. We
bave more, namely, Z, = @,(p)¥, is not null. Indeed, 2(D)€,3 Z, and

llee@) &> = o(p) =klim P = 1.

Since §jp = 87, we have Z, c ¥,. Consider now the operator g,(pb*)|Z,. As
83b* = b*3¥, the values of Po(Pb*)|Z, are in Z,. Take W, in the boundary of the
spectrum of ¢,(pb*)|Z,. Then we can find a sequence 7% € Z, with ||n¥|| = 1 and
(9.(pb*)—Wo )77 convergent to 0 (k — ). Suppose that the equation d,, ey =D
has a bounded solution. Then

%(dw,))‘pe (p(b—w())*)’?: = 77:’
and letting k£ — o0 we obtain a contradiction.
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LemMA 2.12. Assume that a(w) = (ay, ..., a,, b—w) is a commuting system in
Z(X), where w e Clis arbitrary. If a(w) is nonsingular for any w & C, then g = (a, ...
..., a,) is nonsingular.

Proof of Lemma 2.12. If a(w) is nonsingular, then we have in Als, X] the
equality
2.2 H(82) = R(8)+(b—w)2A (8,).
Indeed, if 7 € A°(3,) then 8yySny1m = 0, hence by the nonsingularity of a(w),
Spy1n = 6u51+sn+1((b—‘w)£1+6a£2)5
whence 8,8, = 0 and 5 = (b-w)é,+ 8,6, ie,
H(02) = R(8)+(b—w)A(8,).
Since. the opposite inclusion is obvious, we have (2.2).
If #(8,) # A(8,) and g is the projection of #°(8,) onto " () %(5,), we
infer from (2.2)
H (8 ©R(8:) = (gb—wW)H (8.)O R(5,)
and this equality is not possible for any w e C.
We may suppose then %(4,) # #(d,) = A°(3,). Consider the operator
‘ Cy = n(l '_p)+(b_w)p"
the notation being preserved from the previous lemma. If the equality (2.2) were
true for any w e C, then the equation ¢, d¥ = p would have a bounded solution
d,, for any w e C, which contradicts Lemma 2.11.
Let us return to the proof of Theorem 2.10. It is enough to check the assertion
for m = 1. Take z € 63(b). According to the preceding lemma, we can find we C
such that (b—z, ¢;~w) is not singular, hence (z, w) € o5((2, ¢)).
The property given by Theorem 2.10 is known as the projection property of the
joint spectrum. An important consequence of it is the following
COROLLARY 2.13. For any commuting system b = (b,, .
spectrum is nonempty.
Proof. By Theorem 2.10, the projection of og(b) onto the jth coordinate is
equal to a5(b;) (j=1, ..., n), which is a nonempty set.
ProrosiTION 2.14. The mapping
. C"3 z - R(2) = 8,4 8F € M[s]
is an R-linear isometry. Moreover, for any z 0 we have R@@)™ = {lz||"2R(2),
where |[2][* = |z, P+ ... +|z,.
Proof. A calculation similar to (2.1) shows that
R(z)?> = 0,05+ 87 6, = |z|I%
whence R(z)~! = ||z||~2R(z). Since R(z) is self-adjoint, we can write
IR@YI = [IR@I* = llz11%;
hence z - R(z) is an R-linear isometry.

.., by) in B the joint
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LemMaA 2.15. Consider a commuting system b = (by, ..., b)) © B. If z° ¢ oy(b)
and z € C* is such that ||z—2°)] < [|[R(z°—b)~||~%, then z ¢ ox(D).

. Proof. Indeed, by the previous proposition,
IR(z=2")R(z°—=b)7|| < 1;

therefore the series

RE—b) Y (= (RG—29RE=B) )

k=0
is absolutely convergent in MT[s, B] and defines an inverse for R(z—8) [5].

THEOREM 2.16. For any commuting system b = (by, ..., b,) in B the set cy(b)
is @ compact nonempty subset of C".

Proof. According to Corollary 2.13 the set a5(b) is nonempty. From Corollary
2.7 we obtain that oy(b) is bounded, while from Lemma 2.15 we derive that o»(b)
is closed. .

We end this section with a result concerning a concept which relates the Gelfand
theory of commutative Banach algebras and the notion of the joint spectrum,
essentially due to Taylor [9].

Assume that 4 = B is a commutative Banach algebra, whose identity coincides
with that of B. We denote by I'(4) the Gelfand space of 4. Let us define the set

@3 T4; B) = () 57 (o(8) = T4,

where b = (I;l, . IAy,,) is the Gelfand transform of the system b = (b, :.., b,) and
b is arbitrary in 4.

PROPOSITION 2.17. The set I'(A; B) is nonempty. Moreover, 5(I’(A; B)) = o3(b),
for any b < A.

Proof. Let us define I, = E‘I(a',,(b)). Notice that the sets I, are compact
and nested downwards under inclusion. Indeed, the compactness is obvious; if
b, ..., b™ are finite systems in 4 and b = (b%,...,0") then Iy = Ipv... " Im,
by Theorem 2.10. In this way, the intersection I'(4; B) = ﬂ T is nonempty. Let

us show that this set has the desired property. The mclusnon b(P(A B)) < ox(b)
is obvious. Conversely, take z € ox(b). If b“(z) nI'(4; B) = &, we can choose
¢ © A4 such that b“(z) nl, =@.If d = (b, ¢), take w € o(c) with (z, w) € ox(d);
hence (z, w) = d(y,) withy, el cTI,. Then z = I;(y,), which is a contradiction.

3. A generalized Martinelli kernel

An important integral formula in the theory of analytic complex-valued functions
in several variables is Martinelli’s formula [6], [7], known also as the Cauchy-
Martinelli-Bochner formula. Namely, if U is an arbitrary open setin C"and 4 ¢ U
is a relatively compact open set whose boundary X is piecewise smooth and is con-
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tained in U, then for every f analytic in U and any w = (wy, ..., w,) € 4 we have
the representation

_ (-1 i1 Zi—W
3.0 f(W)—WSf(z)}_I(—l) T a,

where
wy(z) = /\ dzyAdzi A ... Adz,.
Igk<n
k#j
For n = 1 the formula (3.1) reduces to the usual Cauchy formula.
The differential form

(32 (n- mZ( AN

1gk<n
k#j

will be called the Martinelli kernel. In this section we shall be looking for an analogue
of the Martinelli kernel in C*-algebras.

If U< C"is an open set and Y is an arbitrary Banach space, we denote by
C=(U, Y) [by A(U, Y)] the set of all Y-valued indefinitely differentiable [analytic]
functions in U. When Y = C, then C*(U,Y)= C*(U) [A4(U,Y) = A(U)}. If =
= (21, ... Zy) is the variable of the space, we denote by dz the system of indetermi-
nates (dz,, ..., dz,) and by 0. the differential operator

) a‘z dz,+ .. a‘z
When U < C"*™, we write the points of U in the form (z, W) = (215 -5 Zns W1, -

+» Wm). The ‘corresponding operator 6(,, w is then given by 0+ 0y - The operator
a +8,, will be also denoted by 2.

Consider again a fixed C*-algebra with identity B = £(X). We work in this
section mainly with commuting systems § = (f,, ..., ) in A(U, B), i.e. systems
for which () f(w) = Bu(w)p;(2) for any z,we U and j,k=1,...,n

Denote by o5(f) the set of all z e U such that the system f(z) = (ﬁl(z),
..., Ba(?)) is singular in U. In this definition U may be an open set in C"*". An
argument similar to that used in the proof of Lemma 2.15 shows that the set a5(B)
is closed in U. Furthermore, the map

R(B(2))™ = (bpy+ O3y (2 € UNGE(B),
having values in M([s, B], is indefinitely differentiable (as a matter of fact, this map
is actually R-analytic, as one can easily see from a slightly modified proof of Lemma
2.15).
As we have mentioned, the notation A[s, Y] [4?[s, Y]] will always mean the
space Y®A[s] [Y®A?[s]], for any linear space Y. In particular, we may consider

"the space A((s,dz, dw), C>(U, X)), where U < C™*" is open. If f = (By, ..., Bx)

< A(U, B) is a commuting system, then the operator &y is defined on A[(s, dz, dw),
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C*(U,X)] by the relation (638)(z, W) = Opcz, wy&(2, W), for any (z, w) e U. (For
every pair of systems of linear transformations b = (b;, ..., b)) and ¢ = (¢y, ..., ¢,)
we keep the notation (b, c) for the system (by, ..., by, €1, .5 Cu). A similar notation
will be used for systems of indeterminates.) We shall occasionally need a system of
indeterminates 7 = (t,, ..., &) and the corresponding system of operators given
by (1.1) will be then (T}, ..., Tn)-

THEOREM 3.1. Let U be an open set in C"*™ and 8 = (B4, ..., f.) a commuting
system in A(U, B), where B = £(X). Assume that

n € A[(s, dz, dw), C*(U, A[t, X])]
has the property (6p+5)11 = 0 in U. Then the equation {33+ 0)& = 3 has a solution

& e A[(s, dz, dw), C=(V, A1, X])],
where V < UNc3(p) is an arbitrary open set.

Proof. With no loss of generality we may suppose that % is homogeneous of
degree p < 2n+m in Sy, ..., 8, dZy,...,dz,, AWy, ..., dW,. Let us represent 5
= No+9ni+ ... +1,, where n; is of degree j in dzy, ..., dZ,, dwy, ..., dw, and of
degree p—j in sy, ..., s,. We shall be looking for a solution of the form & = &+
+&+ ... +&,1, where & is of degree jin dzy, ..., dz,, dw,, ..., dw, and of degree
p—j—1lins,, ..., s,. Then the equation (d+ 9)& = u with the condition (5,#5)7]
= 0 is equivalent to the following system of equations with supplementary condi-
tions:

5550 = MNo
5ﬁf1+gfo =1

| 8gmo =0
81+ 0n =0

é_ﬁgp—l'i'B_E -2 = Tp-1 | Bg7y+ My = 0
35,-1 =p | 677, = 0.

Let us find a solution of this system. We note that no(z, W) € # (s, ), for
any (z, w) € U. Define

Eo(zg W) = R(ﬁ(z’ w))-lﬂﬂ(z’ W).

From the proof of Lemma 2.3 we obtain &(z, w) € #'(8%.,,,) for any (z, w)
€V c UNB(B) and 8p& = 70 in V. Moreover,

55—5-50 = —55350 = —B;Yo = 5,5”1,
whence 8;(n, — dE,) = 0. Define now
El(z, W) = R(ﬂ(z: W))—l (711(2: W)—EEO(Z, W))

We have as above £(z, w) € (8}, ,,) for any (z, w) € ¥ and 8p, = 7;— 0&o.
Furthermore,

55(?72"7351) = 6p’72+5¢51351 = 55’72"‘—3(")1—350) =0,

icm

©

A MULTI-DIMENSIONAL SPECTRAL THEORY 481

and the procedure can be continued. We obtain, in general,
°

) N2, W)= 0&;.1(2, W) € K (Bpezny) (=1, ..., 0%
therefore
(3.3)

and

'Sj(zs W) =R (ﬁ(Z, w))—l (771(2: W)"' a—s‘-l(zs W)) € x(ar(z. w))

8p€i+ 8 =m, (i=1,..,p=0),

for any (z, w) € V. We must now show that 8¢,_, = #,. From the proof of Lemma
2.3 and from the structure of the operator defined by (1.5), it-follows easily that
R(B(z,w))™* maps the kernel of 8, v, in A*1[s, A[t, X]] into the kernel of 8}, ,,
in A%[s, A[t, X]] for every g; therefore the degree of &(z, w) in sy, ..., 5, must be
p—j—1. In this way we obtain that the degree of 7,(z, W)—8&,_,(z, w) in sy, ..., 5,
is zero. Since the kernel of 8pez, wy in A%[s, A[t, X]] is zero for each (z, w) € ¥, we
obtain 7, = 8&,-;, and this finishes the proof.

Remark 3.2. The formula (3.3) can be written explicitly as
L Y k
£z = Y (= DR (BG, ) (R (B, W) ) 7eslzr W),
=0

for every j = 0, 1, ..., p—1. In other words, from Theorem 3.1 we have obtained
the following result: If we take

7 € A¥[(s, dz, dw), C=(U, A[t, XT)]
which satisfies (g-+8)7 = 0n U, then the form
p—1 j
HBn(z, w) = Y. > (= 1R (B(z, W)~ (3R (Blz, W)™ nsslz W)
j=0k=0 )
is a solution of the equation (d5+ 7)€ = 7 in the space
AP=(s, dz, dw), C=(V, A[t, X])],

where ¥ < U\.cj(B) is an open set and 7, is the part of 5 of degree jin dz,, ..., dz,,
dw,, ..., dW,. In a certain sense, H(B)7 is the canonical solution of the equation
%+ D) = .

We shall use in what follows the notation

(3.9

Analogously, we denote by T the operator T ...

S§=38 0. 8.
T
PROPOSITION. 3.3. Consider a commuting system B = (By, ..., Bn) in AU, B),

31 Banach Center t. VIII
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where U < C" is an open set. If V < UN3(B) is an arbitrary open set, then
(3.5) M(B(z) = R(B(2))"(0.R(B=)"'SIX (zeV)

isa differential form in A*~*[dz, C*(V, B)] with the property 3,M (ﬂ(z)) =0inV.

Proof. We apply Theorem 3.1 with m = 0. If we fix xeX and define #(2)
= 1o(2) = Sx, then the coefficients of £,(z) (see the proof of Theorem 3.1) are
given by continuous operators acting from X into A" [s, X], calculated in x. We
shall obtain by induction that

£ = (~1YR(B@) (3R (B2))~*sx
has coefficients given by continuous operators from X into A"~/~1[s, X], calculated
in x, for any j=0,1,...,n—1. Notice that M(B(z))x = (—1)"~*£,_,(2); since
1a(2) = 0, we must have 3,M(8(z)) = 0 in ¥ and the coefficients of M ((2) are
operators from £(X). Finally, from the uniqueness of the representation of the

elements of M[s, B] (sec Lemma 1.1), we obtain that the coefficients of M| (3@)
are actually elements of B, for any z e ¥, and the proof is finished.

DerINrrioN 3.4, The differential form (3.5) will be called the Martinelli kernel
attached to the commuting system f = (B, ..., B2} = A(U, B).

The following result will show that Definition 3.4 extends naturally the usual
Martinelli kernel given by (3.2).

TreorREM 3.5. Consider the scalar system z = (z,, ..

.+ Zy) © A(C™). Then for
any z # 0 we have the equality

M@) = (o I)Z( Dy [

the coefficients of the right side being multiplication operators.
Proof. It will be enough to prove the equality

(3.6) ME)(D) = R@™@.RE@™)5,A ... As,

= (n—l)!Z(—l)j"‘ ”:ﬁh

l]zll"(& +67), by Proposition 2.14. From the proof of Theorem

/\zr,

We have R(z)™: =
3.1 we infer easily
(37 R@@.RE)) 15,

or <~ 8
o ASy = z

“2”1 ,W) S1A i A Sy

Let us define the operators
R(®) = 0.Gllzll-dAE (i=1,..

-’")!

icm
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and note that R; R, = — RyR; and R;S§ = —S¥R;
J j j k
Then we can write
(5: - 6;‘ n—1
15— S1A . AS,
HETERWIES ! o

n

oF
= (D RS

J1ssendn=1=1

*
R,,,_lsj__‘)sl Al ASy

n

ls*
"= ( Z Ry, ... R;,_S% ... S}:ﬂ) SEA . AS,
1 =1

R

8 N .
= c,,(n-‘l)!—”z”2 (;Rl

where ¢, = (— 1)~ DC*=2/2_ Gince
SIASIA e ASy = (=1)O=D2g A5 A .

we obtain, on account of the previous equalities,v

st [ ot \"*
B (a’ HzlP) SR e NS

=(n—l)!i

A Sy

z; 8
Jlz])?

1 Z 5 &
= (- ‘)'2( Y I{k}, (a'“uzuz)‘

By using the relations

@Izl = 28 |lz) -2 +l2l) "2z, (k=1,...,n)

and

@.lIzlI")A @.ll2l~3) = 0,
we can write for n 2> 3 (and similarly for n = 1,2)

- z Y ‘Ek
Z‘ Y k/;e\,( nznz)

—Z( W e {Z("”HE”‘?‘”Z”—Z’,‘/deﬁ

p>j

31

R;...R,S} ... S/}\’ S,T) S{A

Z (= 1F-15A Ry .. Ry ..

R;, for any pair of indices j and .

A Sys

R(D

F O (=195, 2A/\dzq) Z( - [\
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1 =
= NV 1z, AR A N\ Rt
“znzn_zg( Y722, 312 Aq/;ﬁ\pz.,

+”11?||12—72 R ALV
p>j

q#;

+Z( Y e )

-t
) 121(—1) REEALS

which shows that (3.7) holds. As (3.7) is equivalent to (3.6), which in turn is just
our assertion, the proof is complete.

Let K be a compact set in C" and U an open neighbourhood of K. It is always
possible to find a relatively compact open set 4 o K, with 4 < U, such that the
boundary X = 84 is a smooth surface. In this case we say that X is an admissible
surface surrounding K in U.

If 5 € A[(s, dz), C*(U, X)] is an arbitrary element, then we define, as usually,

Sn(z)/\dz1 A.oAndzy = Sn,,(z) A dzy A . Adzy,
U U .

provided that the coefficients of 7,(z) are integrable functions, where 7,(z) is the
part of 5(2) of degree n in dz,, ..., dz,.

Analogously, if £ < U is a smooth surface of real dimension 2n—1, then we
define

S'q(z) AN dzZiA . Adz, = Sn,._.,(z) Adzy A ... Adz,,
z z

where 7,_,(2) is the part of 5(z) of degree n—1 in dz,, ..., dZ,. These integrals are,
in general, elements of A[s, X]. Note also that we may consider instead of the space
X an arbitrary Banach space, in particular the algebra B.

For the sake of simplicity, we denote by dZ the form dz, A ... A dz,. Similarly,
the form dw, A ... A dw,, will be denoted by dW. From now on we denote also by P
the projection of the space A[(s, ¢, dz, dw); C*(U, X)] onto the space A[(dz, dw),
C>(U, X)], where U = C"*™ is open.

A closed set F < U is said to be C™-compact if for every compact K < ¥, the
set FN(C"x K) is compact in U, where ¥V is the projection of U onto the last m
coordinates.

For some technical reasons, we need an extension of Definition 3.5. Namely,
if 0 & A[(dz, dw), C*(U, X)] has the property 3y = 0, we put

(3.8 M)y = (—1)—*PH(B) S,

where. 8 = (B4, ..., fu) < A(U, B) is a commuting system. From Theorem 3.1 we
bave still M)y = 0 in TNY(B).
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If o3(f) is C"-compact in U and ¢ &€ C=(U) is a function such that the support
of ¢ = 1—g is C"-compact and y = 1 in a neighbourhood of ¢§(f), then we define
for any fe A(U, X)

(39) wa(f) = E‘-t—i)TSé‘qu(ﬂ) FadZ.

In particular, when U < C” and ¢}(f) is compagt, then
(3.10) va(f) = (21"),. SM(ﬁ)fA dz,

where 2 is an admissible surface surrounding o¥() in U, by applying the Stokes
formula. From the formula (3.10) we shall eventually derive the analytic functional
calculus. The integral (3.9) does-not depend on the particular choice of the function
@. This fact will follow from a more general result.

LeMMA 3.6. Assume that f = (By, ..., Bx) is @ commuting system in A(U, B),
U < C™*™, such that o§(B) is C"-compact in U. Consider a form

ne A (s, t,dz, dw), C*(U,X)]

such that (85+ 8)n = 0 in U. If the support of n is C"-compact and disjoint with a3(f)
then we have the relation

{Prndz = 3¢,

where £ € AP~'[dw, C*(V,X)] and V is the projection of U onto the last m coordi-
nates. When either p = 0 or m = 0, then & = 0.

Proof. Indeed, the canonical solution H(f)n of the equation (85+9)& = 7
is everywhere defined in U, and so Py = 351, where the support of &; is C"-com-
pact. We bave &, = &, ,+£1, where &, , is the part of &, of degree #in dz, , ..., dZ,.
Then we can write, by the Stokes formula,

§Ppadz = (38, A dz+{ 3 ndzZ = 5;551,,,\ dZ = B,¢.

If p=0then & , =0 and if m = 0 then §.&, = 8,£;; in either case we obtain
£=0.

Now, if ¢, and g, are two different functions in the formula (3.9), then the
form

n = P(6;+3)(p H(B)S 0o HB)SF) € 4"[(s, d2, diw), C=(U, X))

has the properties from Lemma 3.6, whence our assertion follows.

If = (B, ..., B) = A(U, B) is 2 commuting system, where U = C"+™, then
for any w belonging to the projection of U onto the last m coordinates the systém
By, defined by B,(2) = B(z, w), is commuting in 4(U,, B), U, being the set {z
€C"; (z,w)e U}. Similarly, if fe A(U, X) then f, € A(U,, X), where f,(2)
= flz, w). .
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. LemMA 3.7, Assume that § = (B, ..., Bs) < A(U, B) is a commuting System,
where U < C**™ is open and o§(B) is C"-compact. Then for every fe AU, X) we
have

re(NDW) = 2, (f.),

where w belongs to the projection of U onto the last m coordinates. Moreover, v5(f)
is analytic. :

Proof. Let Q be the projection of A[(s, t, dz, dw), C*(U, X)] onto the sub-

space A[(s, dz), C*(U, X)] and let us define the map

0ut = (@) & A[(s, d5), C=(U,, X)].
Note the relation

0 ((Bp+0)&) = (35,+3)0u(9),

for any &eA[(s, ¢, dz, dw), C°(U, X)]. Then the form

(85, +32) (P H(BW) Sfu— Q0 (PH(D SY))
has its support compact and disjoint with

o§(B) = (€ x (WhAdY(®).
By Lemma 3.6 we can’ wilte '
§ 2. 0w M)A dZ = S“a‘,gw(gaM(ﬂ) F)ndz = (§ GpMBfA az) (w).

Notice also that the form (6,,-{—5)52,9)11(#)Sf is null in a neighbourhood of
a3(f) and its support is C"-compact in U; hence by Lémma 3.6

3, {apM@B)rdz =0,

i, »5(f) is analytic. .

The next result is a Fubini type theorem for the integral (3.9).

ToeoREM 3.8. Let U be an open set in C"*™ and V the projection of U onto the
last m coordinates. Consider also f = (B4, ..., ;) = A(U, B)yand y = (py, ..., ¥m)
< A(V, B) such that (B, ) is a commuting system. If o¥(B) is C"-compact in U and
o%(y) is compact in V, then for any f € A(U) and g € A(V, X) we have the equality

v, n(f8) = »,(vs(Ng )

Prooﬁd Let.p be in C;’°(U) with the properties from the definition (3.9) for
63(P). Analogously, take p€C=(V) and 6 e C*(U) with similar properties, cor-
responding ‘to oh(y) and

T (B e BB (C x M),
respectively. Let us define &(z, w) = Sfiz, w)g(w) and notice that (8,+3)¢ = 0
in U, Then the support.of 5, = B+ D) pH(B)E~£ is C"-compact. Consider the
form .

PN T

M = (548,43~ "o TH(B) E—T¢ = Tn,

icm
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and define

N2 = — (858, + DpH((B, )1 +m
and

72 = (8p+6,+0)0H ((8,9)) Te— TE.

Since the support of 7, is C™compact, it is easily seen that the support of 7, is
compact. Moreover, when ¢ = 0 and p = 0, then 7, = —T%, i, 1, = —T¢ in
a neighbourhood of o§((8,#)). Clearly, the support of 7, is compact and 7,
= —TE in a neighbourhood of 6}((8,%)). By Theorem 3.1 we may represent the
difference 7,—7%, as
3.11) 772—772 = (5ﬂ+&y+5)51,

where the support of &, is compact. )
Let P, be the projection of A[(s, ¢, dz, dw), C*(U, X)] onto the subspace
A[(t, dz, dw), C*(U, X)] and consider the forms

b= ('37'*'—6—)\”11(7’) TPy 56— TPy 70
and ; _
& = P((85+ 8,+ DvH (B, 7)) —n.)-

Note that both £, and £, 1 have their supports compact and both are equal to — TPy 7,
when ¢ = 0; therefore we may write

G.12) L=l = (8,4 0)é,
where the support of &, is compact. We shall then have
{ = PLy = ByPH(y) TopPH(B)§ = (— D™ 0pM(y) dpM(B)fg
and, by (3.11),
§ = Py = P((0+3,+yH (B, )ni—m)
—P((85+ 8,1+ 8)6H (B, 7)) T&— T¢) + 05
—()™+"36M (B, ))e+0&s,

where the support of &, is compact. From (3.12) and from the above calculations
we get

(3.13)

I

I

FOM ((B, v))fg— FpM(y) oM (B)fg = 0%,

where the support of &, is compact.
Note that by the Stokes formula, for w ¢ ca(y),

(3. H) TopM(B)fg A dZ = 0.
It is also clear that

85¢M B)ferdZ = (S?q?M(ﬁ)f/\‘ dz) g
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therefore the form
(6,420 (9] HO) TopMBg n dZ—pH() T ([3pM (P17 d2) o]

is zero in a neighbourhood of ¢5(¥) and its support is compact. By Lemma 3.6 we
obtain

§ M) FoM(B) g dZnaw = §(pM() oM (B)fen dZ) n aw
= {Z.eM0) ((ZpMBIf 7 dZ)gnaw,

whence by the equality (3.13) we infer our assertion.
Let us denote by B; the double commutant in B of the set

{B1(2, W), ..., Bulz, W); (z,W) €U},
where § = (8, ..., fn) = A(U, B) is a commuting system. Then B, is a commuta-
tive Banach algebra with identity.
PrOPOSITION 3.9. With the conditions of Lemma 3.7 we have vg(f) € A(V, Bp),
for any f € A(U), where V is the projection of U onto the last m coordinates.
Proof. If be B is an element commuting with f;(z,w) for any j=1,...,n
and (z, w) € U, then we can consider the form

(8+ D) (pH(B)fbx—bpH(B)fx)  (x €X),
which is null in a neighbourhood of ¢%(8); hence from Lemma 3.6 we obtain the
conclusion.
Remark 3.10. Proposition 3.9 shows that we can obtain a variant of Theorem
3.8 with a similar statement, taking for f and g two analytic B, ,,-valued functions.

Levma 3.11. If € A(U, B) and 6§(B) is compact in U < C, then P(z) is in-
vertible if z e UN\o}§(B) and we have

7o) = %mlg BerYRd:  (feAU.X),

where I is an admissible contour surrounding o§(p) in U.

Proof. Plainly, outside the set ag(ﬂ) the function f(z) must be invertible. Then
we have 'R(B(2))™* = B(z)~1SF+p(*~1S,, for any ze UN\d3(B) (Proposition
1.4). From the formula (3.10) we obtain

1 N 1
2 = _2?1_15 RBE) S fdz = - Sﬂ(z)“‘f(z)dz.
r

ProPOSITION 3.12. Let 8 = (B, ..., B,) be a commuting system in A(U, B),
where U= Uy xU,x ... xU,. If Ujo6§(B)), which are compact, and, for each
J, Ty is an admissible contour surrounding a%/(B;) in U;, then for any fe A(U, X) we
have

1 : .
v5(f) = WS S,ﬂ;(zl>"1 voo Bz~ (22, ... dz,.

. Ia
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Proof. The assertion follows by induction from Theorem 3.8.

If u = (#)fx=1 = A(U, B) is a matrix of commuting elements, we denote
by detu the determinant of this matrix.

ProposITION 3.13. Let U = C™" bean opensetand f = (B, , ..., B) = A(U, B)

a commuting system. Assume that u = (up)] x_yis a matrix of commuting elements
n

of A(U, B), which commute also with §,, ..., B,. Denote y; = Z Ui, ¥ = (yy, ...
x=1
vees ¥n)- If 05(B) and o§(y) are both C~compact in U, then

() = vp((detu)f),
Jfor any fe A(U, X).
Proof. We define a map
Us (z, w) > ii(z, w) € Z(A[s, X]),
induced by the relations
iz, w)(xs; A oo ASy)
= Z (dctu,,“,),.,q(z,w)xsh/\ e A Sy, (xeX;p=1),
ky<<kp

and #(z, w)x = x. We then have
17(2, w)‘sﬁ(z.w)£ = 6y(z.w)r‘(zs W)E (E EA[S:XD;
therefore
(6.,+5)ﬁH(ﬂ’)Sf= (0 + NHHPSf = 4 Sf = S(detw)f.

On account of this equality we can consider the form
(8,+ B pH) S(detu)f~ pii (H(B 1))
which is null in a neighbourhood of ¢5(8) U 6%(y), where p has the properties from

the definition (3.9) for both ¢¥(f) and o%(y), and its support is compact. The con-
clusion is then forced by Lemma 3.6.

4. The analytic functional calculus

In this section we shall end the construction of the analytic functional calculus.
The results of the previous section will be generally applied to the commuting systems
of the form '

/3(2) = (zl_bl 3 eeey Z,,—b“),
where b = (b, ..., b,) = B is a commuting system.

THEOREM 4.1. Let b = (by, ..., by) be a commuting system in B and U = C*
an open set such that U > o5(b). Then the integral

. 1
@I 1) = S AOM(z—B)adzyA .. Adz,

z
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defines a continuous unital algebra homomorphism from A(U) into B such that the
image of the coordinate function z; is the element b; (j=1, ..., n), where X is an
admissible surface surrounding og(b) in U.

Proof. The linearity and the continuity of the map f— f(b) of 4(U) into B
follow from the definitions.

If fis any complex polynomial in zy, ..., Zy, then from Proposition 3.12, applied
to the system (z;—by, ..., zZ,—b,), we obtain that the direct computation of f(b)
coincides with the value given by the formula (4.1). In particular, the image of 1
is the identity in B and the image of the coordinate function z; is &; (j=1, ..., n).

The only thing to be proved is the multiplicativity of the map f— f(b). Let us
consider two functions f and g in A(U) and denote by f; (2) the element z,—b; (j
=1,..,n. Then g = (81, ..., B) = A(U, B) is a commuting system and o§(f)
= op(b) = U. Then we have by Theorem 3.8

f(b)g(b) = v5()7e(8) = vip.p)(f2) -
Consider now the matrix u = ()}%=1, Where wy =1 if j=k, up = —1
if k = n+j and 4y = O otherwise. Note also that detu = 1. We shall apply Prop-
osition 3.13. Namely, we transform the system

(Zl"bls ~--:zn_'bm wi"'bl’ e W,."‘b,,)

by the matrix u, and obtain the system
7(2’ W) = (Wl"zla ceny Wa—Zp, zl—'bly ...,Z,,—b,,)-

We infer that v, 5,(fg) = »,(fg). We shall apply once more Theorem 3.8. If o(z, w)
= z—w, we have, by interchanging z with w,

9,(f8) = v, 5 (f8) = (v, (N)EW)) = vs(f2) = (fE)(B),

since %, (f) = f(w), by the formula (3.1), and this finishes the proof.

Theorem 4.1 is a version of the well known result of Shilov—Arens-Calderén
concerning the analytic functional calculus in Banach algebras [2]. This result has
been considerably extended by J. L. Taylor [10]. As we have seen, in the case of
C*.algebras the analytic functional calculus can be given by the canonical formula
(4.1). SRR '

COROLLARY 4.2. For any commuting system b = (by, ..., b,) < B there exists
a unital algebra homomorphism from the algebra of germs of analytic functions in
neighbourhoods of oy(b) into B such that the image of the germ of the coordinate
Sfunction z; is by (j = 1, ..., n). Moreover, this homomorphism has values in the double
commutant of the system b in B.

. Proof. The assertion follows from Lemma 3.6, Proposition 3.9 and Theorem
1. o

Tueorem 4.3. Let b = (by, ..., b,) be a commuting system in B, Uc C" a

polydomain such that U > o5(b) and f= (fy, ..., [,) a system in AU). If ¢; = f(B)

(=1, ...,m) and define ¢ = (c,, ..., ¢,), then c4(c) = f(os(b)).

icm
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Proof. Let us denote by A the double commutant of the system b in B. It will
be enough to prove that for any g € A(U) and every y € I'(4; B) we have y(g(b))
= g(y(b)). We shall use an induction argament. For 7z = 1 the assertion is well
known [2] (and it can be easily proved). Define b’ = (by, ..., by, Bys1) = (B, Bryr)
and take g’ € A(U"), where U’ o op(b"), Then by Theorem 3.8 and ‘Lemma 3.11
we can write

’ r 1 - ?
£ = —Z;ETS (W=brr) gl (D),
where I is an admissible contour surrounding o(b,. ) in the projection of U’ onto

the last coordinate. Then for any y € I'(4; B) we have, by the induction hypothesis,
'yt 1 1, . Y
y(E®)) == S (w=y(rs)) 20 (y(®))dw = &' (y(B), y(bss)) = &' (¥(®))-

2w
r

This result is a variant of the spectral mapping theorem [2] (see [10] for more
general conditions).
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