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The following theorem has been proven in [16]: (%)

Let (M, E, u) be a measure space. If dimcLM(M, 5, p) > 1, every bi-holo-
morphic automorphisms of the open unit ball B of L'(M, E, p) is the restriction to B
of a linear isometry of L*(M, £, u) onto itself.

The main tool in the proof of the theorem is the Carathéodory distance in a do-
main of a complex Banach space. The first part of [16] collects a few properties
of Carathéodory’s and Kobayashi’s pseudo-distances on a domain in a locally
convex, complex vector space. Further properties of these pseudo-distances and
of their infinitesimal analogues formed the main subject of three lectures delivered
by the author at the Stefan Banach Intematlonal Mathematical Center, in Warsaw,
during December 1977.

These notes are an expanded. version of some of the topics discussed in those
lectures.

I. The Carathéodory and Kobayashi pseudodistances

L Let 4 = {{eC: |{| <1} be the open unit disc in C.

The Poincaré metric ds? = (1—1{{|*)~?|d{|?> has constant Gaussian curvature,
equal to —4. Its geodesics are either the diameters of A or the intersections of 4
with orthogonal circles to the unit circle 4. The distance w({,, {,) between two
points {;, {, in 4, with respect to the Poincaré metric, is

-
@y G0 £2) = —+log g ‘Z =l
. ol ) = plos — 77 ¥l |1 QC;I .
1-5,¢,

* According to the classical Schwarz-Pick lemma:

* Partially supported by the National Science Foundation (MPS 75-06992).
(*) Cf. also [17], [2] for further detailes and extensions.
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Every holomorphic map f: A — 4 is distance-decreasing:

o(fCD), ) S @y, &) (i, L2 d).

I o(f)), f£2)) = 08y, C2) at two distinct points Ly, &s, then equality holds
Jor all pairs of points in A, and f is a holomorphic automorphism of 4.
Furthermore

Lf @I 1
1.2 LA -
a2 -QF < T=1F
If equality holds at some ¢ e A, then it holds everywhere on A and f is a holo-
morphic automorphism of A.
LemMA 1.1. For any Ly €4, the function ¢ logw(Lo, £) is subharmonic on A.

Proof. The following proof, due to Carlos Berenstein, is simpler than the one
given in [16]. Since the group Aut(4) of all holomorphic automorphisms of 4 acts

forall Led.

transitively on 4, there is no rgstricﬁon in assuming {, = 0. Let p(r) = loglog ii:
O<r<1). Then,for 0 < ] =r<1,
4-2_ 10gw(0, ) = o'+l
ot r

2 [ 14\ 142 1+7
=(I—r2)z(l°g l—r) ( ; log(l_r)—Z).

40
1472 d4r 2 Z r2n
TR = 2 2

Being

then

i
—logw(0,0) >0 f £ €4\ {0}.
PY gw(0, ) or ¢ eAN\{0}

Since w(0, 0) = 0 and ¢+ w(0, ) is positive and continuous on 4, then
-+ logw(0, {) is subharmonic on 4. m

Let £ and €, be two complex, locally convex, Hausdorff vector spaces, and
let D be a domain in #. A function f: D — &, is said to be holomorphic if

(1) f is continuous, and

(2) f is Gateaux analytic.

The latter condition means that, for every choice of x,y in & and for every
continuous linear form i on &,, the scalar-valued function L A(flx+Ly)) is
holomorphic on the open set ¥, = {t e C: x+{y € D} = C. Condition (2) and
local boundedness imply conditions (1); (2) if &, is normed. (For this and further
results cf. e.g. [8], [9])

Let D, be a domain in &, . We denote by Hol (D, D) the set of all holomorphic

* ©
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mapsf: D — & for which f(D) = D,.We denote by Aut (D) the subset of Hol D, D)
consisting of all bi-holomorphic automorphisms of D.

The Kobayashi pseudo-distance is defined on D as follows. An “analytic chain”
in D joining two points x, y € D consists of a finite number, », of functions f;
€ Hol(4, D) and of ».pairs of points £}, £} €4 (j = 1, .vs ¥), such that

[E) =% fCNY = f101Cun) G=1,..,9=0D, FE&) =y

The sumjz1 (L}, ') is called the “length” of the analytic chain, The domain

D being connected, analytic chains joining x and y in D always exist. The Kobayashi
pseudo-distance Tp(x,y) of x and y is, by definition,

to(x, ) = inf ) w(?), ),
=

where the infimum is taken over all analytic chains joining x and y in D. Note that
- {p is indeed a psendo-distance and that
1.3) tp, (F(), F(3)) < To(x, »)

for all F e Hol(D, Dy), x,y eD.
A simple application of the Schwarz-Pick lemma yields

1461, &2) = (4, 22) (1, L2 €4)
Thus, by (1.3),

o (fx), ) < Ip(x, y)
for all x, y € D and every f e Hol(D, 4). Hence, letting

(%, y) = sup{w (f(x), f3)): fe Hol(D, 4)},

we have
Cp(x, }’) < fh(x: y)

¢o(x, y) is the Carathéodory pseudo-distance of x'and y in D. This pseudo-distance
is such that

(14) ¢, (F(x), F(3)) < (%, )
for all x, y e D and every Fe Hol(D, D,).
2. Let p be a continuous semi-norm on &. For ;to €&, r>0,let
. By(xo,7) = {x e &: p(x—x,) < r}.
The following identities have been established in [16].

1) Cx,(xu,r)(xo: x) = fB,(x,,,r)(xOx x) = w(o’ _P_(_x:Lo)) (x € BF(XO’ ).

They imply that for any domain D < & and any x, € D, the functions x
> ¢5(Xy, x), x+>Tp(xo, X) are continuous,
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Since for x4, ¥o, X, ¥ in D
len(Xo, o) = Co(x, M < €p(Xo, X) +cp(¥o, 1),
[Eo(¥05 oY —Eo(x, ) < Tp(xo, ) +Ep(yos ¥),
then we conclude with
LemMA 2.1. The functions cp and p are continuous functions on D x D,

PROPOSITION 2.2. Let & be a complex locally convex, locally bounded Haus-
dorff vector space and let D be a bounded domain in &. Then both ¢, and ¥, define
on D the relative topology.

Proof. Let xo € D and, for s > 0, let S(xo,5) = {x € D: tp(x,, x) < s}. We
will prove that, for any open neighbourhood ¥ of x, in D there is some s > 0 such
that S(x,,s) = V. Let p be a continuous seminorm on & and let » > 0 be such
that .

By(xg,1) = V.

The domain D being bounded, there is some R > 0 for which
D < B,(xo, R).

Since for x € By(x,, R)

m( px— xu)) 22 I(P("Rx ))2'lH P(x xo)
n+

then (1.4) and (2.1) imply

for all xeD.

X=X,
(X0, X) = Coyx, (%05 X) = L(——R‘—P—)'

Let s = r/R. For x € 5(x,, 5),
. p(x—x0) < Rep(xo—x) <Rs= r,
ie. .
S(x0,5) @ By(xo, ) = V.
An identical argument holds for f,. m

CoROLLARY 2.3. Under the same hypotheses of Proposition 2.2, both the pseudo-
distances ¢p and ¥, are dist on the bounded domain D.

On the opposite extreme, for D = E, both ¢, and ¥, degenerate completely.
However, if & has finite dimension, and if D is such that ¥, is a distance, then the
relative topology of D in & is equivalent to the topology defined by ¥, [1].

The following proposition generalizes to bounded domains in locally convex,
Hausdorff, complex vector spaces a result due to J. P. Vigué ([18], p. 279) for bound-
ed domains in complex Banach spaces. It can be established by similar arguments.

PROPOSITION 2.4, Let D be a bounded domain in a complex, locally convex,
locally bounded, Hausdorff vector space &. If D is homogeneous (i.e. if Aut(D) acts

©

TNVARIANT DISTANCES 497

transitively on D) and if & is sequentially complete, then both ¢y and ¥y, are complete
distances.

A function @: D — [—o, +©) is said to be plurisubharmonic on D if ¢
is upper semi-continuous on D, and if, for every choice of x, y in &, the function
> @(x+¢y) is subharmonic on ¥;, = {{ e C: x+{y e D}.

The following theorem is a consequence of Lemmas 1.1 and 2.1.

TaeOREM 2.5 [16). For any x, € D, the function x> logcp(x,, X) is a pluri-
subharmonic function on D. )

Iff, is a distance, then it is an inner distance (in the sense of Rinow [12]). This
fact was proved by H. L. Royden [13] in the case of a finite dimensional complex
manifold. A simple proof, given by S. Kobayashi in [6], extends to the case of (com-
plex spaces and of) domains D in &.

3. In the construction of complex geodesic curves, which will be. introduced
in § 4, a maximum principle for holomorphic functions will be useful. This principle
was established by E. Thorp and R. Whitley in [15] for Banach-valued holomorphic
functions. The original proof was considerably simplified by L. A. Harris [4], and
Harris’ arguments can be easily adapted to locally convex spaces.

Letf: 4 —» C be a holomorphic function such that f(4) < 4. By the Schwarz—
Pick lemma

’ OO | e,
1-f(0) f(2)
Since

1=fO)f(2)} < 1={fO)*+ IO | f(z) —f(O)]

< 2(1-{AO))+1£0) 1 f(2)—=f(O),

then

| A2 —FO0) < 2lz|(1=fO))+]zl LfO)] LA -0,
ie.

2lz| [fO)+ (1 =1zl FO)SD—fO) < 2z|  (zed).
Being
1—-]zi < 1=z [fO) for |z| <1,

then
@1 20z| 1O+ (L= [z |fD) —fO) < 2lz| for all ze 4.

Lemma 3.1. Let p be a continuous semi-norm on the complex, locally convex,
Hausdorff vector space &, let B, = B,(0,1)= {xe&: p(x) <1} and let f
€ Hol(4, &) be such that f(4) < B,. Then

32 p[fO+¢ (f-f@)) < 1

1-]z]
2iz|

Jor all z e AN\ {0} and all { € C, with |{] <

32 Banach Center t. VIII
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Proof. For & = C, the conclusion follows from (3.1). In the general case,
suppose that (3.2) does not hold at some z €A\ {0} and some |{] < (1—|z])/2)z|.
By the Hahn-Banach theorem, there is a continuous linear form 4 on & such
that: |A(x)] < p(x) forall xe &, and

AfO+2 (/@) -f®)) = p(fO+ (f)—f®)) > 1.

Since Ao fe Hol(4, C), and Ao f(4) = 4, this inequality contradicts (3.1).() m
Let K be a subset of &. A point x € K is called a complex extreme point of K
if y = 0 is the only vector in & such that x+y e K for all [ e 4.

ProPOSITION 3.2. Let C be a balanced convex open neighbourhood of 0 in &,
and let f € Hol(4, &) be such that f(4) = C. If, for some z, € 4, f(2o) is a complex
extreme point of C, then f is constant on A. Viceversa, if x is a boundary point of C
which is not a complex extreme point of C, then there is a non-constant function f
e Hol(4, &) such that f(4) = C and f(0) = x.

Proof. The first part follows from Lemma 3.1, choosing as p the support func-
tion of C. The second part is a trivial consequence of the definition of a complex
extreme point. m

A direct application of Proposition 3.2 yields

THEOREM 3.3 (Strong maximum principle). Let & and &4 be complex locally convex
Hausdorff vector spaces. Let D and C, be respectively a domain in & and an open,
convex balanced neighbourhood of 0'in &, . If all boundary points of C, are complex
extreme points of C,, every function feHol(D, &;) such that f(D) = C,,f(D)
¢ C,, is constant.

4. Let D be a domain in &. For any fe Hol(4, D)

o, 20) 2 (A0, fCo)) = w(f(D). fC) (. &o ).

A subset I' = D is called a complex geodesic curve in D at a point x, € I" if
there is some f e Hol(4, D) such that

(i) f(4) = I, and therefore x, = f({;,) for some {,e4;

(i) (f©), x0) = o(¢, &) forall L ed.

All inequalities in (4.1) become equalities, so that (ii) holds with ¥, replacing
¢p. The point {;, € 4 such that f(Z,) = x, is unique. By composing f with a suitable
Mabius transformation one can always assume. {, = 0.

4.1)

THEOREM 4.1. Let D be an open convex balanced neighbourhood of 0, and let p

be the support function of D. For any x € D such that p(x) > 0, let L = {ix: LeC}.
Then: :

(1) LND is a complex geodesic curve in D at all its points.
2) If LnD contains a complex extreme point of D, LAD is the unique
complex geodesic curve at O containing x.

(%) Note that if 10f(4) ¢ 4, then 1o f is constant |2 of| = 1.
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Proof. Let feHol(4, &) be defined by f(§) = x. For {;,{,ed let y;

) ( )
= f(¢}) (j=1,2). If 4 is a continuous linear form of &, such that |A(»)| < p(»)
for all y € &, and p(x) = A(x), then 1o fe Hol(4, 4), and thus

(s, i) = t»(f(fl),f(tz)) 2 0(Aefl&y), A2 f((2)

= o5 pe9, 22

p (x) ) P (x)) w(Cl 3 52) .

p(
Hence

Cp(f@x)sf(tz)) =w(;, L) forall ,L,e4d.

Let I' = D be a complex geodesic curve at 0, and let 4 € Hol(4, D) be such that
h(d)sx, h(0) = 0. Thus

(0, 2) = ¢5(0,h(2)) for all Led,
ie.
1 1+p(k
log lf{g = log lfﬁghgg; Ced,
or
Zl=p(r@) forall fed.
Since A(0) = 0, the function gH%h(C) is holomorphic on 4, and

p(%h(é’)) =1 forall Zed.

" If Ln D contains some complex extreme point of D, every boundary point of
LAD is a complex extreme point of D and, by Theorem 3.3, the function >
- % h(?) is constant, i.e. h(C) = CH'(0) with p(R'(0)) = 1. m

II. Carathéodory and Kobayashi differential metrics
5. For { €4, v e C, the length, {z);, of the vector 7, with respect to the Poin-

caré metric at ¢, is . .
i)

{th = e

Let D be a domain in a locally convex Hausdorff complex vector space &.

LemMa 5.1. Forallv €&, xeD, L, €A there exist h eHol(4, D) and rEC
such that h(Lo) = x, dh({o)T = v.

Proof. For any open neighbourhood ¥V of x in D, there is a continuous semi-
norm p on & such that B,(x, 1) = V. If p(v) > 0, the function k € Hol(C, &) defined
by ’

A
kO = x+ 7@ °
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maps A into V, and therefore k4 € Hol(4, &). Furthermore k(0) = x, dk(0) p(@)
= p(v)k'(0) = w. Thus the function » € Hol(4, D) defined by

=8
=k
w0 =1 75)
and the vector 7 = p(v)(1—|L,{?) fulfil all the requirements of the lemma, in the
case p(z) > 0.
If p(v) = 0, we define » on 4 by
{=Co
(@)= x+
1-5ol "

and we take v = 1—[{o/>. =
The Kobayashi differential metric is the function x»: Dx & — R, defined at
xeD, vedf by
#(x; v) = inf{7);,
where the infimum is taken over all e C, { €4 and all functions 4 € Hol(4, D)
such that
(5.1) h(l)=x, dh( T=19.

Since the group Aut(A) is transitive on 4, and its elements are isometries for
the Poincaré metric, then one can choose { € 4 arbitrarily and keep it fixed in the
above definition. In particular, choosing { = 0, we have

inf{|7|: v € C, heHol (4, D), h(0) = x, dh(0)r = v}.
Let & € Hol(4, D) be as in (5.1), and let g € Hol(D, 4). Then
dg(x)o = dg(h(¢a))dh(Co) T = d(g-K)(Go)7.
Since g-4 & Hol(4, 4), by (1.2),

dgtyol _ _Iel
T=]gCP S T=1e7 "

This inequality holds for any A e Hol(d, D) satisfying (5.1). Hence
ldg(x)bl
— gl <
Thus, the number y(x; v) € R, , defined by
(%3 9) = sup{(dg(x) 0D, & € Hol(D, 4)},
satisfies the inequality
5.2 Cy(xs )€ (xeD,ved),

and therefore is finite. The function p: Dx& — R, is called the Carathéodory
differential metric on D. For any ae C

5.3)
(5.4

%(x;0) =

#(x; 7).

%(x; v)

#(x; av) = la|x(x; v),

v(x; av) = laly(x; v).
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Furthermore, for v,,v, €6,

(5.5) P(%; 914+92) < p(x; 21)+¥(x; v5).

Let D, be a domain in a locally convex, Hausdorff, complex vector space &, .
The following proposition is an immediate consequence of the definitions.

PROPOSITION 5.2. For all FeHol(D,D,), xeD, ved,
#p, (F(x); dF (x)v) < #p(x; ),
In particular, if F € Aut(D), then
#p(F(x); dF(x)0) = %(x;0), 95 (F(x); dF(x)0) = vp(x; 0).
Let & = C, D = A. Taking g: {+ ¢{ in the definition of y,, we have

7o, (F(x); dF(x)0) < yp(x; v).

. ki

r4 1) = =i
Being dg({) v = 7, we have also

(G < 1_"]‘“,.
Thus, by (5.2) .
6O D= iD= @ Ged,re0.

More in general, for 4z = {{ e C: [{] < R},

(56) Yarlls ) = i) = gy (eds, TEO).

LeMMA 5.3. Let B, = B,(0, 1) be the open unit ball for a continuous semi-norm
poné. Then

v5,(0; ©) = #5,(0;0) = p(v) for all ved.

Proof. Suppose first that p(v) > 0, and let 4 be a continuous linear form on &
such that |A(y)| < p(y) for all ye &, and A(v) = p(v). Thus i € Hol(B,, 4). If

h e Hol(4, B,)is defined by A(%) = i)) v, then the lemma follows from the sequence
of inequalities:
P(©) = y4(0; p@)) = 74(2(0); A(2)) = 4 (4(0); dA(0)v)
< 75,(059) < #5,(0; ) = x5, (h(0); dh(0)p(2)) < #4(0; p(¥)) = P(@).
If p(@) =0, let £ > 1, and let k € Hol(4, B,) be defined by A,({) = tfv. Then
1 1
72,(0; 0) < 25,(0;9) = xp,( ,(0); dh(0) ) xA(O ,) ==

Letting ¢ — co, the conclusion follows. =
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For any R > 0, and B,(0, R) = {x € £: p(x) < R} we have then

v)
V3,0, (0 9) = %B(0, wn(0;9) = PE{ .

(5.1

LeMMA 5.4, Let p, and p, be continuous. semi-norms on two complex, locally
convex, Hausz'for;ﬁr vector spaces &; and &,. Then for R, >0, R, >0 v, eé,,
v, €65,

VBpy(0,Ry) % Bp(0,R2) ((0, 0); (v, 7’2)) = max {yﬂpl(O,Rl)(O; 91); ¥5py00,8,)(0; '1)2)} ,

5,0, R % Brat0, B (05 O3 (215 5)) = max{#a,,c0,2,)(0; ¥1)s %5y,0,2,)(0; 22)}.

Proof. The function p = max{p;, p,} is 2 continuous semi-norm on &, x&,
for the product topology. Lemma 5.4 follows then from Lemma 5.3. m

LeMMA 5.5. For any & > 0, there is a neighbourhood V of (0, 0) in B,(0, R)x &
such that

%n,,(o,x)(x;w) <&
forall (x,v)eV.
Proof. Consider the neighbourhood ¥ = B,(0, R/2)xB,(0, Re/4). For x

€ B,(0, R/2), v € B,(0, Re/4) the function f'& Hol(4, &) defined by f({) = x+ %Cv
maps 4 into B,(©, R). Since f(0) = %, df(O); = v, by Proposition 5.2,

#p0, (X V) < #4005 6/) = 82 < e. m

For x € D, there is a continuous semi-norm p on & and some R > 0 such that
B,(x, R) = D. The translation yr+x+y maps B,(0, R) onto B,(x, R). A direct
application of Proposition 5.2 and of (5.7) yields
(58) yo(x; ©) < %p(x;9) < p(¥)/R  for all

Remark. Note that, if there is a continuous semi-norm p on & such that
B,(x, R) = D for some R >0, then yp(x;v) = #p(x;v) = 0 whenever p(v) = 0.
The conclusion for y, will follow also from Lemma 6.1.

" Inequalities (5.8) and a trivial compactness argument yield

ved.

LemMA 5.6. For every compact subset K of D there is a continuous semi-norm

p on & and a constant 'k > O such that
(%3 9) < %p(x;0) <
forall xeK andall v € 4.

LemmA 5.7. For-every x € D, yp(x; ) is a continuous semi-norm on &. If D
is bounded, and if p is any continuous norm on & such that B,(x,r) < D for some
x €D and some r > 0, then yp(x; +) is a norm equivalent to p.

Proof. The first part of the lemma follows from (5.4), (5.5) and (5.8). Let now
D be bounded. Then there is some R > 0 such that D < B,(x, R), and therefore

yo(x;0) >

kp(v)

2 Vo3 ‘U) = p('v)/R for all xeD. m
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CoroLLARY 5.8 [31. If D is a bounded domain in a complex Banach space &,
then, for every x € D, yp(x; *) is a norm equivalent to the norm in &.

6. Let D be a domain in &, and let p be a continuous semi-norm on & such
that B,(x,,r) < D for some x, €D and some r > 0. Given any feHol(D, C),
suppose that f is bounded on B,(x,,r). Let v € &\ {0}, and suppose first that
p(@) = 0. The function C>a [+ f(x+{v) is a bounded entire function for all

x € By(xo, r). Hence it is constant, i.e. f(x+Zv) = f(x) for all xe By(x,,7) and
all eC. Let

Sy) = Y~ A0)
=0

be the Taylor expansion of f near x. Here d%f(x) is a continuous, complex-valued,
g-homogeneous polynomial on & and, for x € B,(xo,r), there is a balanced
neighbourhood ¥ of 0 in & such that, for ye ¥,
} 2%
dfe0) = L S = 0f(x + €) .
0
Thus d%(x)(w) = 0 for all ¢ = 1,2, .., and all x € B,(x,, r), hence (x — d¥(x)(v)
being holomorphic) for all x e D, i.e. f(x+{v) = f(x) for all x € D. That proves

LemMA 6.1. Let p be a continuous semi-norm such that By(x,r) = D for some
x & Dand somer >0, and let f e Hol(D, C) be bounded on B,(x,r). For every vector
v €&, for which p(v) =0, we have d%f(x) (v) = 0 for allxeD and allg=1,2,...In
other words, f(x+(v) = f(x) for all x € D and all { € C. In particular, yp(x;v) = 0
atallxeD.

Suppose now that p(v) > 0. If x € B,(x,, r/2), x+ 2_1)%1)—)_ {v € B,(xo, r) for all
ted. Thus, for g = 1,2, ...,and for x € B,(xo, 7/2),
2p(v) S a0 T4 )
A (x)(v) = ( ; ) ) fix+ ) ev)do,

and therefore

6.1 ) < (2"”) glsup {I70)I: ¥ € B,(x0, 1)}

for ¢ =1,2, ... and all fe Hol(D, C).

Now, let f & Hol(D, 4), and consider the complex valued holomorphic function
X+ d%f(x) @). For x,, x; € B(xo, /4) the function #+ d%f(x,+ t(xz—xl))(v) is C®
on [0, 1]. Thus by the mean value theorem

[d%f(x2)(0) —df (%)) < sgpid‘(d"f(x)(v))(erl)l
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for x = X, +#(x,—x) with 0 < t < 1. Since p(x—xo) < r/4,if p(x,—x,) > 0, then
2

& (@O Y — 30 = 1 2= § e-“’dv(x+ eiﬂ(xz—xl)) ;

—r
p(xz~%;)
if p(rs—x.) = 0, then d(d%f(3)(®))(¥2—x;) = 0 for all yeD. In any case, by
(6.1),

M(E&@.
r r -

|t (@) @) 2 —x1)| <

and therefore

(6.2) 1d%f(x2)(@) =@ x)(@) < ql<£) POYP(x2—%1)

r
for all fe Hol(D, 4), all x;,x, € By(xq, /4, ¢=1,2,...
Note that r does not depend on f.

PROPOSITION 6.2. Let D be a domain in &. The function yp: Dx& - R, is
locally Lipschitz.

Proof. 1. Letved, x, €D, and let p be a continuous seminorm on & such
that B,(x,,r) = D for some r > 0. Let x,,x; € By(x,,r/4) and suppose that
yo(%x2; ©) 2 yp(xy; v). Since the Mobius transformations act transitively on 4, we
have, by (6.1), (6.2),

Yo(%2; ©)—yp(%1; 0) = sup{|dfix,)(@)|: feHol(D, 4), f(x,) = 0}—
—sup{%]y: F€HOID, 4, fs) = 0]

<sup{ @@~ 1L s e 1o, 2, 05 = of
< sup{ldf(x2)(®)| ~ df(x,)(®)|: f e Hol(D, 4), f(x,) = 0}
< sup{|df(x,)(0) - df(x,)(®)|: f e Hol(D, A), f(x;) = 0}
< 2/r)p(x, —x,) p(v).
Thus
[¥n(x; 9)—yp(x0; ©)] < (2/r)*p(x~%o)p(v) for all x € B,(x,, r/4).
2. For v;,9, €€ we have, by (5.5) and (6.1),
1¥p(xo; ©2) =¥ (Xo0; )| < yu(x0; v, —v,)

= sup{|df(xo)(2:~2y)|: f € Hol(D, 4), f(xo) = 0}

2
< TP(”: —9).
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3. For x; € By(x,,7/4), v,,9,€8,

(%03 vo) =yp(%1; )| < lyp(¥o; ”0)_Vn<xo§ oI+ lyp(xo; v1) —yp(x1; 01)|

2
< %P('Ux —v)+ ('i—) P(xs—x0)p(2y).

That proves the proposition.
In view of (5.6) a direct computation yields

LemMA 6.3. The function logy,: AxC — R is plurisubharmonic.

For u,y in &, V,,, denotes, as before, the open set V,, = {{ € C: u+{y € D}
cC.

For any feHol(D, A) the complex-valued function (£,v) > df(u+Ly)(®) is
holomorphic on the open set ¥, , x& < Cx&. Thus the function (x, v) — df(x) (v)
is holomorphic on D x &, and therefore (x, v) — log|df(x)(v)| is plurisubharmonic

on Dx&. By Lemma 6.3, the function {+ log = is subharmonic on

1
|f@+ 2P
V.,y. Hence x> log l—q}.z;)-l; is plurisubharmonic on D. In conclusion we have

proven

ldf(x) @)

LEMMA 6.4. For any f € Hol(D, 4) the function (x, v) logw

is pluri-

subharmonic on D x&.

By definition, logyp: D x& — R is the upper envelope of a family of plurisub-
harmonic functions on D x &. Since y;, is continuous (Proposition 6.2) the follow-
ing theorem holds (cf. [7], p. 400).

THEOREM 6.5. The function logyp: DX & — R is plurisubharmonic on D X &.

Let I be a differentiable curve in D, and let o: [a, 5] — D be a differentiable
parametrization of /. In view of Proposition 6.2 we can define the “length” of I
with respect to yp by

b

L, = { 7o(o(t); 7(1))dt.

By (5.4) L,(I) does not depend on the differentiable parametrization o. The
domain D, being connected and locally arewise connected, is arcwise connected.
Any two points x, y in D can be joined by a differentiable curve in D. For any x, y
in D we define 5(x, ») as the infimum of L,(/) over all differentiable curves joining
X to y in D. It follows from the continuity of yp (Proposition 6.2) that this is the
same as the infimum over all piece-wise differentiable curves joining x and y in D.
Hence @, is a pseudo-distance. '

For {y,¢2ed, 481,82 = (@1, 8a) = T4(L1, L2)
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Hence for any fe Hol(D, 4) and for any differentiable curve / in D joining
x to y we have, by Proposition 5.2,

b

o (J9), f) < § 7a(F0®); £ () o' ()t < § 7o(o(0; '@))dt,

a a
and therefore

o (f(x), f)) < & ¥)-
Thus

eo(x, ¥) < T(x, ¥).

7. We shall now prove that the function #5: D x& — R, is upper semi-con-
tinuous. This fact was established by H. L. Royden in [13] in the finite-dimensional
case. Our proof will follow, mutatis mutandis, Royden’s ideas.

LemmA 7.1. Let R >0 and let he Hol(dg, D) (dr = {{€C: |{] < R}) be
ssuch that h'(0) # 0. There exists a continuous linear form A # 0 on & and, for every
0 < r < R, a neighbourhood V of 0in ¥ = Ker A and a function g € Hol(d, xV, D)
such that g4, <oy = ha,; the differential dg(0,0) of g at (0, 0) is a bi-continuous iso-
morphism of Cx ¥ onto &, and g maps a neighbourhood of (0, 0) bi-holomorphically
onto a neighbourhood of h(0).

Proof. Assume h(0) = 0. Let 1 be a continuous linear form on & such that
).(h’(O)) =1, and let fe Hol(dr x %, &) be defined by

fE =hd+y (edn,ye).

+00
Let A({) = 2{ {’a, (a,€& for v =1,2,...; a; # 0) be the power series ex-

pansion of & in dg. The differential 4f(0, 0) of f at (0, 0) is defined by
af0,0(¢, ) = tay+y (eC,ye®).

Hence df(0, 0) is a bi-continuous isomorphism of C'x.# onto &, and

af0, 0y 1(x) = (A(x), x—A(x)a,) (x€8).

For x = f({, )
40,01 (%) = (&, 1)+ D Ldf(0, 01 (a,),
y=2

ie.
(1.1 Ax) = o(0), x—Ax)a, = y+h(D—o(Q)ay
where o€ Hol(dg, C) is defined by

+2%0
o@) =2+ ) A,
=2
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Since ¢’'(0) = 1, there is an open neighbourhood A4 of 0 in € which is mapped
by o bi-holomorphically onto an open neighbourhood A; of 0 in Az. Let T
= (014)7%, and let U be a neighbourhood of 0 in & such that A(U) = 4;. Then,
for x € U, (7.1) yields

t=1(Ax), y= x—l(x)a1-—-h(r(ﬂ.(x)))+c(r(l(x)))a1 = x—h(z(1(x)))-

That proves that there is a neighbourhood W of 0 in A x % whose image f(W) is
a neighbourhood of 0 in &, and the restriction fj is a bi-holomorphic map of W
onto f(W).

Since f(dg x {0}) = h(dg) = D, then, for every 0 <r < R, D contains the
compact set f, x {0}). Hence there is an open neighbourhood ¥ of 0 in % such

‘that 4, x ¥V < f~1(D), i.e. f(4,x¥V) < D. Take g = fla,xp- ®

A neighbourhood ¥ satisfying Lemma 7.1 can be described in terms of a semi-
norm, i.e.
V=Bg,={ye: p(y) <1},
where p is a suitable continuous semi-norm on &.

LeMMA 7.2. Given ¢ > 0, x €D, v e &, there exist: r > 0, a continuous linear
form A on & (A5 0), a continuous semi-norm p on &, and g e Hol(4, x Bg,,, D)
such that:

£(0,0) = x; dg(0,0)(1,0) = v;
g maps an bpen neighbourhood of (0,0) bi-holomorphically onto a neighbourhood
of x;
#a,x8g,((0,0); (1, 0)) < #p(x; v)+&.
Proof. Since, by (5.7), #4,(0; 1) = 1/R, then
%p(x; ©) = inf {1/R: h e Hol(4g, D}, h(0) = x, 1'(0) = v},
Choose h such that
1/R < %p(x; v)+e,
and let r be such that 0 < r < R and
1/r < %p(x; v)+e.
Starting from / we define g as in Lemma 7.1. Then, by Lemma 5.4,
#ayxn, (0, 05 (1, 0)) = %4, (0 1) = 1r < p(x; 0) 6. m
PROPOSITION 7.3. The function %p: Dx& — R, is upper semi-continuous.

Proof [13]. Same notations as in the proof of Lemma 7.2. Since, by (5.7
and Lemma 5.4, %4« B, is continuous at (0, 0), for any & > 0 there is an open
neighbourhood W of (0,0,0,0) in 4, xBe,xCx.Z such that, for ({,,7, w)
€W,

#axg, (6 3 (T, W)) < %ax8g,((0,0); (1, 0)+e.
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Since g is bi-holomorphic on a neighbourhood of (0, 0) in 4, x & then — if w
is sufficiently small— (g, dg) maps W onto a set containing a neighbourhood 14
of (x,v) in Dx&. Let (x,v) € V. Then x’ = g({, »), v = dg(¢, y) (v, w) for some
¢, y, ©, w) € W, and therefore

wp(x;0) = % (8(¢, 3); dg (£, »)(T, W) < 24,58, (€, ); (7, W))
< x,,,x,,z,_p((o, 0); (1,0))+& < 2p(x; 0)+2¢. m

Any two points x, y in D can be joined by a differentiable curve 1, expressed by
a differentiable function o: [a, 5] —» D (0(a) = x, () = y). In view of Proposi-
tion 7.3 we may define the “length” L,(J) of ! by the integral
b

LD = {up(ai); o'(1))dt.

a

By (5.3) L(!) is independent of the differentiable parametrization o of /,
Let ﬂf,,(x, ) be the infimum of L, (/) taken over all differentiable curves joining
x and y in D. It follows from Lemma 5.5 that this is the same as the infimum over

all piece-wise differentiable curves joining x and y in D. Hence %D(x, ¥) is a pseudo-
distance.

. THEOREM 7.4. The Kobayashi pseudo-distance is the integrated form of x,, i.e.

fD(x’ .V) = fD(x’ Y)

This theorem has been proved by H. L. Royden for finite-dimensional complex
manifolds; cf. Theorem 1 of [13]. Royden’s proof rests essentially on the key Lemma
1 of [13] (which was proved in [13] for domains in C" and in [14] for finite-dimension-
al manifolds). Our Lemma 7.1 extends Lemma 1 of [13] to domains in locally
convex spaces. Replacing Lemma 1 by Lemma 7.1, Royden’s proof of Theorem 1

can be adapted to establish Theorem 7.4, We give the proof here for the sake
of completeness.

Proof. 1. We prove first that f;(x, y) < Io(x, ). Let ¢ > 0 and let £, 27, ...

s 8es &y fis-os f;, be an analytic chain (notations as in n.1) joining x and y
in D, such that

D0, &) < B, ) +e.
I=1

Let /; be the geodesic for the Poincaré metric, joining £}, £ in 4, and let [ be
the piece-wise differentiable curve defined by ih) (j = 1, ...,%). Then, by Prop-
osition 5.2,

»

%u(x,y)<§~n= > ub<2§xd = Zm@;—,cg’) <Bo(x, y)+e.
J=1

Iy PR~ g A
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II. We prove now that fp(x, ¥) 2 Ip(x, ). Forany & > 0 there is a differentiable
function @: [0, 1] = D such that ¢(0) = x, @(1) = 1, and

1
§ 20 (000); (1))t < Bn(x, y)+e.
0

The function i+ %p(p(2); @'(2)), being upper semi-continuous on [0, 1], is the
pointwise limit of a decreasing sequence of continuous functions. Hence, by the
monotone convergence theorem, there is a positive continuous function ¢ on [0, 11
such that o) > x%p(p(2); ¢’ (1)) for all £ [0, 1], and
1
§odt < Eox, y)+e.
0
The function o, being continuous, is Riemann integrable. Hence there is a 6
> 0 such that, for any choice of 0 = £, < #; < ... <1, = 1 with 4),,—# < 8 and
any choice of s, € [t;_,, ;), there is
n
(7.2 G—1-1) olsp) < Ip(x, y)+&.
Jj=
Choose now s € [0, 1]. By Lemma 7.2, there exist: r > 0, a continuous linear
form 4 on & (4 # 0), a continuous semi-norm p on & and a function g € Hol(4, x
X Bg p, D) such that:

8(0) = ¢(s), dg(0,0)(1,0) = ¢'(s);
g is a bi-holomorphic homeomorphism of a neighbourhood of (0, 0) € 4, x Be,,
onto a neighbourhood of ¢(s) in D;
1
7= %4,x8g ,((0, 0); (1, 0))

< 2p((5); ¢'(9))+6(8) — 25 (p(s); P'(9)) = o(9).
Hence there is an open interval I, > s in [0, 1] and a differentiable map u: I,
— 4, xBg,, such that ¢ = gou on I, and u(s) = (0,0), z'(s) = (1,0)e Cx 2,
ie. there are differentiable maps u,: I, > 4,, p;: I, = Be,,, such that

2@ = (1), p2())

w() = t=s+0(lt=s|?), p(ua()) = O(lt—s]?).
For fe Aut(4,), the map (£, x) > (f({), x) defines a bi-holomorphic auto-
morphism of 4, xBg,. Let t',t” € I,. Choosing f& Aut(4,) in such a way that
(i (t)) = 0, we have, by (1.3),

Y, (B0, 10"D) = Taxng, (0, ma(t)), (FGst)). pa(t")
< Eaag, (00 1), (O, )+
Hang, (0, £2(), (S (1), a(t))

and
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<ty (a8, palt™))+E4 0, S (t"))
= fa_?,p (,“2(’ s ha(t))+ 1, (.“1 (), (),

where
(@), ) = o[ 2280, D)
fag, (12(t), 12(t") < Ty, (0, (1)) +5, (0, 12(47))
< 0(0, p(e2()) +0 (0, p(u(t"))) .

Hence there is an openinterval J; = I, such that s € J; and that for #’, 1" e J,
o #1

Yaxng, (@), p(t")) < (1+¢)

Choosing J; with length < 4, for t',¢” €J; (' # t"), we have then
B (e, 9(t") = B(g(1(t)), 2(#("))) < Lyxay,, (ut), p(t™)
< (1+¢)t'—t"|o(s).
Applying the Lebesgue covering lemma to the closed interval [0, 1] we see
that there exists ¢ > 0 such that, whenever |t'—1"| < g, there is s &[0, 1] with

t',t" € J,. Choosing 6 <, t;—4_, <@ (4_,#¢) and 5; such that #._,,% € J,,
then, by (7.2),

106, 3) = B (p0), p0) € O Eo(plty_), #(t))
=1

<(1+8) ) HG—t_o(s) < (1+e)(fp(x y)+ €).

Jj=

Since & > 0 is arbitrary, that completes the proof of the theorem.

]t,_t"l ’ 7]
- < A+t ~t"|a(s).

II. A fixed point theorem

. 8. In the following, & will be a locally bounded, Ibcally convex, Hausdorff
complex vector space, and D will be 2 bounded domain in &. A set K is said to be
completely interior to D — in symbols, K < < D —if there exists an open neigh-
bourhood U of 0 such that

8.1) " u+K<D foralluel.
Equivalently, K =< D if there is a continuous semi-norm pon & such that
8.2) u+K < D whenever p(u) < 1.

The neighbourhoods U of 0 satisfying (8.1) constitute a fundamental system
of neighbourhoods of 0. In other words; the family of semi-norms satisfying (8.2)
defines a base of the uniform space &.

Lemma 8.1. Let feHol(D, &). Iff(D) < D, for every xeD {f"(x)} is a Cauchy
sequence for the Kobayashi distance %,.
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Proof. Let p be a continuous semi- norm as in (8.2) for X = f(D). The domain
D being bounded, there is a finite M > 0 such that p(x) < M for all xeD. Let
t = 1/2M. For any fixed x € D, let g € Hol(D, &) be defined by

y=80) = A+~ 1f(x) = fO)+1(FO)—fx)).
Since, for any y € D,
tp(f)—f) < t(p(FM)+p (fx)) < 2tM = 1,
then g(¥) € D, i.e. g(D) < D. Thus, by Proposition 5.2,
#p(8(x); dg(x)v) < #p(x;9) for all veé.
Since g(x) = f(x) and dg(x) = (1+#)df(x), then we have

#p (f(x); df(x)v) <

1
1+1 xp(X; 9),

for all x € D and all v € £. The Kobayashi distance ¥, being the integrated form
of »p (Theorem 7.4), for x,,x, in D

©3) B (f00), J052)) < lit B, ). _
Thus for any x € D, and any n= 1,2,..
B, X)) € (=g t)" (%, f(),

and that implies that {f"(x)},—y,,,... is a Cauchy sequence for f,. m

LeMMA 8.2. Under the hypotheses of Lemma 8.1, for any xe€D {f"(x)} is
a Cauchy sequence in &.

Proof. We shall prove that for any continuous semi-norm ¢ on &, there is an
index N such that, whenever n,m > N, g(f"(x)—f"(x)) < L.

Since D is bounded, there is some finite R > 0 such that D < B,(0, R). Hence
for any zeD, D < B,(z,2R).

Let N >0 be such that £,(f"(x), f*(x)) < 1/4R for all' n > N. Being
D« B(f*(x),2R), by (1.3),

Ervco, 20 (FR (X)L 1"()) < B (fY(x), f1(x)) < R
i, by .1),

w(O, _‘l_(f_"(’fg_j!jﬂ("_))) < foralln>N.

Therefore, by (1.1),
(") —f'x) <% foralln=N
and, for n,m > N,
1P -)) < 4 (MO~ +a (@ —m) < j+i =1 w
If & is sequentially complete {f™(x)} converges to a point X, €f(D) = D,
which is a fixed point of £, and, by (8.3), is clearly the unique fixed point of £. Thus
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we may state the following theorem, which is due to C. J. Earle and R. S. Hamilton
[3] for Banach spaces.
THEOREM 8.3. If & is sequentially complete, any fe Hol(D, &) such that f(D)
< < D has a unique fixed point.
Remark. The proof of the above theorem can be carried out (as in [3]) using
the Carathéodory differential metric yp and its integrated form €p, instead of %,
and f,. .
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1. Introduction

1.1. I have been asked to speak on the ideology of the holomorphic functional
calculus. And I have accepted, even though I do not believe that such a unique
ideology exists. These talks, and these notes are an opportunity for presenting my

own ideas on the subject.

These notes lay the stress on the h.f.c., they are related, but only partly, with

{47], where non-Banach algebras are stressed.

While preparing this written text, I became increasingly aware that my ideology
was that of an operational calculus. The fact that this involves holomorphic func-
tions is a good surprise. The expression “holomorphic functional calculus” (h.f.c.)
must be taken to mean “operational calculus involving holomorphic functions”.

1 must also mention the fact that Gelfand’s papers ([11], [12], [13], [14]) were
not available in Belgian libraries, or at the Institut Poincaré in Paris, even in 1953
when I completed research on my first paper [42]. This was a consequence of the

disruption due to the war, and of lack of money in the post-war period.

1 knew most of Gelfand’s results. I had attended talks by mathematicians who
had read Gelfand. I had read the Mathematical Reviews. But my knowledge was
indirect and incomplete. This had an effect on my personal ideology at the outset,
also later since I knew how much could be proved about Banach algebras without

using Gelfand’s results.

1.2. The following is the ideology of many mathematicians, and flows directly

out of Gelfand’s results.

A commutative Banach algebra is semi-simple modulo the radical. The radical
is messy and of minor importance. A semi-simple Banach algebra is a function

algebra.

Let X be a compact space & < C(X) a function algebra having X as structure
space. Let U = C™ be a set and fa continuous function on U. The function f oper-

ates on o if f(ay, ..., a,) € of whenever aj, ..., a, € & and
{(ay(x), -5 @) x eX}esU.

33 Banach Center t. VIII [5131
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