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COROLLARY. Let A, be closed symmetric operators on the Hilbert space X with
common domain @. Let A be a closed operator with core 9 such that
(i) Apx — Ax for all x€ 9,
@) [|(4a—A)xll < alldyx||+bllx]] for all x€ 9. .
Moreover, assume def. 4, = def. 4,,,. Then def. 4 < def. 4,.
These results have useful application to differential operators. For simplicity
we apply these results only for Schrodinger operators on R", n > 2.
TororeM 4. (2) Let T = —~A+qi+4qs+4gs be a Schrodinger operator on
PR, n > 2, with Dy = € (RY), RLN {0} and:
(i) g, is spherically symmetric and g, € Z3.(R%),
(i) q1(r) = —Kr? for large r,
(iii) li})n r2q,(r) = ¢ exists,
@iv) :Ex; > ¢,(%) > —Klx|? for some K >0 and o continuous,
() ¢s € LIU2(RY) satisfies Stummel conditions.
Then one has
def.T=0 if 4¢>3—(m—1){n-3),

rro1e 3 EIDEIN_ g
c =1

e(n,s) = 3—(m—1)(n—3)—4ds(s+n—2) > 4c > c(n, s+1) for s = 0,1,2,..
(b) If instead of (iii) g, satisﬁe:v q:(r) = 1)

r2
= —o0, then def. T = co.

with f monotonic and lim f(r)
r-0

Since Schradinger operators with real potentials always have equal deficiency
indices, we have written def. 7' = / instead of def. T' = (I, ]).

In the proof one treats g, by means of a series of cutoffs and uses Theorem 3.
The potential is treated as an additive perturbation (Theorem 1) and the remain-
ing operator —A+g¢, is investigated by means of polar decomposition.
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THE SPECTRAL PROPERTIES OF THE SCHRODINGER OPERATOR
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(A shortened version of the lectures given at the Banach Center, November 1977)
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The Schrodinger operator L = —A+¢(x), x € R" is usually considered in L?(R").
There are many reasons for this; one of the more important is that the mathematical
models of quantum physics use L2(R") as the basic space. Why, then,‘ are we going
in our lectures to consider the operator L in other, nonseparable spaces? Our idea
is that if one investigates the spectral properties of L in a given Hilbert space, say,
in L*(R"), then it can turn out useful to operate at the same time with spectral
representations of L in other functional Hilbert spaces. We then have at our dis-
posal several different points of view on the spectral properties of the operator L,
and we may thus obtain better results in the basic space. From this point of view
the nonseparable functional spaces $(R") are very useful because: 1. the essential
spectra of L in L2(R") and $H(R") are in many cases equal, 2. the spectral resol-
utions of L in L?*(R") and $(R") are quite different, in particular, eigenfunctions
of L which are not square-integrable belong to $(R™.

This method was applied to the investigation of the spectral properties of L
in the papers [4]-[9] and [3]. In the last few years in the papers [11}-[13] the non-
separable Hilbert spaces of almost periodic functions were used in the investi-
gation of the spectral properties of the almost periodic elliptic differential and pseudo-
differential operators.

1. The nonseparableﬂ functional Hilbert spaces

We will use the following norms:

M (/0% = limsup = | 17Pdx,
00 ‘ pH<T
TI 2,
@ 1P = lim @S«m ax,

4 Banach Center t. VIII [49]
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®) 17112 = § 1712%4x,
R"

where f(x) is a complex-valued function, x € R".
Letusput M = {f: []f[] < +c0}. Then, by therelationf ~ giff []f~¢g[] =0,
the linear space
M= M/~
is a complete Banach space (see [10]). The elements of 0t will be denoted by capital
letters F, U, ... If fe M represents Fe M, we write F = (f).
We look for Hilbert spaces § < IN. We take as the scalar product the quantity
.1 _
4 U, V)= lim — S uvdx, U= (), V= (v).
T00 T
|x|l<T
Therefore it is natural to consider the set
P= {u: ueM, |lu]| exists}.
But there arises the trouble that P is not a linear set (see [1]). Indeed, putting, in
the case of R':
e—llozx, x> o,
0, x <o,

=1 g0 = {

we have f, g € P but
T

1 S 1
3T _/Tfde =3G6+D

e—ilotT_

__1_ o et lonat\
2T\ i+1 ’

This means that the scalar product (f, g) does not exist, which is equivalent to
the fact that f+g ¢ P.

Two functions f, g € P will be called comparable if the limit (f, g) exists. In

the same way we shall say that a function and a subset of P, or two subsets of P,
are comparable. '

But there exist linear subsets £ < P, for example the set of trigonometric
polynomials

q

T= {u: U= Za,,ei“u"",q < 400, Z,,ER"} < P,

u=1
The following theorem holds ‘(see [1]):

TuroreM 1. If E is a linear subset of P, f, € E, || fy—full = 0, then for fe M
such that [| f—f,[] =0 we have " ’

feP, fis comparable with E, ||f—f,l| - 0.

‘ Hence, fqr linear subsets E < P the closure E is linear, too, and Ecp,
i.e. each functional Hilbert space with the scalar product (4) is of the form

5= E~
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where E an arbitrary linear subset of P. In what follows we shall use the notation
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B*R") = T/~ = AP.(R)/~

where A.P.(R") denotes the set of almost periodic functions (for more information
on A.P. functions see [2]).

The question arises: are there other nonseparable Hilbert spaces §: B*(R")
# $ = M7 There is a natural method of constructing linear subsets E = P. We
take a set of complex valued functions u;, A€, satisfying the following two
conditions: .

1. u, € P A

2. u;, uy for each A, 1’ €/ are comparable.

Then we put ‘

q
E= {u: u= Za,‘ul“,q < +w,led, a, complex}.
p=1

Let us introduce some definitions relevant to this method. A function u; will
be called a weak eigenfunction and a complex number A a weak eigenvalue of the
operator L = —A4+g, sup |g(x)| < +oo, iff:

xeR™

(2) ue CAR)NP, |lul] #0,

(®) sup (ul, 1Dws)) < + o0,

(©) [I(L—Dugll = 0.

The following lemmas hold (see [3]):

LemvA 1. If w; uy, are eigenfunctions, A# X, Imd = ImA =0, then
(w3, ) = 0, i.e. they are comparable.

Lemma 2. If
® o€ C3RDAP, |ID%|l=0, led<2, |loll #0,
then

Q(x)ei(l"'x) = Uy B eR",

are weak eigenfunctions of the operator L = —A.

Using these lemmas one can prove the following two theorems (see [3]):

THEOREM 2. There exist nonseparable Hilbert spaces H:e M O<T <],
with the scalar product (4), which are spectral for —A+q, q e AP.(R"), such that

1. B*(R") and $., 0 <t < 1, are noncomparable,

2. $. and $.., v # ', are noncomparable.

THEOREM 3. T}zere exist nonseparable Hilbert spaces NcM| O0<T<],
with the scalar product (4), which are spectral for —A4+q, q e AP.(R"), such that

1. for 0 <7 <1, BXR") = N, and R.OB*(R") = O, is nonseparable,

2. Q. and Qu, % # T, are noncomparable.

The Hilbert space § is said to be spectral for the differential operator L if L
can be densely defined in § in such a way that it becomes essentially self-adjoint.

4%
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_XI. The spectral cutting problem

Let g e AP.(R") and ge& C?(R". Let us consider the differential operator L
= =A+q and the operator L, = —4+ g with the potential “cut by ¢”. By 4
and A, we shall denote the unique self-adjoint extensions in L*(R") of the oper-
atots L and L., with domains Dy = Dy, = C§(R"). Now the spectral cutting
problem may be formulated as follows: for which cut ¢g do the spectra o(4),
0(4e) satisfy the inclusion

o(4) = o(Aou)?
Let p satisfy the condition (5) of Lemma 2. For such ¢ we introduce the sets
APHR"Y = {u: ue AP(R"), D' ;sA.P.(R"), lof < Kk},
: APHRY = {u: u = gv,v'e APMR"}.

We shall solve the spectral cutting problein operating with specttal representations
of the operators L, L, in the following spaces:

L*RY, B*RY, N = APoR) ~.
The following theorem holds: !

THEOREM 4. The operator L = —A+gq, q& AP.(RY), DL A. PZ(R"), is in
the space B*(R") essentially self-adjoint.

The proof was first given in the papers [S], [6]. Different generalizations of
this theorem may be found in-[9], [7], [8] and [11]-[13]. In the papers [9], [7], [8],
the potential ¢ with local square-integrable singularities is considered. The papers
[11]-[13] contain a generalization of the theorem to the case of almost periodic
elliptic operators.

The unique self-adjoint extension of L, whose existence is guaranteed by

Theorem 4 will be denoted by . For the space M we have the following, similar,
theorem:

THEOREM 5. If ¢ satisfies the conditions (5), |le(1—@)|| = 0, qﬁe A.P.(R"), then
the operators L= ~A+q, Ly, = —A+¢q, Dy = Dy, = APXR") are essen-
tially self-adjoint. .

In what follows we.shall denote by U and ., the unique self-adjoint ex-
: 1 1

tensions of the operators L and L, in N.
The following theorem is true.

THE CUTTING THEOREM. If ¢ satisfies the conditions (5), [lo(1—o)|| = O and
there exist numbers o > B>0 such that for each ue AP, .(R")

allull > [lull > Bllul

then

0(4) < 0(4ewy).

icm°®
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The proof-is based on the following chain of equalities and one inclusion:

o(d) = o(N) = G(Q‘I) = U(Qi[cut)ca'(Acm)'

The first equality is the following known theorem:

THEOREM 6. If q € A.P.(R") then o(4) = o(W).

The proof of this theorem was first given for R!, g continuous and periodic,
in the papers [4]-[6]. For R® and ¢ periodic with local square-integrable singular- .

ities the proof may be found in [7], [8]. The paper [11] contains the proof of the
theorem in the case of almost periodic elliptic operators.

II. The method of integral operators

In this section we 'shall be concerned with the -form of the operator (A—2)~%,
A ¢ o). In order to avoid iterations we will consider here only the case of R®.
The basic fact for the spectral theory of elliptic operators in L2(R3) is this:

© (A=D7)6) = (f BG:, -, D)es = § B, 9, DIGYdy
- =2

where H(x,'y,4) is the appropriate fundamental solution of Carleman type.
In our nonseparable spaces the situation is different. It can be shown that
there does not exist any function G(x,y, A) such that for each Fe B*(R"):

U—-D'F = ((F, G(x,-, ), (Gx,-, H)eB*R).
But it can be shown that for.q e A.P.(R®) the following equality is true:

@~ 2F = (§ By, D0)y)
R!

where F = (f) e B*(R® and H(x,y, A) is the resolvent kernel appearing in (6).

This fact follows from some nice properties of H(x, y, 4). To formulate them, let

us denote by U the self-adjoint extension of the operator —4 in B2(R®), and let
0 .

us put

12| x—y]

Yl A= .

e(lx—yl|, 1% y e for ImA>0
The quantity e(|x—y|, A%) vanishes very rapidly if fx— ¥l = co; hence
-y = ( elx=yl, PYOMy),  F = () B,

Consider the general case of the potentxal g not uecessa.nly almost pcnodlc
satisfying the condition

.sup gq(x+r)2dx < 400, . 2 abounded set.
1&R’b
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Then the resolvent kernel H(x, y, 4%, i.e. the solution of the following integral
equation

H(x,y, %) = e(x~yl, 4%)— S e((x~sl, A%q(s)H(s, y, A*)ds

R3
has the properties expressed in the following theorem.
TaeoREM 7. If
Alw) = {z: z= A% ImA > wst; S lg(x+ r)[zdx}
veR? x| <1
and o > 0 is sufficiently large, then for 3> < A(w), x,y € R, 0 <k <Imi-o,
the following estimates hold:
e~ klx-yl

)] |H(x, y, iB)—e(lx=yl, %) < L(o, k) [Evi
where the number L(w, k) depends only on o and k,
(8) H(x+7,y, ) ~-H(x,y—1, 3

( ~klx—y+
sL(k,w,Q)(suRpS|q(x+r+p)_q(x+p)lzdx\)1/z g=HE-y+7|
peR3
Q

Jx—y-+ 7|42

where t € R® and the number L(k, w, Q) depends only on k,w, 2.
The proof of this theorem may be found in [8] and [9].
From the estimate (7) it follows that the operator

RoF = (| Hs, y, DIOWD), F=(HeM
R3

is well defined in M and is bounded.
Moreover; from (8) we obtain that for g € AP.(R®) we have:

Ri(AP.(R%) = AP.(R)
and for Fe B*(R®)
©® RpF = (U~ 1?)*F.

IV. Applications of the integral method

The first application to mention here is the proof of the fact that the operator
L= —A+gq for some ¢ with singularities such that (g) € B>(R®) may be made
self-adjoint in BZ(R?), :

Suppose that for each bounded measurable set 2 < R®

suRp S lg(x+7)|%dx < +o0  and g € LipR>*\N)
&R g
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where 0 < @ <1 and N denotes a set of isolated points, curves and surfaces.
Moreover, let D(R*\N) be the set of complex valued functions defined by the
following conditions:

1. D(R*\N) = C2H(R*\N),

2. For each ¢ € C3(R®) and u,ve D(R3\N)
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Lud) e LR, {udd@ddx = | Audyodax.

R? R3
Then the following theorem holds.
THEOREM 8. If for each ¢ > 0 the set of points © € R® such that

sup S lgx+p+7)—q(x+p)l*dx < &
PER?

is relatively dense in R®, then the operator L = —A+q, Dy = {U: U= (w),uec D},
where D = {u: uc D(R*®\N)NA.P.(R®), Lu € AP.(R®)}, is essentially self-adjoint
in B*(R3).

Now we shall consider the problem of eigenfunctions. For g € A.P.(R%) we
would like to know if each eigenelement E, (- A)E = 0, may be’ represented
by classical eigenfunctions. That means, we ask whether we have E = ZE,,
(A—NE; =0 and E; = (e) such that e; € C*(R®?), ~de;+-qe; = ey, ie. e(x)is a
classical eigenfunction. ) '

There holds the following theorem.

TureoreM 9. If g(x) is periodic and continuous and (U—NE =0, then E
= Y E,, E, = (% u(x)) where ¢%wy(x) is a classical eigenfunction and v(x)
satisfies the same periodicity conditions as q(x).

An analogous theorem holds for periodic ¢ with singularities. For the proof
see [6], [7], [8]. For almost periodic potentials only the following theorem is known
‘(see [3]): :

Tureorem 10. If ge AP.(R?), (U—)E = 0, E = (¢) where e € A.P.(R®), then
e is a classical eigenfunction.

Finally, using the integral method we may obtain very strong perturbation
properties of the spectrum o(4) = o(¥) (see [6], [3], [7], [8]). One may obtain the
estimate of the following type:

(1 (2)
(10) 5 (o), o(W) < Lilg*—a*[l

[0 )
where I denotes the self-adjoint extension in B*(R") of —4+¢’, and 4 denotes
the Hausdorff distance. For instance, in the case of the operator —d?/dx*+g,
putting

b4, B) = max ( sup d(x,B), sup d(x, 4))
. xed N(x,) xeBr(a,B)

where d(x, 4) denotes the distance of the point x to the set A4, we bave the follow-
ing theorem:

e e
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Taeorem 11. If ¢'(x+a'n) = ¢'(x), @' < q, ‘S) lg'12dx <N (i=1,2), then

OR©) — IN+1
Sesin (@30, o) < V/a@ e M, Bl
where
M(x, B) = sup (JA]2+1)"*2
aALS

The perturbation properties of the type (10) in the case of periodic g follow
from some estimates of classical eigenfunctions and from the fact that the eigen-
elements of U span the space B*(R3).
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The Schrédinger operator L = —A+q with an almost periodic potential g (in

‘symbols: q € AP.(R") is of interest in the quantum theory of disordered systems

(alloys, liquids).
Let ¢(x) denote a function for which the set suppgnsupp(e—1) is not too
large; we shall call the operator
Loy = —A+Qq '

the Schrodinger operator with potential “cut by ¢”. By 4 and 4., we shall denote
the unique self-adjoint extensions in L?(R") of the operators L and L,, defined in
Dy = Dy, = C}(R"). Now, the spectral cutting problem may be formulated as
follows: for which cut gg do the spectra 6(4), o(dcu.) satisfy the inclusion

€Y o(4) = o(4eud?

This inclusion has the following physical interpretation. Suppose that an

electron is moving in the medium defined by the potential g. Then the set of num-

bers o(4) represents the admissible levels of energy. In other words, o(4) rep-
resents the energetical characteristics of an electron moving in the medium con-
sidered. The potential g defines the medium arising as the portion cut from the
original medium defined by g. The inclusion (1) means that the electron in a piece
cut from the medium may have the same energy levels as one moving in the whole
medium,

We will use the following norms:

@ []f[]’-—-limsup% S If1dx,
¢ Toe T
1 .
® i = tim - § 1f2a,
Tmeo x|<T
@ N1 = § if1dx,
R®

where f(x), x € R", is'a complex-valued function.
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