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we may state the following theorem, which is due to C. J. Earle and R. S. Hamilton
[3] for Banach spaces.
THEOREM 8.3. If & is sequentially complete, any fe Hol(D, &) such that f(D)
< < D has a unique fixed point.
Remark. The proof of the above theorem can be carried out (as in [3]) using
the Carathéodory differential metric yp and its integrated form €p, instead of %,
and f,. .
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1. Introduction

1.1. I have been asked to speak on the ideology of the holomorphic functional
calculus. And I have accepted, even though I do not believe that such a unique
ideology exists. These talks, and these notes are an opportunity for presenting my

own ideas on the subject.

These notes lay the stress on the h.f.c., they are related, but only partly, with

{47], where non-Banach algebras are stressed.

While preparing this written text, I became increasingly aware that my ideology
was that of an operational calculus. The fact that this involves holomorphic func-
tions is a good surprise. The expression “holomorphic functional calculus” (h.f.c.)
must be taken to mean “operational calculus involving holomorphic functions”.

1 must also mention the fact that Gelfand’s papers ([11], [12], [13], [14]) were
not available in Belgian libraries, or at the Institut Poincaré in Paris, even in 1953
when I completed research on my first paper [42]. This was a consequence of the

disruption due to the war, and of lack of money in the post-war period.

1 knew most of Gelfand’s results. I had attended talks by mathematicians who
had read Gelfand. I had read the Mathematical Reviews. But my knowledge was
indirect and incomplete. This had an effect on my personal ideology at the outset,
also later since I knew how much could be proved about Banach algebras without

using Gelfand’s results.

1.2. The following is the ideology of many mathematicians, and flows directly

out of Gelfand’s results.

A commutative Banach algebra is semi-simple modulo the radical. The radical
is messy and of minor importance. A semi-simple Banach algebra is a function

algebra.

Let X be a compact space & < C(X) a function algebra having X as structure
space. Let U = C™ be a set and fa continuous function on U. The function f oper-

ates on o if f(ay, ..., a,) € of whenever aj, ..., a, € & and
{(ay(x), -5 @) x eX}esU.

33 Banach Center t. VIII [5131
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The fact that a holomorphic function operates on & in the above sense is, in
a way, the h.f.c.

‘With this ideology, the fact that the h.f.c. mapping f — f[a] is an algebra homo-
morphism is of secondary importance. Arens and Calderén [7] do not mention that
property. I have never seen a translation of G. E. Silov’s [27] original paper on the
subject and cannot say for sure whether he mentions that fact. Certainly, in 1960
[28] he gives a short summary of the theory of analytic functions in a normed ring
and does not inform the reader that the h.f.c. mapping is a homomorphism.

1.3. My viewpoint is different. Assume that & is a topological algebra, which
may be commutative, and may have a unit. Let a,, ..., a, be elements of &f. We can
add, multiply the a;. We can take inverses when they exist. We can take limits of
rational functions. Try to organize these operations.

If ay, ..., a, are commuting elements of &, if P is a polynomial in # indetermi-
nates, we can define P(a,, ..., a,).

We start out with some operations, which we assume can be perfomed. In
a first phase, these would be taking inverses of polynomials, limits of rational func-
tions. But later it appears that other operations are worth studying.

We would like to find a unital algebra 0, containing elements z,, ..., z,, on
which the operations considered can be performed. And each time we have an algebra
o with unit, and elements a;, ..., a, on which these operations can be performed,
we would like to find a unique homomorphism ¢ — &, mapping z; on ¢; and unit
on unit. In other words, we would look for the solution of a universal problem.

This search for universal solutions is not always the most appropriate. The
operations we investigate may be such that no universal solution exists. Or the
universal solution may exist, but be unmanageable. A non-universal solution may
give more information.

The viewpoint described above can be called the search for an operational
calculus. It turns out that the operational calculus algebra @ is often an algebra
of holomorphic functions. We find a holomorphic functional calculus.

1.4.  Once we stop looking for universal solutions, uniqueness of the operational
calculus is less important than its naturality. )

Let # be a new topological algebra with unit, and ¢: o — # a morphism
(a continuous homomorphism mapping unit on unit). Let b; = @a;. Whatever
operations can be performed on g; can also be performed on ;. A morphism ¢ — #
must therefore exist, which maps z; on b;.

The operational calculus we have constructed is natural if this morphism is the
composition of the operational calculus morphism 0 — o and p: & - B.

1.5. In the following statement by B. Mitjagin, S. Rolewicz, and W. Zelazko
[19], the functional calculus is taken with the meaning I prefer.

©
Let o be a commutative Fréchet algebra (locally convex). Assume that Z c,a"
]
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0
converges whenever 20 €»2" is an entire function. Then . is locally multiplicatively

convex.

o0
One can say (Mitjagin, Rolewicz and Zelazko do) that f(z) = N operates
Q

o0
onaif Z ¢y " converges. In a way, the “entire functions” are sequences of coefficients
0

¢, such that [c,|*" - 0.

1.6. I differ ideologically from the majority on another point. For the majority,
Banach algebra theory is the center around which the h.f.c. revolves.

My original motivation was trying to solve problems about operators. And
not all operators have compact spectra. It is not too difficult also to construct an
operator with an empty spectrum, i.e. such that ¢—sI has an inverse for all complex
numbers s.

Operators with non compact spectra, or with empty spectra fall outside the
scope of Banach algebra theory.

1.7. Thave not been as successful as I like with that part of the program. I have
not been as successul as I thought I was. I have obtained an operational calculus
involving elements of the center of a topological algebra, making hypotheses about
what can be called a resolvent, or an asymptotic resolvent of (g, ..., a,).

It is not clear that the hypotheses on the resolvent are easy to check. But that
is not the worst.

My original motivation was the theory of partial differential equations. All the
operational calculi I have obtained are functional calculi, function algebras are
commutative. My operational calculi can only apply to commuting operators.

I can study partial differential equations with constant coefficients. I obtain
results which are essentially equivalent with the n-dimensional Heaviside calculus,
but the Heaviside calculus existed before my results. At present at least, partial
differential equations theory is not concerned, not mainly concerned with equations
with constant coefficients. :

I'may be dismissing too fast the operators which can be built up from commuting

operators, e.g. operators with separating variables. But this class of operators is
not stable under perturbations.

1.8. Function algebras are commutative. The best application I know of my
results are due to I. Cnop [8] and J. P. Ferrier [9], [10], and apply to algebras of
holomorphic functions satisfying growth conditions.

1.9. This is the place to.speak of non-commutative operational calculus. An
operational calculus is an attempt to the solution of a universal problem. The attempt
can only be useful if the algebra we find has properties which are not apparent when
just looking at the operations postulated as applicable to the given elements.

33+
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In the commutative case, the h.f.c. has proved useful because the algebras of
holomorphic functions on Stein manifolds are understood well enough. Of course,
this understanding has come in the last thirty years.

It may be that the useful non commutative operational calculi will involve
algebras whose structure is not yet understood but will be understood in the next
thirty years.

J. L. Taylor presents a very abstract program ([33], [34], [35]). But it is not
unlikely that one would find, at the end of the road, algebras which have the good
properties.

E. Nelson adopts another approach to the problem (cf. the paper by E. Albrecht
in the same proceedings [2]). He changes the multiplication defined on & and makes
it commutative. This would be interesting, if the spectra were computable, and not
too large. i

It seems unfortunately that sp(e;,, e,4) in M, is not easy to find, if M, is the
algebra of 2 x2 matrices,

0 1 0 0
"“z(o o> ®17\1 o)

L. Hérmander and other mathematicians are busy carrying out computations
with partial differential operators, pseudo-differential operators, and futti quanti.
They are finding properties of operators on function spaces, and are localizing,
even microlocalizing these properties. I believe that their work is the beginning
of an operational calculus involving multiplication operators and derivations along
vector fields.

2. Some pre-existing results

2.1. A functional calculus exists for self-adjoint operators on Hilbert spaces
and continuous functions on their spectra.
If a is such an operator, ||a?|| = ||a|[?. Therefore

max{|s|| s €spa} = lim|[a"||" = ||ai}.

Also, a+il has an inverse, the spectrum of a is real, if z = x+iy, y #0,

,,-,] .

has-an inverse. The spectral mapping theorem is easy to prove for polynomials of
a single variable, P(spa) = spP(¢). If P e R[x], P(a) is self-adjoint

[[P(@)]| = max{ls| | s esp’P(a)} = max {|P(s)| | sespa}.

The Stone-Weierstrass theorem and completion allow one to conclude.

a—xI

a—z] = y[

2.2. The Gelfand holomorphic functional calculus applies to elements of a Banach
algebra.

icm
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Let of be a Banach algebra with unit, and a € . Let U be a neighbourhood
of spa, let ¥ be a neighbourhood of spa with rectifiable boundary and relatively
compact in U. Let f be holomorphic on U. Let

flal = —2—L

i

Sf(s)(s—a)“ds.

av

1t is clear that fa] does not depend on the choice of ¥, the class of homology of
dV is well determined in U\spa. If we put on the algebra 0(U) of holomorphic
functions on U the compact open topology, the mapping f— f[a] is continuous,
A calculus of residues shows that fla] = P(a)0(a)~1 if f(z) = P(2)/Q(2) is a rational
function. So, this continuous mapping is a homomorphism on a dense subalgebra,
it is a homomorphism.

2.3. The following observation looks trivial. But if we combine it with the
Oka—Cartan results and the Arens-Calderdn trick, we get the full h.f.c. (see Section
3.7).

Let f(z) = 3. c,,f be holomorphic on a disc of radius larger than |[a||. Then
0

o
E c,a® converges. We can define
e

L)

flal = Z cud".

[

This is, of course, a good “substitution” of a into f.

2.4. Both the Gelfand h.f.c. and the baby h.f.c. of Section 2.3 have n-dimensional
analogues.

Let f be holomorphic on a neighbourhood U of spa; x ... xspa,.Let Vi, ..., V,
be neighbourhoods of spay, .., spa, respectively, with rectifiable boundaries, and
such that V; x ... x¥, is relatively compact in U. We can define

al=

V1% XOVy

flay, --.

f(Sl, mees sa)(sl—al)”1 - (sn"'au)-ldsl dS,,.

Let f be holomorphic on a polydisc of polyradius (g, , ..., g,) with each p; > |aj||.
Assume that

f(z1s s 20) = chl...k,,z'{' on ZEn
We can define

flayg, . a,] = Z Cyten@51 ... Ak,

2.5. The Heaviside calculus, and its n-dimensional form given by Leray in
1950 are among the premices of my work. The following is a variation on that
theme:
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I'is a tube in C", i.e. I' = U+iR" where U is open and convex in R". Let o,
be the holomorphic functions which satisfy an estimate

lu(z] € M(V)(1+|z[?)ke2

on each closed set V+iR" at a positive distance from the boundary of U+ iR,

The inverse Laplace transform #~'u of ue @ (I") is the product of !* and
the inverse Fourier transform of the restriction of » to the vertical £-+iR", This is
a distribution, because u has polynomial growth on the vertical. The product does
not depend on £. And Paley-Wiener show that the support of this distribution is
contained in — C where C is the polar cone to the asymptotic cone of I,

We call u( ai s eees a@ ) this distribution. The mapping u — u(8/8x) is a con-
tinuous homomorphism of @,(I) into a convolution algebra of distributions. This

homomorphism maps the constant 1 onto the Dirac measure 8, and maps z, onto
80/0x;.

2.6. E. R. Lorch [17], [18] studies s/-holomorphic functions when & is a Banach
algebra. These are defined on an open subset of &, «/-valued, and are Fréchet
differentiable with -linear dlﬁerentlal It is clear that the h.f.c. defines Lorch
holomorphic functions.

Lorch’s research is independent of Gelfand’s. His results are published after
Gelfand’s. The material covered is not exactly the same.

* But the main reason why it must be mentioned here is that his papers were
available in Western European libraries.

3. The hf.c. and Banach algebras

3.1. The functional calculus for functions near to products of spectra is not
a final result.

Instead of considering (ay, ..., a,) we could have considered # linearly inde-
pendent linear combinations (b, ..., b,) of (a, ..., a,). We would like the oper-
ational calculus in (b,, ..., 5,) to be an immediate transform of the operational
calculus in (ay, ..., a,).

And this is not the case. If b = Tq where T'is an invertible linear transformation,
we define g[b] when g is holomorphic near to spby x ... xspb,. Letting f=goT,
thisis equivalent to defining f[a] when fis holomorphicnearto T-(spb, X ... xspb,,).
This is not (in general) the direct product of n subsets of C.

3.2. The most reasonable thing here is to try to increase the operational calculus
by considering next to a,, ..., 4, a finite number of polynomials P, (a), ..., Py(d)
inay,..,a,.

The h.f.c. for functions holomorphxc near to direct products gives a homo-
morphism f(z, y) = fla, P(a)],

o{[ T spa,x [T spPste)) »

icm
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which maps unit on unit, z; on 4;, and y; on P;(a) (if z stands for the mapping
(s,t) > s; and y; for (s,1) - t;, C*+N — C). This homomorphism vanishes on
the ideal o generated by the functions y;—P;(z) and induces therefore a homo-

morphism
o(TTsoaix [[spPi@)/a— .

The operational calculus algebra is the quotient algebra considered above,
or a direct limit of such algebras.

3.3. Fortunately, results of Oka and Cartan show that the operational calculus
algebra is the algebra of holomorphic functions near to a compact subset of C".

PROPOSITION. Let U, ..., U,, Vi, ..., Vy be open subsets of C. Let Py, ..., Py
be polynomials in n variables. Let

4= {(21,- s Zo)| 21 € Uy, Py(z )GV}

The mapping f(z,y) — f(z, P(2)) is a surjective homomorphism Gm U; x[1 V,) -
— 0(A), whose kernel is generated by the functions y;— Py(2).
This follows from the theory of functions of several complex variables.

DerINITION. Let ay, ..., a, be elements of . The rationally convex joint spectrum
sp(ay, ..., a,) is the set of s € C" such that P(s) e spP(a) for all polynomials in
n variables.

PROPOSITION. There is a unique continuous homomorphism 0(sp(a, , ..., a,)) = o
which maps z; on a; and unit on unit.

The algebra 0(spa) can be considered as the operational calculus algebra, if
(@1, ..., a,) € ™ are elements such that spP(q) is given for all P.

Uniqueness of the mapping is a straightforward application of Runge s theorem.
Rational functions are dense in m(sp(al, s a,))- A morphism mapping unit on
unit and z; on @; maps P(2)/Q(z) on P(a)/Q(a).

To prove the existence of the mapping, we start with an open neighbourhood
W of sp(ays ..., a,). By compactness argument, we find a finite number . of poly-
nomials P;, ..., Py, and neighbourhoods Uy, ..., Uy, ¥y, ..., Vy tesp. of spa;-and |
of spP;(a) in such a way that W =2 4

A= {(zi . z)l zi €Uy, Pi(2) € Vi)

The Oka-Cartan results combined with the h.f.c. on direct products glves a homo—
morphism @(4) —» o, z; = a;, 1 > 1. We compose this with the restriction map
O(W) — 0(4) and obtain a continuous homomorphism O(W) — . EX
We shall have the required continuous homomorphism 0(spa) - &f-if we-prove

that the above composition does not depend on the choice of P, U, V. Butlet P, U,
¥ be new polynomials and open neighbourhoods, let P = (P, P'), let U = UnU’
and V"' = (¥, V"). We are led to the consideration of ., - . e

4" = {zeC" z;eU;, Py(2) €V},

4" ={zeC z; € U,nUi,P_,(z)e Vj,P e V,}
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The proof of the fact that the compositions O(W)— 0(4) » & and ow) -
- 0(4’) - o are equal is straightforward and left to the reader, with one hint.
If fe O(W), to find the image of f by the composition mapping, we must choose
a function Fy(z, y, ) e O[T Uix[1V;xI1V;) such that f(z) = F, (z, P(2),
P'(z)) when zed”, and we let fla] = F[a, P(a), P'(a)]. Of course, a function
F(z, y) exists, in O[] U;x[] ¥;) such that F(z, P(z)) = f(z) when ze A’ 2 4",
We can define F, in such a way that it is independent of y* and F,(z,y, y)
= F(z,y). Then F,[a, P(a), P'(a)] = Fla, P(a)].
3.4. This is the place to speak of polynomial and of rational convexity.

DerINITION. Let U be a set. Let & be a set of complex-valued functions on U.
The F-convex hull of X is

X={zeU Vfe#: |f(z) < sup | £(x)1}.

When speaking of rationally convex hulls, we must make the convention that
J(zo) = oo when f = P/Q is a rational function, and in lowest terms we have Q(z,)
= 0. This is less obvious than it seems. Consider f(z) = z,/z, on C2, and let

B X = {@0) <1},
Then f is well determined at all points of X except the origin, and vanishes 'where
it is determined on X. But f(0, 0) = oo anyway.
With this com{ention, the rationally convex hull of X is the set of (z,, ..., z,)
€ C" such that [f(2)] < sup |f{x)] for every rational function f= P/Q whose de-
xeX

nominator does not vanish on X.
PROPOSITION. The rationally convex hull of a compact subset X of C". is the set
X = {G1, . 2 €C VP: P(2) € PO}
This is easy. If P(z) ¢ P(X), the rational function 1/(P—P(z)) is bounded on

X and takes the value oo at z, s0 z is not in the rationally convex hull of X. Conversely,

assume that z is not in the rationally convex hull of X, let r be a rational function
such that

[r(2)| > maxjr(x)|.
xeX

Then r(;) gr(X). Let r = P/Q where P and Q are polynomials. Then P(z)Q—
~—Q(2) P vanishes at z but does not vanish on X,

3.5. sp(ay, ..., a,) is not a joint spectrum as defined by Z. Stodkowski and
W. Zelazko ([29], [30], [62]). It does not have the spectral mapping property for
polynomials, not even the projection property. It is a “rationally convex spectrum”
if we accept the

) DmoN. A rationally convex spectrum on o, a commutative Banach algebra
with unit, is 2 mapping associating to every finite system (ay, ..., a,) of elements
of o, a rationally convex set (ay, ..., a,) in such a way that

icm°®
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”

1. &(ay, ..., a) < [1spa;,

1
I Ifn=1,1if ae o, 5(a) = spaq,

I If by, ..., by are elements of &, if P, ..., P, are polynomials in » variables,
if a; = Py(a), then

#ay, ey ay) = WULP(F(by, .., by)),

where “hull” stands for the rationally convex hull.

Of course, not more than one rationally convex joint spectrum in the sense
of this definition can be found, so sp is the rationally convex joint spectrum. A “pro-
jective limit™ argument allows us to reduce the rationally convex spectrum of (a;, ...
...s @,). We want to take (s,, ..., s,) out of $p(ay, ..., @,) if elements b, , ..., by can
be found, and polynomials in N variables P, ..., P,, such that a; = P;(b), but
s ¢ P(spb). More precisely

DErFINITION. The joint spectrum, sp(a,, ..., a,), of (ay, ..

sp(ay, ..., ap) = [V P(sp(bs, -.-, b)),
where we let N range over N, b range over &f*, P over n-tuples of polynomials in
N variables, subject to the relations a; = P;(b).

It is easy to see that the set of sets P(Sp(dy, ..., by)) that we intersect has the
finite intersection property. Let (¢;, ..., cy) €& and Oy, ..., Q, Ee Pi)lynomials
in M variables such that a = Q(c). Consider (b, c) € ¥, Let P;, Q; be poly-
nomials in N+ M indeterminates, respectively ind_cpendent of tl_le M last, and of
the N first indeterminates, and such that P = P, Q = Q. Then Py(b, ¢) = Qi(b, ¢)
= g;.

For all (s, t) esp(b, c), we have Pi(s, t)—0i(s, 1) esp0 so P(s) = Q(t). Of
course, sp(b, ¢) = spbxspc, hence

P(sD(3, 0)) = O(sB(b, ) = P(sH ) N Q(sD ©)-

This finite intersection property allows us, by compactness, to show that sp(ay, ...

..., Gy) is the rationally convex hull of sp(ay, ..., @), because it is the rationally

convex hull of each P(sp(by, ..., bx)). It is also clear that the joint spectrum now has
the good spectral mapping property, i.e. if (@1, ., @) = (Pys -ves Pn) (Brs ... by),

then sp(ay, ..., a,) =P(sp(by, -... bn)).

PROPOSITION. The joint spectrum of (a, ..., a,) is the intersection of the projec-
tions of the sets §p(a, b) where Ne N and b € o*. )

One inclusion is trivial. The projection C"*¥ — C" is a polynomial mapping,
which maps (a, b) onto a. This shows that each projection contains the joint spec-
trum. '

To obtain the inverse inclusion, we consider b, , ..., by and a polynomial mapping
P = (P,, ..., P,) such that P(b) = a. We also consider (a, b) € #"*", and observe
that P;(¢) = s5; whenever (s, t) €sp(a, b). The projection of sp(a, b) is contained
in P(spb). This ends the proof.

., @y is the set
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PROPOSITION. The joint spectrum of (ay, ..., as) is the set of (sy, ...,5)eC"
such that (@, —S,, ..., 4,—S,) generates a proper ideal.
If (a; =5y, ..., ds—8,) do not generate a proper ideal we find u;, ..., u, such
that Y (a;—s;)u; = 1. For all (z,y) esp(a, ¥) we have > (@—s)y: = 1. Hence

(s, ¥) ¢ SP(a, ), this for all choices of y € C", and s is not in the projection of §p(a, u).
This proves one inclusion.

The converse inclusion is easy to prove if we accept Gelfand’s theory, i.e. if we
accept the axiom of choice (or at least, the existence of maximal ideals). I believe
that the following considerations rely much less on the axiom of choice.

Assume that (sy, ..., 5,) ¢ 5p(ay, ..., a,). Choose (by, ..., by) in such a way
that s is not in the projection of sp(a, b). Then, for no choice of (¢, ..., ty) is (s, 1)
in sp(a, b). Consider the functions (23—, ..., Za—Sn; Y1 —11, ..., Yn—1ty). They
belong to O(sp(a, b)), they have no common zeroes, and generate therefore the im-
proper ideal of O(sp(a, b)). The holomorphic functional calculus shows that (a, —
s Gu—Sy, by —1t,, ..., by—1ty) generate the improper ideal of 2/. We must
still establish the following result.

8y,

PROPOSITION. (a4, ..., a,) generates the improper ideal of o if be sl exists
such that (ay, ..., a,, b—t) generates the improper ideal of o for all t € C.

If the ideal generated by (ay, ...
be this closure. Let 5 be the equivalence class of b in &/a. Our hypothesis ensure
that b has empty spectrum in &/a. This is impossible.

3.6. Now comes the Arens-Calderdn trick [7]. Let U be a neighbourhood of
sp(ay, ..., a,). A compactness argument shows that (b, ..., by) exists such that
z: (s, t) - s maps §p(a, b) into U. Let f € O(U), fomis holomorphic on a neigh-
bourhood of sp(a, b). We can define (fom) [a, b].

If ¢y, ..., car are new elements such that projection maps sp(a, ) into U, we
consider (g, b, ¢) and their rationally convex joint spectrum. Let 7,: (z,,%) > 2
be projection C"+¥+¥ _» C". Then fo 7, is the direct product of fozx and the con-
stant one. Hence fom, [a,b, ] = fonla, b 1[c] = fon(a, b).

If m,: (z,x) > z were projection C**M — C", we would show similarly that

f° nl[a, b! C] =f° ”z[a: L'],
hence
fomla,b] = fom[a, dl.

This proves that the element of & associated to f'€®(U) does not depend on the
choice of b, ..., by.

PROPOSITION. * For every (a,,..,a)es" a continuous homamorphism
0(sp(ay, -.., an)) — of exists, which maps z; on a, and unit on unit.

3.6. This is the place to sketch a path to the h.f.c. which is slightly shorter than
the one.we have trodden. We start with the h.fc. as defined in Section 2.3, i.e. if
f(z1, ..., 2,) is holomorphic on the polydisc [z;] <7y, ..., |2zs| < r, and r; > |laill

, 4,) is proper, its closure is proper too. Let o
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we let flal = 2. cid® if f(z) = 3. cx7*. Let now Py, ..., Py be polynomials in n
indeterminates, let ; > [la;ll, r; > ||P;(a)[l. The same operation allows us to define
Fla, P(a)] when F(z, y) is holomorphic for |z;| < r;, [y <7j.

The Oka-Cartan results allow us now to define fa] when £ is holomorphic on
the polyhedron |z < r;, |P;(2)| < r;, hence f[a] when f is holomorphic near to

§p(as, s @) = {(51, .-, ) €C"| ¥ P a polynomial: |P(s)| < |IP(@)]l}-

The set 5p(ay, ---, @,) is polynomially convex. We can call this set a “polynomially
convex spectrum”.

Not every compact subset of C is polynomially convex. It makes sense to speak
of the polynomial hull of a subset of C. The polynomially convex spectrum has
properties

a,) < H hullspa;,
1
II. spa = hullspa when a€ o/,

L sp(ay, ---s

I. Let Py, ..., P, be polynomials-in N variables, let &, ..., by be elements
of o and a; = P;(b). Then
§p(ay, ..., a,) = hull P(5p(by, ..., by)).

Here of course, hull stands for the polynomial hull.
A compact set can of course be defined by

sp(ay, ..., 8 = (\P(sp(Dy, ..., b)),

where Ne N, besf™, Pisa n-tuple of polynomials in »n indeterminates, and a
= P(b). And the same proofs as in Section 3.5 shows that

$p(@i, -vs @) = {(s1, ..., 5,) € C" ideal (a;—sy, ..., a,—s,) is proper}.
Hence we have the same joint spectrum as previously.
But the substitution of an element in a convergent power series is easier than

in a Cauchy integral. It is remarkable that the Arens-Calderén procedure makes
the two resulting operational calculi equivalent.

4. Classical applications

4.1. The Silov idempotent theorem [27], the Arens-Royden theorem [5], Aren’s
theorem on the group of components of GL,(=), [6], the application of this theorem
to K-theory [36], are some of the classical applications of the holomorphic functional -
calculus. s

These are applications of two ideological facts. The structure space of a Banach
algebra o/ is a compact, polynomially convex subset of the dual &’ of . It is
a projective limit of Stein manifolds. Part (only part, unfortunately) of the mor-
ality of analytic function theory in several complex variables is that the algebra of
analytic functions on a Stein manifold is not too different from the algebra of con-
tinuous functions on that manifold.
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If X is the structure space of &, the holomorphic functional calculus is a mapping
0(X) - . The Gelfand homomorphism is a mapping & — C(X). The composition
of these two mappings is the restriction mapping ¢(X) - C(X). The algebra o is
“sandwiched” between two algebras which are not too different from each other.

In each specific application, these remarks must be made precise, but it is not
too surprising that many properties of a Banach algebra depend only on the topo-
logical structure of the maximal ideal space.

4.2. Above, I have used the analytic functions near a compact subset of the
dual &’ of . Of course, these must be defined, but their definition is not too diffi-
cult. &’ has a weak topology (i.e. o(&’, &)). Weak holomorphic functions near
compact subsets of &’ do not depend effectively on an infinite number of variables.

By definition, a holomorphic function on an open subset of a topological
vector space is a continuous function on that subset, whose restriction to each
one-dimensional affine subspace is holomorphic. We look first at the germs of
holomorphic functions at x € &, where &' has the weak-star topology o(&’, o).

If U is a neighbourhood of x, and f is holomorphic on U, then f is bounded
on a neighbourhood ¥ of x. This neighbourhood contains

W= {zed'|Kz—x,a)| < &, ..., Kz—x, 4| < &}

for some finite subset {a;, ..., &} of & and some & > 0. Liouville’s theorem shows
that f'is constant on the affine subspaces parallel to {a,, ..., & }' contained in W,,
ie. f depends only on (a,, ..., a).

At each x € o', we have a ring 0, of germs of holomorphic functions near x.
The union of these rings can be organized into a sheaf. We are interested in a com-
pact subset X < o, and the ring 0(X) of sections of the sheaf @ over X.

A classical compactness argument shows that for each such section f e 0(X),
we can find a finite number, ay, ..., a;, of elements of o, a neighbourhood U of
(@), .., ?zk(x))! x € X}, and a function f; € 6(U) in such a way that

f=f1(a15 “':ak)’

If X = &’ is polynomially convex, a second compactness argument allows us
to find b,, ..., 5; in such a way that the polynomial hull F of

F = {(@00, .., 3, b1(x), .., Bi(®))| x eX}

projects into U by the projection mapping C**' — C*. Let U, be the reciprocal
image of U by this projection, U, is a neighbourhood of F, and f is the composi-
tion of some f, € O(U,) and the mapping x — (a(x), 3(x)), of neighbourhoods of
X into U,. )

In other words, the algebra 0(X) of sections of 0 near X is the direct limit of the
algebras of holomorphic functions on neighbourhoods of {(a,(3), ..., 4(x))| xe X}
when {ay, ..., ay} ranges over finite subsets of o, when X is a(#’, of)-compact in of'.

icm

HOLOMORPHIC FUNCTIONAL CALCULUS 525

If X is compact and polynomially convex in &', O(X) is the direct limit of the
algebras of holomorphic functions on the neighbourhoods of the polynomial hulls of

{@®, ..., ak(x))| x eX},

where {ai, ..., ay} again ranges over the finite subsets of .
These facts allow the reader to understand better the Arens-Calderdn trick.

4.3. Let us mention now these classical applications of the holomorphic func-
‘tional calculus.

PROPOSITION (Arens—Calderén [7]). Let F(z,, ..., 2., ¥) be a holomorphic func-
tion for |z;| <1, |y| < 1. Let ay, ..., a, belong to a commutative Banach algebra,
and have a spectral radius less than one. Assure that a continuous function ¢ can be
found on the maximal ideal space, and that

F(al(m)’ s an(m)’ (P(m)) 9& 0,
‘Z—f (ay(m), ..., 8u(m), p(m)) # 0

this for every maximal ideal m. An element b then exists such that b= ¢, F(a,b) =0.
The implicit function theorem allows us to extend ¢ holomorphically to a neigh-
bourhood of the maximal ideal space in &/’. The holomorphic functional calculus
maps this holomorphic extension onto the solution b of our equations.
The Silov idempotent theorem is a special case of the above.

ProrosiTiON (Silov [27]). Assumethat the maximal ideal space X is not connected,
let X = X, UX, with X,, X, disjoint and open. An idempotent e then exists such that
e=0onX,,e=1onX,. .

In fact, Silov proved the above result when X is finitely generated. The extension
to infinitely generated algebras is due to Arens and Calderdn.

PROPOSITION (Arens—Royden [5]). The groups of components of the group of
invertible elements of o is H(X, Z), where X is the maximal ideal space of s/ and
H(X, Z) is the first Cech cohomology group of X with integer coefficients.

It will be easier to mention first the following result of Arens.

PROPOSITION (Arens .[6]). The group of components of GL.(f), the group of
n xn invertible matrices with coefficients in o, is isomorphic with the group of homo-
topy classes of mappings X — GL,,, where homotopy classes are multiplied by point-
wise multiplication.

The special case n = 1 of this result of Arens shows that the group of components
of sf*, the invertible elements of &, is isomorphic with the group of homotopy
classes of mappings & — CX\ {0}. This is the quotient C(X, C\ {0})/expC(X, O).
Consider the exact sequence of sheaves

().-.Z—»Q-—-)C\{O}—-)O
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where the first mapping is multiplication by 2ni and the second exponentiation.
We have a long exact sequence

. = HX, €) » H(X, C\ {0 ~ H'(X, 2) » H'(X, C) > ..

The H°-spaces are spaces of sections. Sheaf theory shows that H*(X, C) = 0.

In other words, H'(X, Z) is the cokernel of the exponential map H°(X, C) -
- HYX, O\ {0).

To pﬁ«@ his result, Arens uses the following results of Grauert. Hence, X will
be a compact analytically convex subset of a Stein manifold.

1. A continuous mapping X — GL, is homotopic to an analytic one.

2. If an analytic mapping X —» GL, is homotopic to a constant, there is 2 homo-
topy ¢: XxI— GL, of the given analytic mapping with the constant mapping
such that, for each tel, ¢(-,t) is analytic on X.

It is by combining these two results and the Arens—Calderdn trick that Arens
proves his result on the group of components of GL, ().

K-theory allows one to define functors in a fairly abstract way. These functors
give interesting invariants of the algebras. Aren’s theorem has, as consequences,
that the K-theory of a Banach algebra only depends on the maximal ideal space
of the algebra. The best exposition that I know of these results is due to J. L. Taylor
[36].

5. Naturality and uniqueness

5.1. The naturality of the holomorphic functional calculus is a very important
property. The following “naturality” result is obvious.

PROPOSITION. Let &f and & be two tative unital B h algebras, and
@: A — & a continuous unital homomorphism. Let a; € o, and b, = pa; for i
=1,...,n. Then

sp(bys ..., by) S sp(ay, ..., ay)-
Let fe0(sp(as, ..., )). We can define fla), f1b] and have the equality
JIbl = ofld].

We shall discuss here the consequences of naturality. Naturality is not unrelated

to uniqueness. It is reasonable to discuss the uniqueness properties of the h.f.c. in
this section also.

The h.f.c. has been constructed when a, ..., 4, are elements of a commutative
unital Banach algebra. We shall describe in Section 6 a class of good non Banach
algebras to which the h.f.c. generalizes. The algebra of holomorphic functions near
to a compact set is such an algebra. We shall feel free to use this fact, and the natu-
rality of the h.fic. constructed in this way.

5.2. DEFINITION. A compact subset X = C" is analytic if

$D(21, s Za; O(X)) = X,
where z,, ..., z, are the coordinate functions in C*.
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PROPOSITION. Let X © C” be analytic. A bounded homomorphism 0(X) — of
mapping z; on a; and unit on unit exists iff sp(ay, ..., @) S X. This homomorphism
is unique.

Such a bounded homomorphism ¢ can only exist if sp(ay, ..., a,) S X since
sp(@zy, .- PZa) < sp(2y, ..., 2y). If splay, ..., a,) € X, the hfc. is a homomor-
phism with the required properties.

To prove uniqueness, we observe that the h.f.c. allows us to define fz] € O(X)
if spz € X. It turns out that f[z] = f. Assume this is the case,

() = p(flzD = flp(2)] = fla

if ¢: O(X) — & is a bounded unital homomorphism mapping z; on a;.

To show that f[z] = f; we remember that an f'e 0(X) is determined by its germ
at each x € X. Call £; this germ. The mapping f'— f; is a bounded homomorphism
0(X) - 0({x}). It maps f]z] onto f[z;] = f;[z:]. A singleton is polynomially convex.
Runge’s theorem shows that the identity is the only endomorphism of 0({x}) which
leaves the z;.. invariant (z;., is the germ of z; at x). Therefore fiz,] = f;, and f[z]
=/

COROLLARY. Let X = C" be analytic. All multiplicative linear fimctionals on
0(X) can be represented by points of X.

In Section 5.3, we shall see that this corollary is not as obvious as one can ex-
pect. The converse of this result is trivial, X is analytic if all multiplicative functionals
on O(X) can be represented.

The result of W. R. Zame that we shall discuss in Section 5.7 implies that only
one bounded homomorphism @(X) — o can exist if all multiplicative linear func-
tionals can be represented.

It can be argued that the corollary is the only result in this section which does
not follow from Zame’s result.

5.3. DEFINITION. An element x of a unital topological algebra «f is a function
of ay, ..., a, € o if two unital continuous homomorphisms, ¢, ¢,: & - # are
such that g, x = @, x if g4, = gaa fori=1,...,n.

I do not like the expression “is a function of”, but I have not found any better
expression, and the notion is worth considering.

The set of “functions of (a, ..., a,)” is clearly a closed sub-algebra of o/ which
contains a;, ..., &,, and the unit. This closed sub-algebra also contains every element
which can be obtained from (ay, ..., a,) by applying a natural operational calculus.
If of is a commutative Banach algebra, if fe (O(sp(al, < @), then flay, ..., a)]
is a function of @, , ..., a,. If X is analytic, all elements of ¢(X) are functions of z;, ...

<o 2 Within O(X).

PROPOSITION. Let s£ be a unital Banach algebra. Let a,, ..., a, be elements of

"o and x a function of @y, ..., @,. Let M be an of-bimodule and D: s — M a deriva-

tion. Then Dx = 0 if Da; = 0.
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The statement “D is a derivation” is equivalent with the statement “the mapping
x -» x@®Dx is a homomorphism & — & @M” when we put on o @M the multipli-
cation

(a,®m )@ ®m,) = a,8,@(aymy+mya,).
The result follows.

COROLLARY. A function of @, ..., a, belongs to the bicommutant of (ay, ..., a,).

This follows from the considetation of the inner derivations Dy: x — bx~—xb,
with b in the commutant of a;, ..., @,.

If we accept the idea that a good functional calculus must be natural, we see
that a natural functional calculus maps into the bicommutant.

% is not a function of z in C;(D), if D is the unit disc, because 8/0z is a deri-
vation C;(D) — C(D) which vanishes at z and not at Z. On the other hand Berkson,
Dawson, and Elliott [63] have shown that all elements of C(D) are “functions of z”
in C(D).

5.4. The uniquencss properties of the h.f.c. are related to the properties of
the holomorphic hull of a compact set in C*. But not all specialists of Banach algebra
theory know what a holomorphic hull is.

Let U be an open set in C™ It can happen that all functions holomorphic on
‘U can be extended to an open set U, larger than U. If U is the half spherical shell

U= {(z;, ..,z 1—& <zl < 1, Rez; >0}
all holomorphic functions on U can be extended to the half-ball
U= {(zl, ez lzl <1,Rezy > 0}.

It can also happen that all functions on U can be extended in two essentially
different ways to some point out of U. Let for instance U’ be the union of U with
a neighbourhood of a path j winding from the half-sphere |z| = 1, Rez; > 0 back
to the origin after having wound once around the complex hyperplane z; = 2.
All functions on U, hence all functions on U’ can be extended to U, hence to the
origin. But the functions on U’ take already a value at the origin. And the extension
of a function to the interior of the half-shell may take a different value at the origin
from the extension of this function to the neighbourhood of the path j. Think of
the function log(z; —2).

Fortunately, if all functions in U extend to z, along a path j from z, € U to zy,
all functions in U extend to some e-neighbourhood of z, along j, where £ > 0 depends
on j and z,, but does not depend on the function. The common domain to which
all elements of @(U) extend looks locally like an open subset of C”.

DEFINITION. A~ domain' TF spread over C™is an analytic manifold with a projec-
tion mapping z: U — C" which is a local isomorphism of analytic manifolds.
PROPOSITION, To every open subset U = C", one can associate a domain i)

spread over C", and containing U, in such a way that every holomorphic function on
U extends uniquely to U. U is called the envelope of holomorphy of U.
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Now, let ¥ be an open subset of U. The envelope of holomorphy ¥ of V is
spread over C™. It is even spread over U, the projection my: ¥V — C" factors =y,
= myomyy Where my is the projection U — C" and 7y a projection V-0

If V is relatively compact in U, nyy: Vo Ubasa relatively compact range
in U.

The above results are not trivial. But they are part of the present-day classical
theory of functions of several complex variables.

5.5. Let now X be a compact subset of C’l For every open neighbourhood U
of X, we have an envelope of holomorphy UIfVis relatively compact in U, we
have a mapping gy : V — U, with relatively compact range.

DerINITION. The holomorphic hull X of Xis the prajective limit of the holo-
morphic hulls of the neighbourhoods of X.

X is a countable projective limit of manifolds, with structural mappings having
relatively compact ranges. It is a compact metrizable space. There is a projection
mapping X — €. The counterimage of any z € C" is 2 projective limit of finite sets.
Such a projective limit is totally disconnected, but it can be uncountable. I do not
have any example where an uncountable set of points of X map onto the same point
of C", but I do not doubt that such examples exist, and have been found.

PROPOSITION. The holomorphic hull X of X is the maximal ideal space of 0(X).

The holomorphic functions on neighbourhoods of X separate X, because the
holomorphic functions on U (or their extensions to U) separate U. We must still
show that a finite number u,, ..., % of clements of @(X) generate the improper
ideal of O(X) if u,, ..., u, have no common zero on X

Let U be a neighbourhood of X to which u,, ..., 1 all extend Let U be the
envelope of holomorphy of U. Let #y, ..., i be the extensions of u,, ..., %, to .

Call 8: ¥ —» U the natural pro]ectzon, and let ¥ = 6X. The extensxons of u;
to X are the compositions #;-8. We assume that these extenslons have no common
zero on X, The functions #; have no common zero on Y. Let V be a neighbourhood
of ¥in U, small enough that #,, ..., # have no common zero on V, and then W
a neighbourhood of X whose holomorphic hull W is mapped into ¥ by the projec-
tion map myw: W 0.

The extensions of uy, ..., # to W have no common zero on . But W is a Stein
manifold. The functions u;, ..., % generate the improper ideal of O(W), and a
fortiori of (9(X)

5.6. Let X = C" be a compact set. Let Xheits holomorphlc hull. Let 7: X =
— C" be the projection mapping. If 7 is injective, nX is an analytic set in C”, Since
0(X) = 0(X) ~ O(xX), only one bounded homomorphism 0(X) - & can exist which
maps unit on unit, and z; on ;.

If 7 is not injective, if x, € X, x, € X are such that mx; = ax,, the mappings
u - i(x;), u~> ii(x,) map zi, ..., z, onto the same elements of C, but are different
continuous homomorphisms 0(X) - C.

34 Banach Center t. VIIL
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5.7. The following uniqueness theorem for the h.f.c. is an easy consequence of
Runge’s theorem and the polynomial convexity of the set of multiplicative linear
forms on .

PROPOSITION. Assume that a bo
is given for each finite system a,, ...,
morphism. Assume that

(l) 'pal-un,.(zl) = a,

@ Ifw <n,andp: C"— C" is the projection C" —

Qaya(fop) = Paya(f)

ded unital h phism 0(spay , ..., a,) — of
a, of elements of . Call @a,...q, this homo-

C", then

for all fe O(spay, ..., ay).

Then ¢(f) = fla].

For applications, condition (2) can be annoying, because it involves the simul-
taneous consideration of all mappings @a,....,. The following uniqueness theorem,
by W. R. Zame [57], involves the consideration of only one such homomorphism.

ProPOSITION. Let ¢: O(spay, ..
satisfying

M) @) = a,

3) @(f)"(m) = f(&(n)) when m is a maximal ideal of 4, if it(m) is the value
at m of the Gelfand transform of ue .

Then @(f) = fla).

Note that Zame states mistakenly the classical uniqueness result as “p(f)
= fla] if (1), (2) and (3) hold™. It is clear that (1) and (2) implies (3). His work does
not remove a condition, it replaces this condition by another one. This remark
does not reduce the value of his resuilt.

In the functional calculus setting (described in Section 1.2), Zame states that
@(f) = fla] if @ is a bounded unital homomorphism ®(spa) — .:a! which maps z;
on a; and behaves as it should on the Gelfand transforms.

In the operational calculus setting (this is the ideology that I adopt in most
of this paper), naturality is an important property of the operational calculus. Zame

says that (f) = fla] if ¢: O(spa) - o is a bounded unital homomorphism which
maps z; on a;, and is such that

16D = £(x(a))

whenever y is a multiplicative linear form on . In other words he requires “natu-
rality relative to the multiplicative linear forms”. In any case, the result is ideologically
a good result. .

The following result is a cotollary of Zame’s theorem.

COROLLARY. Let of be a_Banach algebra. Let ay, ..., a, be elements of &, let
“S'be their joint spectrum-and S its holomorphic hull. Let n:: S — C" be the projection
‘mapping, assume that n~*5'has a single element for all s € S. There is then a unique
bounded homomorphism O(S) — sf which maps z; on a;.

., ay) = S be a bounded unital homomorphism,
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6. Jdempotent bounded structures

6.1. This section contains a small generalization of Banach algebra theory.
Most of the results about commutative Banach algebras generalize to algebras with
an idempotent bounded structure.

The spectrum of an element is still compact and not empty. The introduction
of algebras with idempotent bounded structures is not justified by the observation
{Section 1.6) that operators with unbounded spectrum and operators with cmpty
spectrum want to be studied.

It is justified by the fact that non-Banach algebras with an idempotent bounded
structure exist, and that some of these are useful in functional analysis. Examples
will be found in Section 6.5.

The fact that the algebra of holomorphic functions near to a compact subset
X < C" is such an example must be mentioned. We have already applied the fact
that the h.f.c. can be applied to @(X).

6.2. Topological vector space structures are poorly adapted to the theory that
we shall discuss. Bounded structures are better adapted. It may be one can get
even better results when studying algebras with convergence structures. I have never
tried. I am convinced that the initial theory would be less trivial. I like algebras
with bounded structures because the preliminary bornological results used in the
spectral theory are so easy to prove.

DEFINITION. A b-space, ot a space with a complete convex bounded structure
is the union E = | J E, of a directed system of Banach spaces, where the inclusion
a

maps E, - Ej are bounded when « < f. The bornology # of Eisthesetof B = E
such that B < E,, and is bounded in E, for « large enough.

DEFINITION. A b-algebra (o , %) is a b-space equipped with a bounded bilinear
multiplication.
We assume that B, - B, € & when B, € &, B, € &. In other words & = U o
@

where the &, are Banach spaces, and for every «, § there is a y such that o/, -
< of,, multiplication & x oz — o, being continuous.

The b-algebras are important in spectral theory. The reader is sent to paragraph
8 if he wants some spectral considerations which really involve the considerations
of b-algebras. Except in Section 6.5, example (€), we shall not be dealing with general
b-algebras in this section, but with the b-algebras having an idempotent bounded
structure. We shall call these mb-algebras (multiplicatively convex b-algebras).

DEFINITION. A subset B of an algebra < is idempotent if B> < B. A complete
convex bornology # on an algebra & is idempotent if every bounded set B'is con-
tained in MB, for some M € R, and some bounded idempotent B,. An algebra
with an idempotent bornology is an mb-algebra.

34%
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If B, is idempotent if we let
B, = {EX,x,.I Vn: x,€B;,Vn: }.,.EC,Z [l < 1}
1

then B, is bounded, idempotent, and its MinKowski (gauge) functional is a Banach
algebra norm on the vector space generated by B,.

PROPOSITION. An mb-algebra o is the union o = _) &y of a directed family
of Banach algebras, a subset B being bounded in s/ if and only if B is contained and
bounded in o4, for some o.

This class of algebras has been introduced by R. G. Allan, H. G. Dales, McClure
[4], who called these pseudo-Banach algebras. H. Hogbe-Nlend [16] considered
these and spoke of m-convex bornologies.

63. Leta,, ..., a, be elements of the commutative mb-algebra with unit &/
= |J &,. Choose « large enough, that a; € o/, for i = 1, ..., n. We can define
®

Sp((alv mety an)! Ma)-
This is a compact non empty subset of C*. If « < 8,
D@15 - » a3 o) 2 5P((015 -+ Gn); Hp).

DEFINITION. The spectrum of (ai, ..., a,) is the intersection
sp((ay, ..., a; ) = (Ysp((ay, ---» )i L2)-

This is a compact non empty subset of C". And clearly
1s ooes 52 €59 (@1, - 0 #) & Wy, ) €% Y (@—shuy = 1.
1

If U is a neighbourhood of sp((ay, ..., a,); &), we find « large enough, that

U2 sp((ay, -, a0, &)
and an h.f.c. mapping O(U) — . If f > a, the h.f.c. mapping O(U) — &, is the
composition of the h.f.c. mapping O(U) —» «, and inclusion &, — of. This is
true because inclusion is a morphism of unital Banach algebras, which maps the
elements a; on themselves, and we know that the h.f.c. is natural.
This shows that the morphism @(U) — s, does not depend on the choice of o,
if o is large enough.

PROPOSITION. For every system (ay, ..., a,) of elements of £, we have a bounded
homomorphisin 0(sp(a1, ey a,,))—» o which maps the coordinate function z; on a;,
and the unit on the unit. If n’ < n, the h.f.c. homomorphism

0(sp(ay, ..., an)) ~ o
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is the composition of the h.f.c. homomorphism O (sp(ay, ..., a.)) ~ o and the mapping
= fom: O(sp(@r, ... an)) = O(splay, ..., a)) if w: C" — C™ maps (zy, ..., z,) onta
(Z15 oo Znt)-

Of course, the compatibility of the h.f.c. with the projection mappings, as
stated in the above proposition, ensures the urniqueness of the h.f.c., just as it does
when & is a Banach algebra.

6.4. We have a broad choice of paths which allows us to show that the main
results of commutative Banach algebra theory apply to mb-algebras.

The most obvious path is the classical one in Banach algebra theory. Let m
be a maximal ideal of & = |_) #,. For each «, let m, = mnf,, and cl,m, the

closure of m, in the Banach algebra o#,. Then m = |_Jcl,m, is a proper ideal and

contains m, so m = m. The quotient & /m is in a natural way an mb-algebra, and
it is a field. Of course &/ /m cannot be a field other than the complex field, because
the spectrum of an element is never empty.

[The reader must be warned against a mistake. If E = (_J E, is a b-space, if

F < E is a vector subspace, we can let F, = FnE,, next cl F, the closure of F,
in the Banach space E,, finally clF = _Jcl, F,. The mapping F - clF is not idem-
-3

potent in general, cIFN E, is the union of the sets (clzFy) NE,. Each of these is
closed, but the union need not be closed. Above, m is equal to its closure because
it is maximal, so it is closed and «f/m is an mb-algebra.]

We can follow another path, sketched in Section 2.5 when & is Banach algebra.
For each (ay, ..., a,) we have a compact set sp(a,, ..., @,). When »’ < n, sp(a,, ...
..., @,) is mapped onto sp(a,, ..., @) by the projection €" — C™. The projective
limit of the sets sp(ay, ..., @,) is a compact space, the “spectrum of ”. One can
then identify the spectrum of &/ with the set of all maximal ideals, or of all multi-
plicative linear forms on &.

We may develop the structure space theory and the holomorphic functional
calculus in each &f,, and take the suitable inductive and projective limits. Or we
may show directly that the structure space theory and the h.f.c. apply to . The
end resultis, of course, always the same.

6.5. The fact that interesting, non-Banach mb-algebras exist is of course very
important.

(a) We justify the considerations of Section 5.2 by observing that O(K) has
a natural mb-structure.

Let K be compact in C™, or in a locally convex space. A holomorphic function
on a neighbourhood of K is continuous on a neighbourhood of K, and therefore
bounded on a — possibly smaller — neighbourhood. '

For each open set U, containing K, and each of whose components meets K,
we consider the Banach algebra 0,(U) of bounded holomorphic functions on U.
The restriction mapping @.,(U) —» 0(K) is injective. The set of open sets U that we
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consider is directed for inclusion, ¢(K) is the union of a directed family of Banach
algebras. ’

(b) Let o be a function algebra on the compact space X. A function £'is locally
in o if

¥x €X 3V, neighbourhood of x,Juesl; uly = fly.

1t is known that function algebras exist, with functions that are locally in & but
not globally in . :

k
Let X = (J ¥; be a finite open covering. We call &/, the set of fe C(X)
1
such that V i 3 u; € & with fly, = ugly,. This set of functions is normed by

n(V:}(f) = maxmln{“u“ I u]Vt =fIV1}'

Then (v, is a Banach algebra, and
d loc

o, Vi
{LVJ» o
is an mb-algebra.

(c) Let & be a commutative complete p-normed algebra with unit. For each
finite subset {x;, ..., x:} of of and each & > 0, consider the closed balanced convex
XqTt . XyTE

hull of
{ (e AT AT

This is the unit ball of a Banach algebra &, itself contained in &/, and & = |_) ...
To my knowledge this is the easiest proof of results of W. Zelazko [58], [59],
{60], [61], B. Gramsch [15], D. Przeworska-Rolewicz and S. Rolewicz [21] about
complete p-normed algebras.
On the other hand I do not see how the results of P. Turpin and myself [38],
[39], [40], [46] can be proved along these lines.

(d). An operator f on a topological vector space is bornifying if f(U) is bounded
for some neighbourhood U of the origin. A set B of bornifying operators is equi-
bornifying if a neighbourhood U of the origin exists such that

B(U) = {bw)| beB,ueU}

res ...,rkeN}.

is bounded.

Let E be a sequentially complete locally convex space, or more generally one
in which all closed convex, balanced, bounded subsets are completant. With its
equibornifying boundedness, the algebra of bornifying operators on E is a mb-algebra.

The word completant has been used. A convex balanced subset B of a vector
space E is completant if its Minkowski (gauge) functional is a Banach space norm.
A closed, bounded, convex balanced subset of a topological vector space is comple-
tant if it is sequentially complete.

. The existence of this bounded structure is important, implicit in P. Uss’s theory
of bornifying operators -[41], though Uss does not speak of bounded structures.
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Hogbe-Nlend {16] credits M. Akkar [1] with the description of this bounded struc-
ture.

(e) Let & be a commutative unital b-algebra (i.e. a b-space with a bounded
bilinear multiplication). An element a € o/ is regular ([42], [43]) when (a—s)~?!
is defined and bounded on some neighbourhood of infinity, i.e. for |s| > M. It is
bounded [3] if a"/M" is bounded when M is a large real number.

The bounded and the regular elements are of course the same when & is a b-
algebra. The only difference between these notions is one of applicability of the
theory in the non-complete case.

Let &/, be the set of regular elements of . Then &, is a subalgebra of /.
A set B = o, will be called “Allan bounded” if B = MB, for some M € R, and
some bounded idempotent B, . Let

®
B, = {Zlnx,,'

Then B, is a Banach ball, is idempotent. With the Minkowski functional (gauge)
of B, as norm, the vector space &/p, absorbed by B, is a Banach algebra.

If B, and B are two idempotent Banach balls, both containing the unit, then
By 2 B,uB;if

ill,,i <1,vn: x,,eBl}.
T

;= {Zl Ananu

and B3 is a bounded idempotent Banach ball. We see that
"r = U K4 B2

Xn EBls Yn EB;.’ i ”‘n] < 1}
1

is the union of a directed family of Banach algebras. It is an mb-algebra.

6.6. This is the place to mention a class of algebras, which I have often called
“continuous inverse algebras”, and which are called Q-algebras by the Polish math-
ematicians. They are the algebras where the inverse is defined on an open set, and
is continuous there. The Polish school is ready to call “continuous inverse” any
algebra where the mapping @ — a~! is continuous on its domain. I-am reluctant
to give the qualification to an algebra if the set of invertible elements is not large
enough, . ;

However, these notes are being published in Poland, I shall adopt the Polish
terminology. .

All elements of a Q-algebra are regular. The structure space theory, the h.fc.
apply to complete locally convex Q-algebras. These algebras are the topological
algebras to which one expects the statement “the set Us of (ay, ..., G) Such that
$p(dy, ..., @) < U is open, the mapping = f(@y, --., an)s Ux.— o is continuous”
to generalize... U is of course an open subset of C" and fe 0(U). And as a matter
of fact, this statement does generalize to Q-algebras, at least complete locally convex
ones, and complete locally pseudo-convex ones [where locally pseudo-convex means
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that the topology is defined by a family of p-norms and p-semi-norms, where each
pis between 0 and 1, 0 < p < 1, but p depends eventually on the norm and the
semi-norm].

1 have never studied systematically the class of Q-algebras, and do not know
whether such a systematic exposition exists.

Some facts can be mentioned. A separately continuous multiplication on a Fré-
chet topological vector space is jointly continuous. This algebra is a. Q-algebra if
the set of its invertible elements is open. By the way, this algebra is a continuous
inverse algebra if and only if the set of invertible elements is a G set. (Here, con-
tinuous inverse is given its Polish meaning.)

If of is a topological vector space with an associative algebra structure, if the
set of invertible elements is a neighbourhood of the unit and ¢=* — 1 when a - 1,
Turpin shows that the Jordan multiplication of &, (a, b) — 1(ab+ ba) is continuous,
that the set of invertible elements is open, and that the mapping @ — a~! is con-
tinuous ([37]).

Further, if o is a locally convex, then & is locally m-convex (the topology
of o can be defined by submultiplicative semi-norms). However, non locally m-
convex Q-algebras exist whose topology can be defined by p-semi-norms, but cannot
be defined by submultiplicative p-semi-norms ([37]).

Banach algebras are of course Q-algebras. So are separated countable direct
limits of Banach algebras. This takes care of algebras like ¢(X) and O(X, o). With
its usual topology, the algebra of functions of class Cy,, on a compact manifold
is a Q-algebra. So is the quotient £(U)/€ (U, X) of the algebra of functions of class
C, on a manifold by the algebra of functions of class C,, on that manifold which
vanish along with all their derivatives on a compact subset X of U.

For a locally convex algebra to be a Q-algebra, it is necessary and sufficient that

(i) it be locally m-convex,
(i) the set of characters of . be compact,
(iii) the spectral semi-norm

q(a) = max{|s|| sespa}
be continuous.

6.7. In examples (a), (b) of Section 6.5, the algebra & was given with, or almost
with its mb-structure. The continuity properties of the h.f.c. follow directly from
the consideration of this mb-structure. The continuity statements that one obtains
are the statements that one expects.

The situation prevailing in example () is not unexpected. s, is a smaller alge-
bra than ¢, The bounded structure of &, is finer than the induced bornology of .
The contim%ity properties of the h.f.c. relate to the Allan boundedness of &/, and
not to its original bounded structure.

In example (c), the situation is less agreeable. It is a fact that the mapping
(@, -, ) = flay, ..., @] is continuous. Unfortunately, I do not see that this
follows obviously from the idempotent bounded structure that Allan, Dales, and
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McClure introduce on our complete p-normed algebra, nor is it clear that another,
grosser bounded structure would allow us to obtain the continuity of fla;, ..., a,]
as a corollary of the analogous continuity in the Banach algebra case.

6.8. Another remark can be made about example (e), Section 6.5. The setting
is absolutely not unusual in spectral theory. & is an algebra, &, is the set of its
regular elements. We could think of general operators and bounded operators, or
general and bounded functions. This was at the back of my head when I defined
the regular elements. G. Allan [4] made the remark explicitly.

Nothing special has come out of this, to my knowledge. Maybe nobody had
the correct idea. But I believe that there is a more serious obstacle on the way.

Think of the Heaviside functional calculus. The differential operator is not
a regular element of the relevant algebra, e.g. the algebra of distributions with
support in R, . It has an inverse, the primitive operator. This inverse is regular, its
regular spectrum (its spectrum in &,) is the origin.

Considerations such as these allow us to define f (%) when f is holomorphic

at infinity, and by extension when f has a pole at infinity. The Heaviside calculus

makes it possible to define f (%) when £ is holomorphic in a half-plane Rez > M

with polynomial growth at infinity on its domain.

To recapture the Heaviside calculus with the spectral techniques described
here, we must not only know the regular spectrum of d/dt. We must also know
subsets of C on which the resolvent of d/dt is bounded.

.

7: Central elements of o/

7.1, The algebras considered up to now were commutative. This hypothesis
will be weakened slightly. & will be a Banach algebra, 4, ..., a, will be elements
of the center. The operational calculus will still be essentially commutative. The
results presented here will be the Banach algebra special case of results obtained
in 1960 [44]. .

My motive for presenting these computations is the fact that they use an algebraic
structure not unrelated to Nelson’s full symmetric algebra {cf. the paper by E. Al-
brecht, [2], these proceedings). This will allow me to illustrate the fact that the full
symmetric algebra is a very useful algebraic structure. But full results can only be
obtained by introducing unsymmetric products in a limited number of critical
places (see also Section 7.11).

7.2. The h.fc. that will be introduced here is related to that of J. L. Taylor
[31], [32]. Of course, Taylor’s construction is module-related, while mine is algebra-
related. But algebra-related functional calculi are special cases .of module related
ones. Taylor can chase through a diagram associated to a double complex and
identify two classes of cohomology. He integrates one, I integrate the other.
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The formula by which I define the h.f.c. appears more explicit than Taylor’s,
but Taylor’s results reach further since his spectrum is smaller (when &/ operates
on a module M).

73. I was led to the computations presented here by a coefficient. I had
found a formula which defined the h.f.c. in the commutative case. This formula in-
volved the differential form

1= =
—-(-'—'-Z—‘kl;y"aulz\ L A Oy,

where y, uy, ..., 4, are of-valued functions which will be described later. And

(n+k)!/k! is the number of different products which one can write, when & is

associative but not commutative, with k factors equal to y, and n other factors

different from each other. .
Is this a coincidence, or would the kernel

Z:l:tpr

define an h.f.c. in the non-commutative case, if the ¢, are the (n+k)!/k! different
products of k factors equal to y and duy , ..., uy, the sign + depending on the parity
of the order of du, ..., ou,. It turns out that it does (when a,, ..., a, are in the
center of &).

However, to make the proofs readable, I introduced an auxiliary algebra. The
introduction of this algebra obscured the initial motivation of this research, i.e. the
attempt to understand a coefficient. But it links up with the considerations of E. Nel-
son and E. Albrecht.

7.4. Let o be a unital Banach algebra. Let a;, ..., @, be elements of the center
of . )
DerINITION. The spectrum of (ay, ..., a,) is the set of (s, ..., s,) € C" such

that 1 ¢z:: (a;—s) 4.

Let M,,: o — o be the multiplication operators x — a;x. The spectrum of
(@y, ..., @) is the J. L. Taylor spectrum of (M, ..., M,,). This is, or should be
clear. If (sy, ..., 8) is in the J. L. Taylor resolvent set of (M,,, ..., M,,), the map-

n
Ping (uy, .., tn) = ; (@;—s)u;, " — o is surjective. (This is part of the Taylor

regularity condition.) And & = Z (a,~s;))/. On the other hand, J. L. Taylor
1

([45], Lemma 1.1) proves that (s, ..., &) is in his resolvent set of (M,,, ..., Ma,)
if operators Uy, ..., U, commuting with (M,,, ..., M,,) exist, such that . (Ma—~
—s5; ) U; = I, I the identity operator. And this relation is verified if we put U
= M,,, where Z(ai—-s;)u; =1in &.

Each representation of &, each of-module gives (4, ..., a,) a Taylor spectrum,
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The spectrum of (ay, ..., a,) that we are considering is the union of the spectra of
(ay, ..., a,) for all possible &-modules, and it is the spectrum of (g, ..., a,) for
the left regular representation of ..

The spectrum of (ay, ..., a,) is, for all these reasons, compact, non empty,
and the spectrum of (ay, ..., ay) is the projection of the spectrum of (a,, ..., a,).
(Because the Taylor spectrum has these properties.)

7.5. PROPOSITION. Let U be aneighbourhood of sp(a, , ... , a,). of-valued functions
Uy, ..., Un, ¥ Of class Cy, exist, where y has compact support in U, such that

Z(at—st)”t'*'y =1
T
on C".

This is simple. For each s in the resolvent set, choose u;, € &/ such that
Z(ai—s,)u,-_, = 1. If s5; is near to s;, define

als) = (1= D (=) e
so that
Da=shus) = 1
T

when s’ is near to s. The function u; ((s") is holomorphic in s’, therefore of class
C, on a neighbourhood of s. A partition of unity allows us to find functions of class
Co, say ui(s), on the complement of the spectrum, and solutions of the equations
z(ai"st)u;(s) =1

Take next a function y, of class C, on C", with compact support in U, and
equal to one on a neighbourhood of the spectrum. Let u; = »;(1—») on the re-
solvent set, #; = 0 on the spectrum; (u,, ..., 4,, ) has the announced properties.

7.6. This is time to introduce the tensor algebra with symmetries, and the
symmetric tensor algebra.

Let & be a Banach algebra with unit, and let o, be the center of &. Let M,
M, be of-modules. M;xM, will denote the &f,-projective tensor product of M,
and M,, i.e. the quotient of M, léMz by the closed subspace generated by the el-
ements am; @ my—m,@am,, myeM,, myeM,, ac,.

#*¥ is the »-tensor product of N copies of «f. We associate to p € Sy a linear
transformation of «#/*¥, defined on generators by

Pley* . e Xy) = Xp, % . %X,
(Sy is the symmetric group, p maps i on p;). Wg also define

sym,,,:—Nl!-Zp.

PESN
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If A is an exterior algebra, we define p and symy on A(#*Y) = ¥ @4,

letting p or symy respectively operate on &#*" and the identity on A. This convention

takes good care of the signs when factors involving differential forms are concerned.

If p € S5 is the permutation (1, 2, 3) - (3, 1, 2) and u, v, w are sZ-valued functions
Plux dux Ow) = —dw xu * 3o,

We call mult, or when doubt can arise over the degrees, multy the mapping
¥ o of induced by multiplication

Ay % ... k0y = Ay ... dp.

Partial multiplication operators are also important. If N = r; + ... 4+r,, such
a partial multiplication maps &/*" into &/**, mapping a,* ... * ay onto

Ay oo @, %Qr 41 oo Qpyry ® oon ¥Qpgreigorgo g 41 oo Gy
7./1. The symmetric tensor algebra is the algebra
o° = @ sym oL+

of symmetric tensors, with the convention &°° = o, if &, is the center of .
We write

¥ = sym of*V
and, when u € o°V, veIM

oD =symu*vef MHN,

With these conventions, &/° is a commutative graded algebra.
Consider now the equation

D @=sdu()+y() = 1.

Unfortunately, the relation can only hold in &#° if we interpret the right-hand side
as the “unit of degree 17, i.e. the element of &/°' = & corresponding to the unit
of o, The unit of &/° is “the unit of degree 0, i.e. the element of &#°° = o, (the
center) corresponding to the unit of .

‘We can work in the quotient of «#° by the difference of these two “units”. This
is. a unital commutative b-algebra, in which the relation

Y@= sdu(s) + () = 1

holds, where 1 is the unit of the algebra. The quotient is not graded any more. It
is “filtered”, it is the union of a sequence of Banach spaces.

7.8. I would probably follow this path, work in that quotient of &° if the
path went all the way to the result we want. But it does not. Ninety percent of the
results can probably be handled by this remark when & is a non-commutative
Banach algebra, once the analogous result is proved in the commutative case.

But the theory is incomplete if we cannot prove the remaining 109 of the
theorems. . '

icm

HOLOMORPHIC FUNCTIONAL CALCULUS 541
For this reason, it seems reasonable to work in &#° and in of* = @«f*". The
mappings # — lou, u— liu, o°¥ —» of°¥+1 or of*¥ o of*N+1 map elements
onto each other that we want to identify but choose not to.
The following result is in the good 90%. If o is a commutative Banach algebra,
if @y, ..., a, are elements of o, if U is a neighbourhood of sp(ay, ..., a), if ;, y
are of-valued functions of class Cy, which satisfy the relation

n
Y @—su+yE) = 1,
1
y having compact support in U, then

(n+k)!
k!

VeBuy A ... A DU,

is in a class of d-cohomology with compact support in U, which depends only on
a4, ..., @y, and not on k, nor on » or on y. The reader can find a proof of this result

‘in Bourbaki [64].

Ifay, ..., a, belong to the center of &, if we consider the algebra o£°, a straight-
forward application of the above result shows that the class of d-cohomology with
compact support in U, of the form

(n+k)!
k!

does not depend on u, y or on k, where Z(a,-—s,—)u,-+ y=1

multy™ o Gy o ... o du,

7.9. I shall outline two proofs in the remaining 10%. The reader will see that
the symmetric tensor algebra is useful, even in these two proofs, only not all compu-
tations can be carried out in this algebra.

Letting &/, ay,...,a,, 4y, ..., U,, y be as at the end of the preceding section
(i.e. & associative, a; central, etc.) we define

(n+K)!
O= TR

multy®® o Juy o ... o Ou,.

PROPOSITION. The o**-valued form
lrw—wx*l
is equal to Be for some s#**-valued form @ with compact support in U.

This result is significant. Let @ € o be such that 1xa = gx1. Then a is in the
center of &/. The best way to see this is to observe that 1xxxa = a*x=1 for all x
in o/ apply a suitable permutation to the relation x*1#*a = x*ax1. Multiplication
then shows that xa = ax.

The proposition, in a way, means that @ is cohomologically central.

The proof derives from the classical proof of the fact that the cohomology of

[ -
—("——*I;!’Q‘—ykau,/\ e A BU,
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does not depend on k. But, in its application to the tensor algebra, we take care
not to symmetrize everything. Let

By = Z (=1t x 3% o Buy o ...
where, as usual, 5&, means that the factor is omitted in the product. Then
iy, = Z (=118, %y 0 Buy o ...

+kZ (=1 uey*todyodu o ...
We differentiate the equation

Oaﬁio ves oa—u,,

o Bliyo ... o Oyt

— .
o duyo ... o du,.

Z(ai_st)“i+y =1
and obtain
Z(a,——s,)?ui+5y = 0.
We replace 3y by —9.(@;—s;) 8u; in the second term of 9. We remember that
dujodu; = 0, also that the expression is of,-multilinear if «, is the center of o,

the factor (a;—s;) can be transferred from any factor in this product to any other
factor,

k2(~ 1)i=1u; % y°*~1 Gy o Bty o ... 0 Biks 0 ... o OUy

= —kZ(—l)“lu,*y""“ o (@—5) Oty 0 Bty o ... o Bllg o ... © Dliy
= —kZ(a,—si)u,*y""“ o By o ... o Oy
= ky«y* 1o Bugo .. oBu,—k(1#y* 1o duso ... ou,)

and therefore
B = 3 (=1 Bugw 3 o By o .. 0 Bilgo e 0 Btpt
+h(y % y°* Lo Buy o... o G —k(l xy?*~1 o Juyo ... 0 Bu,).
If we develop y°*odu, o ... o8u,, we see that

(k)Y o Buuy oo 0 Bty = kyx Y1 o Buy o ... 0 Bu,+

+Z (—1)"Gu; %y o Buge... o Gliyo...o Ou,

hence
B, = (n+ Ky o fuy o ...
This proves that the cohomology of

o Qty—k(1 £y = o Buy o ... o Ouy).

(n+k)!

] y°% 0 Buy o ...

o Oty
and

(n+k—1)!

e L oGy 0T
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are equal. Similarly
(n+k+r)! Ok 4r = 3,
W)’ + °au1° s aau,
and
k! — —
_(n_+_)_1*7*y°k° Gy o ... o Bu,

k!
are in the same class of cohomology with compact support. This class of cohomo-

logy is symmetric under the operation of the symmetric group of order k+r. A judi-
ciously chosen permutation and multiplication operator shows that

! o _
[E}L—Tk)‘—multy"" °Buyo ... o 6u,,] *1
and
! _ —
1 (n:'k). multy®™ o fu, o-... o du,

are in the same class of d-cohomology with compact support.

7.10. The following uses also more structure than that of the full symmetric
algebra.

Let a;, ..., a,, by, ..., by be elements of the center of &. Let U and ¥ be
open neighbourhoods of sp(ay, ..., a,) and of sp(d,, ..., b,) respectively. Then
U=V is a neighbourhood of sp(ay, ..., @y, by, ..., by).

Classes of cohomology with compact supports in U, ¥, and U x V¥ are associated
to a, b, and (a, b) respectively. We shall call these w(a), w(b), and w(a,b). It'is
expected that

w(a, b) = w(a) ® o).
Let us show that this is the case.
Start with the relations

> @—su(+y© = 1,
D bty = 1,

where y and x have compact support in U and ¥, respectively. We have

D @=souils)+ . (=)o +yEx(@) = 1.
The function y(s)x(t) bas compact support in U x V. Therefore, w(a, b) is the class
of cohomology containing
© (ntm+k)
k!
We know that du, o ... o Ju, is of maximum degree in 45y, ..., d5,, and that ay
does not depend on dt,, ..., dt,. It follows that this form is equal to

@-%)* 0 Bugo ... o Otzo Qyoyo ... © OPOy,.

(n+m+k)! o yB0m.

A oalnoyb—vlc

G x)*oduy o ..
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Consider now _ _
1x(y:x)*oydvyo ... o yOU,.
This is equal to B B B
mult(l % y*¥™+% % x°% 0 §v, 0 ... © 0Vm),

where mult: sf*@m+2%k+1) _, of¥m+k+1) g 3 partial multiplication operator mapping

OBy % e % Btk ¥ V1% s ¥V
onto
a* By * oo * BmiiVmire
We also know that _ _
Lay*mtk s x% 0 dyyo ... o 00,
and
mult(x%* o vy o ...

are in the same class of d-cohomology with compact support in V. It follows that

o B0,,) ¥ yXmE 4 1EmHE

14 (- %)% 0 pdu; o ... 0 yoU,,
and

mult(x®* e 30, o ... o 0v,) + y*"tE

only differ by the coboundary of a differential form with compact support in V.

From the time we stopped writing du; o... o du, in the computations, we have
treated s as a constant or a parameter. This is legitimate, we must now multiply
again by duyA ... Adu,, and symmetrize on the last m+n+k factors. Any dif-
ferential ds; which appears in the process is mapped on zero when we multiply by
that form. We see in this way that

1#(y X% 0 Buy o ... 0 Otty 0 OYUy © ... o YTy,
and
(= 1™ mult (x°% o 3o, o ... 0 U,) % Yo" +* o Buty 0 ... o Guy
only differ by the d-coboundary of a differential form with compact support in
U xV. We multiply this relation by

(m+n+l)! _ (mn+k)! (m+k)!
k! = Tm+k! K

and apply a mult operator. The required result follows
PROPOSITION. (a, b) is the Cartesian product of w(a) and w(b).

7.11. It is the talks by E. Albrecht on the operand algebra of E. Nelson that
decided me to include the above considerations in this ideological series of talks.
The algebra &/° is not unlike Nelson’s full symmetric algebra.

-The proofs given in Sections 7.9 and 7.10 involve both symmetric products of
tensors and usual tensor products. In a way, it should be expected that non symmetric

products would be useful if we must somehow approximate the structure of a non
commutative algebra.
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I do not know what a non-commutative operational calculus should be like.
1t should be useful, there are cases where Nelson’s operand algebra is. But my
ideology wills that such a non-commutative object should not be entirely commuta-
tive. Otherwise, we cannot write any commutator!

8. Non regular elements

8.1. There was a last talk in the series. I tried to present results involving the
h.f.c. for elements which are not regular. These results were proved in 1960 [44].
The memoir which contains these is unavailable in many libraries, is at present out
of print, and to say the least, is difficult to read.

I agree with several mathematicians that the time has come when these results
must be presented anew. But such a new presentation does not make sense unless
the results we are discussing are combined with those of J. L. Taylor [31], [32]. Such
a combination should not be too difficult, but it has not been achieved yet (to my
knowledge).

In any case, the enterprise of combining Taylor’s results and mine goes beyond
this ideological series of talks.

8.2. In my 1960 results, I considered the quotient of a b-algebra by a two
sided b-ideal. This was initally an unmotivated generalization.

The generalization was introduced to carry one proof to the end. (The general-
ization of the result that sp(ay , ..., 4,) 1S not empty.) Subsequent proofs remained
feasible, but became more difficult. However in applications, it turns out that the.
originally unmotivated generalization is useful.

1 have mentioned J. L. Taylor. There are places where he is hampered by the
fact that he uses non-abelian (non-exact) categories in homological algebra. The
category of quotient complete bornological spaces is an exact category. I do not
doubt that [33] can be rewritten in that category. The theory would presumably
be more elegant, if only one is convinced that quotient complete bornological spaces
are relevant to functional analysis.

Not much has been published about these formal quotients. The reader will
find something about quotient Banach spaces in these proceedings [52], [53], [54].
Results about quotient bornological spaces have been announced elsewhere [48],
[49], [50], [51].

8.3. It seems reasonable in any case to speak about single elements of a b-al-
gebra. The n-dimensional generalizations may be difficult, but the one-dimension-
al results do indicate in what direction one might find generalizations.

b-algebras have been defined in Section 6.1. The reader may not feel what is
a b-algebra. Let him think about complete locally convex algebras. But the applica-
tions of the theory are richer when the theory is developed in the category of b-
algebras.

8.4. DEFINITION. Let o/ be a b-algebra, and ae of. A set S & o is spectral
for a if (a—s)~! is defined and bounded on the complement of S.
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Note, if S has an unbounded complement, that it would be equivalent to assume
that (a—s)~* has polynomial growth at infinity. This follows from the limited geo-
metric expansion identity

(@a—s) ™t = —st—s"2g— ... —s7** 1 4 s7*a*(a—s5)"t

which shows that the resolvent is bounded on a setif it grows at most like a poly-
nomial of degree k.

PROPOSITION. The set of S, spectral for a, is a filter with open basis. The resolvent
is a function of class Cy, on C*\S if C* = Cu {0} is the complex sphere and S
is an open spectral set.

Let us first prove that the spectral filter is a filter with open basis, i.e. that
the interior of a spectral set is spectral, and that the empty set is not spectral, Let
(a—s)~* be defined and bounded on T = C. Consider the resolvent identity

@=s)yt—(a—Ht= (s—1)(a—s) *(@a—0*.
We see that the resolvent is uniformly continuous on T. It extends to the closure
of T. The extension is a bounded function on 7, and is the resolvent on T. This
shows already that the spectral filter has an open basis.

We do not yet know that it is a true filter, that & is not spectral. But if & is
spectral, the resolvent identity shows that the resolvent is a bounded entire function.
And it is not a constant.

We use the definition of differentiable functions on closed sets given by H. Whit-

“ ney. A function of class Cy, is of class C, for all r. A function fof class C, on a closed
set T < R" is a system of functions (f;,...,), |p| = p1+ ... +p, < r, where we must
consider f5,...,, as “derivatives” of f, and

»
KB = 2 gt ol
q!
laj <r-1p|

with the usual multi-index notations, the relation holding when x e T, x+heT,
the o-estimate holding uniformly when 4 — 0.

The resolvent is complex-differentiable of class C, on T'nC, This follows from
the limited geometric expansion relation,

(@—s—h)y = (a—s5)"1+h(a—s)"2+ ... +h"(@a—s)"" 4"+ (g—5)" " (a—s—h)"?
which already shows that (a—s—Hh)~* is asymptotically the sum of the (not necessarily

convergent) series Y. (a—s)~*~1A*. We must also show that the derivatives of the
resolvent are asymptotically sums of series. The derivatives of the resolvent are prod-
ucts of constant factors and powers of the resolvent

&
;i?(a—-s)“ = k! (a—5)"""1.

If we raise the asymptotic expansion of (a—s—h)"t ~ 3.(a—s)"'~14' to the power
k+1 and multiply by k! we obtain an asymptotic expansion for kl(a—s)*", ie.
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for [@*/ds*](a—s)"%, and an inspection shows that this is the required Taylor expan-
sion of the derivative.

To prove that the resolvent is differentiable at infinity, we must consider the
differentiability of (a—s~1)~? for s near to zero. Of course

(a—s)* = —s(1—sa)"t
so that we are led to investigate (1—sa)~1. We have the asymptotic expansion
(1—G+ha) "~ Y (1-sa)yrthar.
The derivatives of (1 —sa)~* with respect to s have the form
rla"(1—sa)~r-1,

Raising the asymptotic expansion of (1 —(s+h)a)™* to the power r+1 and multi-
plying by rla’, we again obtain the required result.

8.5. We can now apply Whitney’s result, about the extension of differentiable
functions off closed sets.

PROPOSITION. Let S be a spectral set, and T its complement. A function u of class C,
exists on the sphere C* = Cu {0} such that u is C-differentiable to the order r for
every teT. The Taylor expansion of (a—t—hy* around te T is

(a—t—h)~t ~ Z(a-z)—k—lhk.
[}]

The Taylor expansion of (@—s~*)"1 = —s(1—sa)™ around the origin is

—s(l—say™ ~ — ) sk+igk
%

We notice that (a—2)u(z) = 1 when ¢ e T, the difference 1—(a—1t)u(t) is of
class C,_; and vanishes with its derivatives to the order r—1 on 7.

8.6. J. Sebastiad e Silva [22], [23], [24], [25], [26] has construétcd operational
calculi involving spectral sets with smooth boundaries. The following could be
a technique for constructing such calculi.

Start by assuming that S is a bounded simply connected spectral set with
a smooth boundary. Let 85(s) = inf|s—¢]. Let u(s) be holomorphic and such that

s

6%u is bounded for some %. Then some primitive of u is bounded, even continuous
to the boundary. Let f = g®.. We have, when s€ S

)= Sg(e)(f -1,

21:1

If S is multiply connected, we find a rational function ¢(s) in such a way that
f—¢ has the required primitives. Then f = g®+¢.
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If S is unbounded, we let d5(s) = ig;"[ls—t[, (1+[s]?)~%2], and call O(s) the
t

set of f, holomorphic on S, such that 0k f is bounded for some k. Let fe 0(ds) and
let ¢ be in the exterior (the interior of the complement) of S. Then (z—1#)~"1f—¢
has a primitive which is summable on the boundary of S,

F(s) = (s—)1gP(s)+ (9.
This allows us to define, to try to define

flal =1 (a—r)na&g(f)(s—a)-'-ldsw(a)

and hope that the operation defines a reasonable h.f.c.
It does. It must. The integral

§ a(&)—2)1de
a8

converges in the b-algebra 0(ds). If a bounded morphism 0(85) — o exists, which
maps unit on unit and z on 4, this bounded morphism maps

f2) = oyt =11 aSS S(E)E—2) e

onto f[a]. And such a bounded morphism does exist.

8.7. Tt is possible to prove the existence of this bounded homomorphism without
assuming that S has a smooth boundary. Its construction uses a formula, derived
by Stoke’s formula from the usual Cauchy integral formula. We showed in Section
8.5 that the resolvent possesses a differentiable extension (of class C,), to the in-
terior of the ‘spectral set S. If u(s) is the extension of the resolvent, and y(s)
= 1—(a—5)u(s), then y(s) is of class C,_; on Cu{co}, and vanishes on the com-
plement of X, along with its derivatives to the order r—1.

[The extension of u is of class C, on S. The function y(s) is of class C, on C,
and vanishes on the complement of S. A derivative is lost at infinity because s has
a simple pole there, y is of class C,_; on (Cu{co})\S]

A function which vanishes at the boundary of S along with its derivatives to
the order r— 1 tends relatively fast to zero at the boundary. If f is holomorphic and
such that 8%f is bounded, f- y is of class C,_;_, and vanishes at the boundary to
the order r—k—1. Such a function is summable on S.

‘We would like to integrate S f(s)u(s)ds. We cannot, unless S has a nice boundary
Applying Stoke’s formula,‘ we obtam the expression

g £ Bu(ds

whlch is formally equal to the Cauchy integral.
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Differentiating the relation
(a—s)u(s)+y(s) =
we obtain
(a—s5) du(s)+ dy(s) = 0.
We multiply this by «(s), and remember that (a— s)u(s) =

Bu(s) = p(s) u(s)—u(s) dy(s).
The form fdu that we integrate is therefore equal to
fou = fydu—fudy.
This is an «/-valued form, differentiable to the order C,_,_,, zero along with its

derivatives to the order r—k—2 on the complement of S. And Séuds is summable
if r>k+4.

If «’ is another extension of the resolvent, v’ —u vanishes to the order r on the
complement of our spectral set,

fou'—fou = B[f(u" —u)]
is the coboundary of a form which vanishes to the order r—k—1 on the comple-
ment of S. The integral of such a form is zero.

1~ y(s). We have

PROPOSITION. A bounded linear mapping 0(8) — & is associated in a natural
way to a€ A.

This maps f onto the common value of

-2% S féuds = fla)

for all u, of class C, (r large enough depending on f), and extending the resolvent
If £ = 1, we notice that f[a] = 1, because u(s) is asymptotically equal to —s~* ~
—s~*a— ... and

Sﬁuds = lim S [s7'4s"2a+ ...]Jds = 2mi.
Js]=R
Assume mnow that f(s) = (s—a)g(s) with ge0(ds; #). Remember that

(a—)ou = —-6y
2rifla) = (f(s)uds = —{g(s)dyds = 0.

If r(z) = P(2)/Q(z) is a rational function, r(z)—r(a) belongs to the ideal generated
by z—a (if r(a) = P(a)Q(a)~?). It follows that r[d] = r(a).

PROPOSITION. The mapping f— fla] is a bounded homomorphism 0(ds) — A .
The rational functions of z are dense in 0(Js).

The mapping is bounded and linear. Its restriction to the algebra of rational
functions is 2 homomorphism. To prove that it is a homomorphism, it is sufficient
to prove that the rational functions are dense in @(Jg).
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Let 0,(ds) be the closure in 0(ds) of the algebra of rational functions. Then
z € 0,(dy), if z is the coordinate function, and S is spectral for z in @,(d5). We have
therefore a mapping f— f[z], 0(ds) = 01(ds).

The “holomorphic functional calculus” that we have constructed may not be
a homomorphism, but is natural. If we compose it with the inclusion map @,(85) -
- 0(Js), we get the holomorphic functional calculus mapping @(ds) — @(ds). But
this h.f.c. mapping must be the identity mapping. Just compose it with the evalu-
ation map u — u(z,) and observe that u[z,] = u(z,) when z, is scalar. u[z] is the
holomorphic function which, for all z, € S takes the value u(z;) at z,. Le. ulz] = u.

.

8.8. This is a good place to stop.

In the second half of this talk, I discussed the n-dimensional generalization
of the above results. This generalization has been sketched elsewhere ([47], Sec-
tions 8-12), and in a more leisurely way.

Another approach to the construction of an operational calculus can be men-
tioned. We have extended the resolvent to the interior of a spectral set, and con-
structed a function which was an “asymptotic resolvent”. Instead, we could have con-
sidered the growth of the resolvent at the boundary of the spectrum.

I have obtained such results when n = 1, and when we assume that the resolvent
has growth properties such as those of ||(a—s)~!|| when a is an element of a Banach
algebra [45]. These results have been generalized for larger values of n by C. Wrobel
[55), [56] and by Nguyen The Hoc [20]. .

Quite a bit of work can still be done on the operational calculus even in commu-
tative algebras.
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We define here the category ¢B of quotient Banach spaces and study its linear
properties. This is an exact category whose definition can be motivated by functional
analytic considerations. It is to be expected that gB will be useful where functional
analysis and homological algebra interact. The multilinear propertis of ¢B, and the
J. L. Taylor spectrum of commuting operators in gB will be considered elsewhere.

The category g of quotients of complete bornological spaces can also be useful
when functional analysis and homological algebra interact. It contains ¢B. More
applications can be attained with ¢ than with ¢B. But ¢B is a subcategory of E.V,
(the category of vector spaces), g is not. Its properties can be explained in a much
simpler language than the properties of ¢. It is the simpler language that will be
used here.

I met the quotients of complete bornological spaces for the first time in 1960
[5], without defining their category, without showing that my constructions were
natural in g. I withheld systematic research and publication when 1 realized that
there would be more trivialities than applications in the incipient stages of the theory.

G. Noél gave a definition of ¢, and obtained some results on tensor products
([11, 2], [3], [4D. I do not like much his definition. It is too categorical, and not
functional analytic enough. But it is not worse than the definition I had at the time
and did not publish.

This paper, and the next two will stress the functional analytic aspects of the
category gB. After all, it is the functional analysts who are expected to use this
category. And the fact that gB is (isomorphic with) a subcategory of E.V. may
make the pill easier to swallow for functional analysts who do not have much in-
tuition of what homological algebra is about.

The results contained in this paper and the properties of quotients of complete
bornological spaces have already been announced [6], [7], [8], -[9].

1

Let E be a Banach space. A Banach subspace F of E is a vector subspace on which
a Banach space norm exists which defines on F a stronger topology than the top-
ology induced by E. Applying the closed graph theorem, we observe that two such

[553]


GUEST




